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UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING

TWO SETS WITH FINITE WEIGHT II

ABHIJIT BANERJEE

Abstract. With the help of the notion of weighted sharing of sets we deal with the

well known question of Gross and prove some uniqueness theorems on meromorphic

functions sharing two sets. Our results will improve and supplement some recent

results of the present author.

1. Introduction, definitions and results

In this paper by meromorphic functions we will always mean meromorphic functions
in the complex plane. It will be convenient to let E denote any set of positive real
numbers of finite linear measure, not necessarily the same at each occurrence. For any
non-constant meromorphic function h(z) we denote by S(r, h) any quantity satisfying

S(r, h) = o(T (r, h)) (r −→ ∞, r 6∈ E).

Let f and g be two non-constant meromorphic functions and let a be a finite complex
number. We say that f and g share a CM, provided that f − a and g − a have the same
zeros with the same multiplicities. Similarly, we say that f and g share a IM, provided

that f − a and g − a have the same zeros ignoring multiplicities. In addition we say that
f and g share ∞ CM, if 1/f and 1/g share 0 CM, and we say that f and g share ∞ IM,
if 1/f and 1/g share 0 IM.

Let S be a set of distinct elements of C∪ {∞} and Ef (S) =
⋃

a∈S{z : f(z)− a = 0},
where each zero is counted according to its multiplicity. If we do not count the multiplicity
the set

⋃

a∈S{z : f(z) − a = 0} is denoted by Ef (S). If Ef (S) = Eg(S) we say that f
and g share the set S CM. On the other hand if Ef (S) = Eg(S), we say that f and g
share the set S IM. Evidently, if S contains only one element, then it coincides with the
usual definition of CM (respectively, IM) shared values.

Inspired by the Nevanlinna’s three and four value theorem, in 1970s F. Gross and

C.C. Yang started to study the similar but more general questions of two functions that
share sets of distinct elements instead of values. For instance, they proved that if f and
g are two non-constant entire functions and S1, S2 and S3 are three distinct finite sets
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such that f−1(Si) = g−1(Si) for i = 1, 2, 3, then f ≡ g. In 1976 F. Gross proposed the

following question in [9]:

Question A Can one find two finite sets Sj (j = 1, 2) such that any two non-constant

entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be identical ?

In [9] Gross wrote If the answer of Question A is affirmative it would be interesting

to know how large both sets would have to be ?

Yi [23] and independently Fang and Xu [8] gave the same positive answer in this

direction.

Now it is natural to ask the following question [21].

Question B Can one find two finite sets Sj (j = 1, 2) such that any two non-constant

meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be identical

?

Gradually the research on Question B gained pace and today it has become one

of the most prominent branches of the uniqueness theory. For the last two decades a

considerable amount of research work have executed by different authors to consider the

shared value problems relative to a meromorphic function sharing two sets and at the

same time give affirmative answers to Question B under weaker hypothesis {see [1]-[8],

[11], [17]-[23], [28]-[31]}.

In 1994 Yi [22] gave an affirmative answer to Question B and prove that there exist

two finite sets S1 (with 2 elements) and S2 (with 9 elements ) such that any two non-

constant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must

be identical.

Question B will naturally motivate onself to consider the uniqueness of two non-

constant meromorphic functions satisfying Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞}).

This type of result was first obtained by Li and Yang in [19] where they proved that there

exists one finite set S with 15 elements such that any two non-constant meromorphic

functions satisfying Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞}) must be identical. In

1995, Yi [23] and independently Li and Yang [19] reduced the cardinalities of the set S

from 15 to 11 to consider the uniqueness of meromorphic functions. In 1997 Fang and

Guo in [7] exhibited a set S of nine elements with this property.

In 2002 Yi [27] proved the following result in which he not only reduced the cardinal-

ities of the set S but also relaxed the sharing of the poles from CM to IM.

Theorem A.([27] see also [30]) Let n be a positive integer such that n ≥ 8, and let a, b

be two nonzero complex numbers satisfying abn−2 6= 2. Then the polynomial

P (w) = awn − n(n − 1)w2 + 2n(n − 2)bw − (n − 1)(n − 2)b2 (1.1)

has only simple zeros. Let S = {w | P (w) = 0}. If f and g are two non-constant

meromorphic functions satisfying Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞}) then f ≡ g.
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Dealing with the question of Gross in [7] Fang and Lahiri obtained a unique range set

S with smaller cardinalities than that obtained previously imposing some restrictions on

the poles of f and g.

Theorem B. ([7]) Let S = {z : zn + azn−1 + b = 0} where n(≥ 7) be an integer and

a and b be two nonzero constants such that zn + azn−1 + b = 0 has no multiple root.

If f and g be two non-constant meromorphic functions having no simple poles such that

Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞}) then f ≡ g.

Let S = {z : z7 − z6 − 1 = 0} and

f =
ez + e2z + . . . + e6z

1 + ez + . . . + e6z
, g =

1 + ez + . . . + e5z

1 + ez + . . . + e6z

Obviously f = ezg, Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞}) but f 6≡ g. So for the

validity of Theorem D, f and g must not have any simple pole.

In 2001 an idea of gradation of sharing known as weighted sharing has been introduced

in {[13], [14]} which measure how close a shared value is to being shared CM or to being

shared IM. In the following definition we explain the notion.

Definition 1.1.([13, 14]) Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞}

we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is

counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that

f, g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly

if f , g share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k. Also we note that

f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞) respectively.

Definition 1.2.([13]) Let S be a set of distinct elements of C∪{∞} and k be a nonneg-

ative integer or ∞. We denote by Ef (S, k) the set
⋃

a∈S Ek(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

With the notion of weighted sharing of sets improving Theorem B, Lahiri [17] proved

the following theorem.

Theorem C.([17]) Let S be defined as in Theorem B and n(≥ 7) be an integer. If for

two non-constant meromorphic functions f and g, Θ(∞; f) + Θ(∞; g) > 1, Ef (S, 2) =

Eg(S, 2) and Ef ({∞},∞) = Eg({∞},∞) then f ≡ g.

Recently the present author [4] has not only generalized Theorem C by investigating

the problem of further relaxation of the nature of sharing the set {∞} in Theorem C but

also give an exact lower bound of Θ(∞; f) + Θ(∞; g) at the expense of allowing n ≥ 8

in the same theorem in which the multiplicities of the poles cease to matter.

In [4] the present author has proved the following results.
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Theorem D.([4]) Let S be defined as in Theorem B and n(≥ 7) be an integer. If for

two non-constant meromorphic functions f and g, Θ(∞; f) + Θ(∞; g) > 1 + 29
6nk+6n−5 ,

Ef (S, 2) = Eg(S, 2) and Ef ({∞}, k) = Eg({∞}, k) where 0 ≤ k < ∞ then f ≡ g.

Theorem E.([4]) Let S be defined as in Theorem B and n(≥ 8) be an integer. If for two

non-constant meromorphic functions f and g, Θ(∞; f) + Θ(∞; g) > 4
n−1 , Ef (S, 2) =

Eg(S, 2) and Ef ({∞}, 0) = Eg({∞}, 0) then f ≡ g.

Now from the above discussion the following query is natural.

(i) Is it possible in any way to combine Theorem D and E to a single theorem so that

Theorem D will be improved to some extent ?

In this paper we will provide an affirmative answer to the above question. The

following theorems are the main results of the paper.

Theorem 1.1. Let S be defined as in Theorem B and n(≥ 7) be an integer. If for

two non-constant meromorphic functions f and g, Θ(∞; f) + Θ(∞; g) > max{8 − n +
4

nk+n−1 , 4
n−1}, with min{Θ(∞; f), Θ(∞; f)} > 4− n

2 + 2
nk+n−1 , Ef (S, 2) = Eg(S, 2) and

Ef ({∞}, k) = Eg({∞}, k) where 0 ≤ k < ∞ then f ≡ g.

Corollary 1.1. Let S be defined as in Theorem B and n(≥ 7) be an integer. If for two

non-constant meromorphic functions f and g Ef (S, 2) = Eg(S, 2) and Ef ({∞},∞) =

Eg({∞},∞) and Θ(∞; f)+Θ(∞; g) > max {8−n, 4
n−1} with min{Θ(∞; f), Θ(∞; f)} >

4 − n
2 , then f ≡ g.

Theorem 1.2. Let S be defined as in Theorem B and n(≥ 8) be an integer. If for

two non-constant meromorphic functions f and g, Θ(∞; f) + Θ(∞; g) > max{9 − n +
6

nk+n−1 , 4
n−1}, with min{Θ(∞; f), Θ(∞; f)} > 9

2 −
n
2 + 3

nk+n−1 , Ef (S, 1) = Eg(S, 1) and

Ef ({∞}, k) = Eg({∞}, k) where 0 ≤ k < ∞ then f ≡ g.

Theorem 1.3. Let S be defined as in Theorem B and n(≥ 12) be an integer. If for

two non-constant meromorphic functions f and g, Θ(∞; f) + Θ(∞; g) > max{14 − n
2 +

4
nk+n−1 , 4

n−1}, with min{Θ(∞; f), Θ(∞; f)} > 7− n
2 + 2

nk+n−1 , Ef (S, 0) = Eg(S, 0) and

Ef ({∞}, k) = Eg({∞}, k) where 0 ≤ k < ∞ then f ≡ g.

Following example shows that the condition Θ(∞; f) + Θ(∞; g) > 4
n−1 is sharp in

Theorem 1.1 when n ≥ 8.

Example 1.1. {Example 2, [15]} Let f = −a 1−hn−1

1−hn
and g = −ah 1−hn−1

1−hn
, where

h = α2(ez

−1)
ez−α

, α = exp(2πi
n

) and n(≥ 3) is an integer.

Then T (r, f) = (n − 1)T (r, h) + O(1) and T (r, g) = (n − 1)T (r, h) + O(1).

Further we see that h 6= α, α2 and a root of h = 1 is not a pole of f and g. Hence

Θ(∞; f) = Θ(∞; g) = 2
n−1 . Clearly f and g share (∞;∞). Also Ef (S,∞) = Eg(S,∞)

because fn−1(f + a) ≡ gn−1(g + a) but f 6≡ g.
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It is assumed that the readers are familiar with the standard definitions and notations
of the value distribution theory as those are available in [10]. We are still going to explain
some notations as these are used in the paper.

Definition 1.3. ([12]) For a ∈ C ∪ {∞} we denote by N(r, a; f = 1) the counting
function of simple a points of f . For a positive integer m we denote by N(r, a; f ≤
m)(N(r, a; f ≥ m)) the counting function of those a points of f whose multiplicities are
not greater(less) than m where each a point is counted according to its multiplicity.

N(r, a; f ≤ m) (N(r, a; f ≥ m)) are defined similarly, where in counting the a-points
of f we ignore the multiplicities.

Also N(r, a; f < m), N(r, a; f > m), N(r, a; f < m) and N(r, a; f > m) are defined
analogously.

Definition 1.4. Let f and g be two non-constant meromorphic functions such that f
and g share a value a IM where a ∈ C∪{∞}. Let z0 be an a-point of f with multiplicity
p, an a-point of g with multiplicity q. We denote by NL(r, a; f) (NL(r, a; g)) the reduced

counting function of those a-points of f and g where p > q (q > p), by N
1)
E (r, a; f) the

counting function of those a-points of f and g where p = q = 1. Clearly when f and g
share (a, m) with m ≥ 1 then N

1)
E (r, a; f) = N(r, a; f |= 1).

Definition 1.5.([10]) We denote by N2(r, a; f) = N(r, a; f) + N(r, a; f ≥ 2)

Definition 1.6.([9, 10]) Let f , g share (a, 0). We denote by N∗(r, a; f, g) the reduced
counting function of those a-points of f whose multiplicities differ from the multiplicities
of the corresponding a-points of g.

Clearly N∗(r, a; f, g) = N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g).

Definition 1.7.([16]) Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f g = b) the counting
function of those a-points of f , counted according to multiplicity, which are b-points of
g.

Definition 1.8.([16]) Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by N(r, a; f g 6=
b1, b2, . . . , bq) the counting function of those a-points of f , counted according to multi-
plicity, which are not the bi-points of g for i = 1, 2, . . . , q.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F
and G be two non-constant meromorphic functions defined in C. Henceforth we shall
denote by H and V the following two functions

H = (
F

′′

F ′
−

2F
′

F − 1
) − (

G
′′

G′
−

2G
′

G − 1
)

and

V = (
F

′

F − 1
−

F ′

F
) − (

G
′

G − 1
−

G′

G
) =

F ′

F (F − 1)
−

G′

G(G − 1)
.
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Lemma 2.1.([26]) If F , G be two non-constant meromorphic functions such that they
share (1,0) and H 6≡ 0 then

N
1)
E (r, 1; F ) ≤ N(r, H) + S(r, F ) + S(r, G).

Lemma 2.2. Let f and g be two non-constant meromorphic functions sharing (1, m),

where 0 ≤ m < ∞. Then

N(r, 1; f) + N(r, 1; g) − N
1)
E (r, 1; f) +

(

m −
1

2

)

N∗(r, 1; f, g) ≤
1

2
[N(r, 1; f) + N(r, 1; g)]

Proof. Let z0 be a 1- point of f of multiplicity p and a 1-point of g of multiplicity
q. Since f , g share (1, m), we note that the 1-points of f and g up to multiplicity m
are same. When p = q = 1, z0 is counted once, both in left and right hand side of the

above inequality but when 2 ≤ p = q ≤ m, z0 is counted 2 times in the left hand side of
the above inequality whereas it is counted p times in the right hand side of the same. If
p = m+1 then the possible values of q are as follows. (i) q = m+1, (ii) q ≥ m+2. When
p = m + 2 then q can take the following possible values (i) q = m + 1, (ii) q = m + 2,
(iii) q ≥ m + 3. Similar explanations hold if we interchange p and q. Clearly when
p = q ≥ m + 1, z0 is counted 2 times in the left hand side and p ≥ m + 1 times in the
right hand side of the above inequality. When p > q ≥ m + 1, in view of Definition 1.6
we know z0 is counted m + 3

2 times in the left hand side and p+q

2 ≥ m + 3
2 times in the

right hand side of the above inequality. When q > p we can explain similarly. Hence the
lemma follows. �

Lemma 2.3.([16], Lemma 4) Let F , G share (1, 0), (∞, 0) and H 6≡ 0. Then

N(r, H) ≤ N(r, 0; F |≥ 2) + N(r, 0; G |≥ 2) + N∗(r,∞; F, G)

+N∗(r, 1; F, G) + N0(r, 0; F
′

) + N0(r, 0; G
′

),

where N0(r, 0; F
′

) is the reduced counting function of those zeros of F
′

which are not the
zeros of F (F − 1) and N0(r, 0; G

′

) is similarly defined.

Lemma 2.4.([20]) Let f be a non-constant meromorphic function and P (f) = a0+a1f +
a2f

2 + . . . + anfn, where a0, a1, a2 . . . , an are constants and an 6= 0. Then T (r, P (f)) =
nT (r, f) + O(1).

Let f and g be two non-constant meromorphic function and for an integer n ≥ 3

F =
fn−1(f + a)

−b
, (2.1)

G =
gn−1(g + a)

−b
. (2.2)
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Lemma 2.5. Let F , G be given by (2.1) and (2.2) where n ≥ 7 is an integer and H 6≡ 0.

If F , G share (1, m) and f , g share (∞, k), where 0 ≤ m < ∞. Then

n

2
{T (r, f) + T (r, g)} ≤ 2{N(r, 0; f) + N(r, 0; g)} + N2(r,−a; f)

+N2(r,−a; g) + N(r,∞; f) + N(r,∞; g)

+N∗(r,∞; f, g) −

(

m −
3

2

)

N∗(r, 1; F, G)

+S(r, f) + S(r, g).

Proof. By the second fundamental theorem we get

T (r, F ) + T (r, G) ≤ N(r, 1; F ) + N(r, 0; F ) + N(r,∞; F )

+N(r, 1; G) + N(r, 0; G) + N(r,∞; G)

−N0(r, 0; F
′

) − N0(r, 0; G
′

) + S(r, F ) + S(r, G). (2.3)

Using Lemmas 2.1, 2.2, 2.3 and 2.4 we see that

N(r, 1; F ) + N(r, 1; G) ≤
1

2
[N(r, 1; F ) + N(r, 1; G)] + N

1)
E (r, 1; F ) (2.4)

−

(

m −
1

2

)

N∗(r, 1; F, G)

≤
n

2
{T (r, f) + T (r, g)} + N(r, 0; f) + N(r, 0; g)

+N(r,−a; f |≥ 2) + N(r,−a; g |≥ 2)

+N∗(r,∞; f, g) −

(

m −
3

2

)

N∗(r, 1; F, G)

+N0(r, 0; F
′

) + N0(r, 0; G
′

) + S(r, f) + S(r, g).

Using (2.4)) in (2.3)) the lemma follows in view of Definition 1.5. �

Lemma 2.6.([4], Lemma 2.8) Let F , G be given by (2.1) and (2.2), where n ≥ 7 is an

integer. If H ≡ 0 then fn−1(f + a)gn−1(g + a) ≡ b2 or fn−1(f + a) ≡ gn−1(g + a).

Lemma 2.7.([17], Lemma 5) If f , g share (∞, 0) then for n(≥ 2)

fn−1(f + a)gn−1(g + a) 6≡ b2,

where a, b are finite nonzero constants.

Lemma 2.8.([15], Lemma 9) Let f , g be two non-constant meromorphic functions such

that Θ(∞; f) + Θ(∞; g) > 4
n−1 , where n(≥ 4) is an integer. Then fn−1(f + a) ≡

gn−1(g + a) implies f ≡ g, a is a nonzero finite constant.
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Lemma 2.9.([24]) If F , G share (∞, 0) and V ≡ 0 then F ≡ G.

Lemma 2.10.([4], Lemma 2.12) Let F , G be given by (2.1) and (2.2), where n ≥ 7 is
an integer and V 6≡ 0. If F , G share (1, 2), f , g share (∞, k), where 0 ≤ k < ∞, then
the poles of F and G are zeros of V and

(nk + n − 1) N(r,∞; f |≥ k + 1) = (nk + n − 1)N(r,∞; g |≥ k + 1)

≤ N(r, 0; f) + N(r, 0; f + a) + N(r, 0; g) + N(r, 0; g + a)

+NL(r, 1; F ) + NL(r, 1; G) + S(r, f) + S(r, g).

Lemma 2.11. Let F , G be given by (2.1) and (2.2), F , G share (1, m), 0 ≤ m < ∞
and ω1, ω2 . . . , ωn are the distinct roots of the equation zn + azn−1 + b = 0 and n ≥ 3.
Then

NL(r, 1; F ) ≤
1

m + 1

[

N(r, 0; f) + N(r,−a; f) − N⊗(r, 0; f
′

)
]

+ S(r, f),

where N⊗(r, 0; f
′

) = N(r, 0; f
′

| f 6= 0,−a, ω1, ω2 . . . ωn)

Proof. We first note that −a does not coincide with any of ωi, i = 1, 2, . . . , n. Using
Lemma 2.4, by the first fundamental theorem we see that

NL(r, 1; F ) ≤ N(r, 1; F |≥ m + 2)

≤
1

m + 1

(

N(r, 1 : F ) − N(r, 1; F )
)

≤
1

m + 1





n
∑

j=1

(

N(r, ωj ; f) − N(r, ωj ; f)
)





≤
1

m + 1

(

N(r, 0; f
′

| f 6= 0,−a)− N⊗(r, 0; f
′

)
)

≤
1

m + 1

(

N

(

r, 0;
f

′

f(f + a)

)

− N⊗(r, 0; f
′

)

)

≤
1

m + 1

(

N

(

r,∞;
f

′

f(f + a)

)

− N⊗(r, 0; f
′

)

)

+ S(r, f)

≤
1

m + 1

[

N(r, 0; f) + N(r,−a; f) − N⊗(r, 0; f
′

)
]

+ S(r, f).

This proves the lemma. �

Lemma 2.12.([2]) Let F , G be given by (2.1) and (2.2), F , G share (1, m), 0 ≤ m < ∞
and ω1, ω2 . . . , ωn are defined as in Lemma 2.11. Then

NL(r, 1; F ) ≤
1

m + 1

[

N(r, 0; f) + N(r,∞; f) − N1
⊗(r, 0; f

′

)
]

+ S(r, f),

where N1
⊗(r, 0; f

′

) = N(r, 0; f
′

| f 6= 0, ω1, ω2 . . . ωn).
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Lemma 2.13. Let F , G be given by (2.1) and (2.2), F , G share (1, m), 0 ≤ m < ∞

and ω1, ω2 . . . , ωn are defined as in Lemma 2.11. Then

NL(r, 1; F ) ≤
1

m + 1

[

N(r,−a; f) + N(r,∞; f) − N2
⊗(r, 0; f

′

)
]

+ S(r, f),

where N2
⊗(r, 0; f

′

) = N(r, 0; f
′

| f 6= −a, ω1, ω2 . . . ωn).

Proof. We omit the proof since the same can be carried out along the line of proof of

Lemma 2.12. �

Lemma 2.14. Let F , G be given by (2.1) and (2.2), where n ≥ 7 is an integer. Suppose

S be given as in Theorem 1.1. If Ef (S, 0) = Eg(S, 0). Then S(r, f) = S(r, g).

Proof. Since Ef (S, 0) = Eg(S, 0), it follows that F and G share (1, 0). Suppose ω1,

ω2 . . . , ωn are the distinct roots of the equation zn + azn−1 + b = 0. Since F , G share

(1, 0) from the second fundamental theorem we have

(n − 2)T (r, g) ≤
n
∑

j=1

N (r, wj ; g) + S(r, g)

=

n
∑

j=1

N (r, wj ; f) + S(r, g)

≤ nT (r, f) + S(r, g).

Similarly we can deduce

(n − 2)T (r, f) ≤ nT (r, g) + S(r, f).

The last inequalities imply T (r, f) = O (T (r, g)) and T (r, g) = O (T (r, f)) and so we have

S(r, f) = S(r, g). �

3. Proofs of the theorems

Proof of Theorem 1.1. Let F and G be given by (2.1) and (2.2). Since Ef (S, 2) =

Eg(S, 2) and Ef ({∞}, k) = Eg({∞}, k) it follows that F , G share (1, 2) and (∞, nk+n−

1). So N∗(r,∞; f, g) = N∗(r,∞; F, G) ≤ N(r,∞; F |≥ nk + n) = N(r,∞; f |≥ k + 1).

If possible let us suppose that H 6≡ 0. Then F 6≡ G. So from Lemma 2.9 we get V 6≡ 0.
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Hence from Lemma 2.5 with m = 2 and Lemma 2.10 we obtain for ε(> 0)

n

2
{T (r, f) + T (r, g)}

≤ 2
{

N(r, 0; f) + N(r, 0; g)
}

+ N2(r,−a; f) + N2(r,−a; g) + N(r,∞; f)

+N(r,∞; g) + N∗(r,∞; f, g) −
1

2
N∗(r, 1; F, G) + S(r, f) + S(r, g)

≤ (4 − Θ(∞; f) + ε)T (r, f) + (4 − Θ(∞; g) + ε) T (r, g)

+
1

nk + n − 1
[2T (r, f) + 2T (r, g)] + S(r, f) + S(r, g).

That is

(

n

2
− 4 + Θ(∞; f) −

2

nk + n − 1
− ε

)

T (r, f)

+

(

n

2
− 4 + Θ(∞; g) −

2

nk + n − 1
− ε

)

T (r, g)

≤ S(r, f) + S(r, g) (3.1)

Without the loss of generality, we may suppose that there exists a set I with infinite

linear measure such that

T (r, g) ≤ T (r, f), r ∈ I.

From (3.1) and Lemma 2.11 we have

[

Θ (∞; f) + Θ (∞; g) − 8 + n −
4

nk + n − 1
− 2ε

]

T (r, g) ≤ S(r, g), r ∈ I\E,

which leads to a contradiction for arbitrary ε > 0. Hence H ≡ 0. Now the theorem

follows from Lemmas 2.6, 2.7 and 2.8. �

Proof.[Proof of Corollary 1.1] Let F and G be given by (2.1). Let F and G be given

by (2.1). Since Ef (S, 2) = Eg(S, 2) and Ef ({∞},∞) = Eg({∞},∞), it follows that

f , g share (∞, k) for all large k. Also since Θ (∞; f) + Θ (∞; g) > 8 − n, with

min{Θ(∞; f), Θ(∞; f)} > 4−n
2 , for sufficiently large k we can have Θ (∞; f)+Θ (∞; g) >

8 − n + 4
nk+n−1 with min{Θ(∞; f), Θ(∞; f)} > 4 − n

2 + 2
nk+n−1 and hence by Theorem

1.1 we get the conclusion of Corollary 1.1. So Corollary 1.1 can be treated as a special

case of Theorem 1.1. �

Proof.[Proof of Theorem 1.2] Let F and G be given by (2.1) and (2.2). Since Ef (S, 1) =

Eg(S, 1) and Ef ({∞}, k) = Eg({∞}, k) it follows that F , G share (1, 1) and (∞, nk +

n − 1). If possible let us suppose that H 6≡ 0. Now proceeding in the same way as done

in the proof of Theorem 1.1, using Lemma 2.5 with m = 1, Lemma 2.10 and Lemma 2.11
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with m = 1 we obtain for ε(> 0)

n

2
{T (r, f) + T (r, g)}

≤ 2
{

N(r, 0; f) + N(r, 0; g)
}

+ N2(r,−a; f) + N2(r,−a; g) + N(r,∞; f)

+N(r,∞; g) + N∗(r,∞; f, g) +
1

2
N∗(r, 1; F, G) + S(r, f) + S(r, g)

≤ (4 − Θ(∞; f) + ε)T (r, f) + (4 − Θ(∞; g) + ε) T (r, g)

+
1

nk + n − 1

[

3

2
(N(r, 0; f) + N(r,−a; f)) +

3

2
(N(r, 0; g) + N(r,−a; g))

]

+
1

4

[

N(r, 0; f) + N(r,−a; f) + N(r, 0; g) + N(r,−a; g)
]

+ S(r, f) + S(r, g).

That is

(

n

2
−

9

2
+ Θ(∞; f) −

3

nk + n − 1
− ε

)

T (r, f)

+

(

n

2
−

9

2
+ Θ(∞; g) −

3

nk + n − 1
− ε

)

T (r, g)

≤ S(r, f) + S(r, g) (3.2)

Without the loss of generality, we may suppose that there exists a set I with infinite

linear measure such that

T (r, g) ≤ T (r, f), r ∈ I.

From (3.2) and Lemma 2.14 we have

[

Θ (∞; f) + Θ (∞; g) − 9 + n −
6

nk + n − 1
− 2ε

]

T (r, g) ≤ S(r, g), r ∈ I\E,

which leads to a contradiction for arbitrary ε > 0. Hence H ≡ 0. Now the theorem

follows from Lemmas 2.6, 2.7 and 2.8. �

Proof.[Proof of Theorem 1.3] Let F and G be given by (2.1) and (2.2). Since Ef (S, 0) =

Eg(S, 0) and Ef ({∞}, k) = Eg({∞}, k) it follows that F , G share (1, 0) and (∞, nk +

n − 1). If possible let us suppose that H 6≡ 0. Now proceeding in the same way as done

in the proof of Theorem 1.2, using Lemma 2.5 with m = 0

n

2
{T (r, f) + T (r, g)}

≤ 2
{

N(r, 0; f) + N(r, 0; g)
}

+ N2(r,−a; f) + N2(r,−a; g) + N(r,∞; f)

+N(r,∞; g) + N(r,∞; f |≥ k + 1) +
3

2
N∗(r, 1; F, G) + S(r, f) + S(r, g). (3.3)
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Now using Lemmas 2.11, 2.12 and 2.13 with m = 0 we get from (3.3)

n

2
{T (r, f) + T (r, g)} ≤

7

2

{

N(r, 0; f) + N(r, 0; g)
}

+ N2(r,−a; f) + N2(r,−a; g)

+
3

2
[N(r,−a; f) + N(r,−a; g)] + N(r,∞; f) + N(r,∞; g)

+N(r,∞; f |≥ k + 1) + S(r, f) + S(r, g). (3.4)

n

2
{T (r, f) + T (r, g)} ≤

7

2

{

N(r, 0; f) + N(r, 0; g)
}

+ N2(r,−a; f) + N2(r,−a; g)

+
5

2
[N(r,∞; f) + N(r,∞; g)] + N(r,∞; f |≥ k + 1)

+S(r, f) + S(r, g). (3.5)

n

2
{T (r, f) + T (r, g)} ≤ 2

{

N(r, 0; f) + N(r, 0; g)
}

+ N2(r,−a; f) + N2(r,−a; g)

+
3

2
[N(r,−a; f) + N(r,−a; g)] +

5

2
[N(r,∞; f) + N(r,∞; g)]

+N(r,∞; f |≥ k + 1) + S(r, f) + S(r, g). (3.6)

Adding (3.4), (3.5) and (3.6) we get

n

2
{T (r, f) + T (r, g)} ≤ 3

{

N(r, 0; f) + N(r, 0; g)
}

+ 2T (r, f)

+2T (r, g) + 2 [N(r,∞; f) + N(r,∞; g)]

+N(r,∞; f |≥ k + 1) + S(r, f) + S(r, g). (3.7)

So using Lemma 2.11 we obtain from (3.7) for ε > 0 that

(

n

2
− 7 + 2 Θ(∞; f) −

4

nk + n − 1
− ε

)

T (r, f)

+

(

n

2
− 7 + 2 Θ(∞; g) −

4

nk + n − 1
− ε

)

T (r, g)

≤ S(r, f) + S(r, g) (3.8)

Without the loss of generality, we may suppose that there exists a set I with infinite

linear measure such that

T (r, g) ≤ T (r, f), r ∈ I.

From (3.8) and Lemma 2.14 we have

[

2Θ (∞; f) + 2Θ (∞; g) − 14 + n −
8

nk + n − 1
− 2ε

]

T (r, g) ≤ S(r, g), r ∈ I\E,

which leads to a contradiction for arbitrary ε > 0. Hence H ≡ 0. Now the lemma follows

from Lemmas 2.6, 2.7 and 2.8. �
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