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A TOTAL LABELLINGS OF m TRIANGLES

H. V. CHEN

Abstract. Assume that we have m triangles. In this paper, we discuss certain

labelling of the m triangles called c-Erdösian for some positive integers c. We

regard labellings of the vertices of the triangles by positive integers, which induce

the edge labels for the triangles as the sum of the two incident vertex labels. They

have the property that each vertex label and edge label appears only once in the

set of positive integers {c, . . . , c + 6m− 1}. Here, we show how to construct certain

c-Erdösian of m triangles.

1. Introduction

Graph labellings are assignment of integers to the vertices or edges, or both, subject to

certain conditions. In 1963, Sedláček [4] introduced magic labellings for graphs. Stewart

([7], [8]) studied various ways to label the edges of a graph. A connected graph is

said to be semi-magic if there is a labelling of the edges with integers such that for

each vertex v the sum of the labels of all edges incident with v is the same for all v.

A semi-magic labelling where the edges are labelled with distinct positive integers is

called a magic labelling. Kotzig and Rosa [1] introduced magic labellings of a graph

G(V, E) as a bijection f from V ∪ E to {1, 2, . . . , |V ∪ E|} such that for all edges xy,

f(x)+f(y)+f(xy) is constant and this type of graph labelling is called edge-magic total

labelling. In 1999, MacDougall, Miller, Slamin, and Wallis [2] introduced the notion of

a vertex-magic total labelling. For a graph G(V, E) an injective mapping f from V ∪ E

to the set {1, 2, . . . , |V | + |E|} is a vertex-magic total labelling if there is a constant k,

called the magic constant, such that for every vertex v, f(v) +
∑

f(vu) = k where the

sum is over all vertices u adjacent to v.

In this paper, we only consider a graph which consists of m triangles. Let GTm =

(Vm, Em) be the finite (disconnected) graph with vertex set V of size |V | = 3m and

edge set Em of size |Em| = 3m, consisting of m disjoint triangles K3, that is we let

GTm = m · K3. A total labelling of the graph GTm is a positive integer valued function

f : Vm ∪ Em → N. A labelling is said to be magic if its range consists of the integers

{1, 2, . . . , 6m} and it is said to be c-magic if its range consists of the integers {c, c +

1, . . . , c + 6m − 1}, for any positive integer c > 0.
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We say that f is a c-Erdösian triangle labelling if it is c−magic and if it has the

following property: For any edge xy ∈ Em, with x, y ∈ Vm we have

f(x) + f(y) = f(xy).

For convenience, we say that GTm is c-Erdösian if it satisfies the conditions above.

If x1, x2, . . . , x3m is an enumeration of the set of vertices of V, then we see that the

values f(x1), f(x2), . . . , f(x3m) are a subset of half size of the set of all the integers in

{c, c+1, . . . , c+6m− 1}. It is however necessary to point out that these values do not in

general consist of the smallest integers, i.e. do not consist of the values {c, c + 1, . . . c +

3m− 1}. For example in the case m = 1, the triangle K3 with the vertices V1 = {x, y, z}

and the edges E1 = {xy, xz, yz} is 1−Erdösian with f(x) = 1, f(y) = 2, f(z) = 4; and

also 2−Erdösian with f(x) = 2, f(y) = 3, f(z) = 4. Clearly in the first case we have an

edge label smaller than a vertex label, namely f(xy) = 3 < f(z) = 4.

Proposition 1. The cycle K3 is 1−Erdösian and 2−Erdösian but it is not c-Erdösian

for c ≥ 3.

Proof. Let x1, x2, x3 is an enumeration of the vertices of K3. If X be the sum of the

vertex labels, then X ≥ c + (c + 1) + (c + 2) = 3c + 3. Note that the total sum of all the

labels is 3X = c + · · · + (c + 5) = 3(2c + 5), and it follows that X = 2c + 5. Therefore

2c + 5 ≥ 3c + 3, and hence c ≤ 2.

Let GTm consists of m disjoint triangles. Let Di = {ai, bi, ci, ai + bi, bi + ci, ai + ci},

i = 1, . . . , m be their vertex and edge labels for each triangle. In other word, the system

{D1, . . . , Dm} is called c-Erdösian if its range consists of the integers {c, c+1, . . . , c+6m−

1}, for any positive integer c > 0. For convenience, the elements of Di can be represented

in the following form of a 2-by-3 array, where the top row indicates the vertex labels and

the bottom row shows the edge labels:

ai bi ci

ai + bi ai + ci bi + ci

We first look at the following necessary condition:

Proposition 2. If GTm is c-Erdösian, then c ≤ 3m+1
2 .

Proof. Let Di be the set of vertex and edge labels for i-th triangle where Di =

{ai, bi, ci, ai + bi, bi + ci, ai + ci}, i = 1, 2, . . . , m. Note that D1 ∪ · · · ∪ Dm = {c, c +

1, . . . , c + 6m − 1} and c + · · · + (c + 6m − 1) = 6mc + 3m(6m − 1). Let TS be

the sum of the vertices and BS be the sum of edges. Then, TS = ai + bi + ci and

BS = (ai + bi) + (ai + ci) + (bi + ci) = 2TS for all i = 1, . . . , m. Note that

TS ≥ c + (c + 1) + · · · + [c + (3m − 1)] = 3mc +
3m

2
(3m − 1)
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and

2TS = BS ≤ (c + 3m) + · · · + [c + (6m − 1)] = 3mc +
3m

2
(9m − 1).

Then TS ≤ 3mc
2 + 3m

4 (9m − 1) and it follows that

3mc +
3m

2
(3m − 1) ≤

3mc

2
+

3m

4
(9m − 1).

Therefore c ≤ 3m+1
2 .

Proposition 3. For all integers h ≥ 0 and c = 3h + 2, there exists a GT2h+1 which is
c-Erdösian.

Proof. Let m = 2h + 1. Since h ≥ 0 and c = 3h + 2, we have

D1 ∪ · · · ∪ Dm = {c, . . . , c + 6m − 1} = {3h + 2, . . . , 15h + 7}.

All the integers in the set {3h + 2, . . . , 15h + 7} can be partitioned into six intervals
of length m each. Note that there exist three permutation vectors of length m, π1 =
(−c + 1,−c + 2, . . . ,−1, 0, 1, . . . , c − 2, c − 1), π2 = (c − 1, c − 3, . . . ,−c + 1, c − 2, c −
4, . . . ,−c+4,−c+2) and π3 = (0, 1, . . . , c−1,−c+1,−c+2, . . . ,−2,−1) which satisfy the
equation π1 +π2 +π3 = 0̃. Furthermore π1 +π2, π1 +π3 and π2 +π3 are the permutation
vectors which consist of integers from the set {−c + 1,−c + 2, . . . ,−1, 0, 1, 2, . . . , c −
2, c − 1}. By using the permutation vectors, we are able to construct a GT2h+1 which is
c-Erdösian. Note that in this case, we have ∪m

i=1{ai, bi, ci} = {c, . . . , c + 3m − 1} and
∪m

i=1{ai + bi, ai + ci, bi + ci} = {c + 3m, . . . , c + 6m − 1}.

The following example shows the construction of GT2h+1 which is c-Erdösian.

Example 1. If h = 2, then m = 5 and c = 8. Let π1 = (−2,−1, 0, 1, 2), π2 =
(1, 2,−2,−1, 0) and π3 = (1,−1, 2, 0,−2). Then we obtain that π1+π2 = (−1, 1,−2, 0, 2),
π1 + π3 = (−1,−2, 2, 1, 0) and π2 + π3 = (2, 1, 0,−1,−2) which are the permutation
vectors with the integers {−2,−1, 0, 1, 2}. It is clear that π1 +π2 +π3 = 0̃. All the vertex
labels in a triangle will be assigned according to the three permutation vectors above. Let
πi = (p1, p2, p3, p4, p5) be the permutation vectors as mentioned above for i = 1, 2, 3. One
of the vertex labels in the j-th triangle is indicated by the value of pj for j = 1, 2, . . . , 5.
We shall assign the integers {8, 9, 10, 11, 12} as the first vertex labels in the five triangles
according to the entries pj of the permutation vector π1. Since π1 = (−2,−1, 0, 1, 2) and
the smallest integer in {8, 9, 10, 11, 12} is 8, 8 is assigned as one of the vertex labels in
the first triangle. It follows that 12 is assigned as one of the vertex labels in the fifth
triangle since the entries in π1 is increasing from −2 to 2. The next five integers for the
second vertex labels include {13, 14, 15, 16, 17} and we have π2 = (1, 2,−2,−1, 0). Since
p3 = −2 in π2, we note that the second vertex labels for the third triangle is 13. Hence,
the second vertex labels in the forth triangle is 14, fifth triangle is 15, first triangle is
16 and second triangle is 17, respectively. By using the similar argument, we can assign
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the third vertex labels for the five triangles from the set of integers {18, 19, 20, 21, 22},

according to the entries of π3. After we have all the vertex labels, the edge labels can be
obtained by summing up the values of the vertex labels. Hence, we have the following

8-Erdösian.

8 16 21
24 29 37,

9 17 19
26 28 36,

10 13 22
23 32 35,

11 14 20

25 31 34,

12 15 18

27 30 33.

We end the first section by the following straightforward result.

Proposition 4. If GTm is 4-Erdösian, then there exists a GTm+1 which is 1-Erdösian.

Proof. Let D0 = {1, 2, 3, 6m + 4, 6m + 5, 6m + 6}. Since D = {4, 5, . . . , 6m + 3}, we
obtain a GTm+1 which is 1-Erdösian by considering D0 ∪ D.

Example 2. Given a GT7 which is 4-Erdösian as follows:

4 17 28

21 32 45,

5 15 29

20 34 44,

6 13 30

19 36 43,

7 11 31

18 38 42,

8 16 25

24 33 41,

9 14 26

23 35 40,

10 12 27

22 37 39.

We can always construct a 2-by-3 array

1 46 2
47 3 48

and hence there exists a GT8 which is 1-Erdösian.

2. Some Special Classes of Triangle Labellings

We now specify various classes of special c−Erdösian of GTm. As a standard notation

we let the vertex labels be

ai < bi < ci for i = 1, 2, . . . , m.

Note that the three edge labels then become

ai + bi < ai + ci < bi + ci for i = 1, 2, . . . , m.

With this notation we now give a list of several conditions on the various vertex and edge

labels.
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(i) This condition says that the vertex labels in position ai form the first run of integers:

{a1, a2, . . . , am} = {c, c + 1, . . . , c + m − 1}.

(ii) This condition says that the vertex labels in position ai, bi together form the first
two runs of integers:

{a1, a2, . . . , am} ∪ {b1, b2, . . . , bm} = {c, c + 1, . . . , c + 2m − 1}.

(iii) This condition says that the vertex labels in position ai, bi and the edge label in
position ai + bi form the first three runs of integers:

{ai, bi, ai + bi : i = 1, 2, . . . , m} = {c, c + 1, . . . , c + 3m − 1}.

Proposition 5. For all c ≥ 1, there exists a GT2c−1 which is c-Erdösian and satisfies
the condition (iii).

Proof. Let π1 be the identity permutation of integers from {−c + 1, . . . , c − 1}, i.e.,
π1 = (−c + 1,−c + 2, . . . ,−1, 0, 1, . . . , c − 2, c − 1). Then there exist permutations π2 =
(c − 1, c − 3, . . . ,−c + 1, c − 2, c − 4, . . . ,−c + 4,−c + 2) and π3 = (0, 1, . . . , c − 1,−c +
1,−c + 2, . . . ,−2,−1) such that π1 + π2, π1 + π3 and π2 + π3 are also permutations of
integers from {−c + 1, . . . , c − 1}. Note that

(2c − 1)

(

1 2 4

3 5 6

)

=

(

2c − 1 4c − 2 8c − 4

6c − 3 10c− 5 12c − 6

)

. (1.1)

Then we obtain the following 2-by-3 array which e(i);j is the element of πi and e[(i)+(k)];j

is the element of πi + πk at the j-th position of the permutation vector, respectively.

e(1);j e(2);j e(3);j

e[(1)+(2)];j e[(1)+(3)];j e[(2)+(3)];j,
(1.2)

j = 1, . . . , 2c−1. By adding each element in respective position in (1.1) and (1.2), we have
Dj = {e(1);j+(2c−1), e(2);j+(4c−2), e(3);j+(8c−4), e[(1)+(2)];j+(6c−3), e[(1)+(3)];j+(10c−
5), e[(2)+(3)];j + (12c− 6)}, j = 1, 2, . . . , 2c− 1. Hence, ∪2c−1

j=1 Dj = {c, c + 1, . . . , 13c− 7}.

The following example presents the construction of c-Erdösian m disjoint triangles
described in the Proposition 5.

Example 3. If c = 2, we have π1 = (−1, 0, 1), π2 = (1,−1, 0) and π3 = (0, 1,−1). Then

−1 1 0

0 −1 1,

0 −1 1

−1 1 0,

1 0 −1

1 0 −1.

Since

(2c − 1)

(

1 2 4

3 5 6

)

=

(

3 6 12

9 15 18

)

,

then the 2-Erdösian of GT3 is as follows:

2 7 12

9 14 19,

3 5 13

8 16 18,

4 6 11

10 15 17.
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We can also formulate the dual conditions to (i) and to (ii), and some other conditions
like (v).

(iv) This condition says that the edge labels in position bi + ci form the last run of
integers:

{b1 + c1, b2 + c2, . . . , bm + cm} = {c + 5m, c + 5m + 1, . . . , c + 6m − 1}.

(v) This condition says that the edge labels in position bi form precisely the second run
of integers:

{b1, b2, . . . , bm} = {c + m, c + m + 1, . . . , c + 2m− 1}.

Proposition 6. Assume that GTm is c-Erdösian that satisfies the condition (ii). Then
it also has the properties

{ai + bi, ci : i = 1, 2, . . . , m} = {c + 2m, c + 2m + 1, . . . , c + 4m − 1}

{ai + ci, bi + ci : i = 1, 2, . . . , m} = {c + 4m, c + 4m + 1, . . . , c + 6m − 1}.

In particular it satisfies property (v).

Proof. Note that (c+2m)+· · ·+(c+4m−1) = m(2c+6m−1). Hence
∑m

i=1(ai+bi+ci) =
m(2c+6m−1), it follows that {ai + bi, ci : i = 1, 2, . . . , m} = {c+2m, c+2m+1, . . . , c+
4m−1}. Since (c+4m)+ · · ·+(c+6m−1) = m(2c+10m−1) and 2

∑m

i=1[(ai +bi)+ci] =
2m(2c + 6m − 1), we have

∑m

i=1(ai + bi) + 2
∑m

i=1 ci = m(2c + 10m − 1).

3. Constant sum of the vertex labels

Proposition 7. If the sum of the vertex labels over any one triangle is a constant, then

ai + bi + ci = 2c + 6m − 1 for all i = 1, 2, . . . , m. (1.3)

Proof. The constant in (1.3) is obtained by summing over all labels,

c + (c + 1) + · · · + (c + 6m − 1) = 6mc + 3m(6m − 1) = 3m(2c + 6m − 1)

and then dividing this expression by 3m, since there are m triangles and each triangle
has total sum of labels 3(ai + bi + ci).

The following is an example which the sum of the vertex labels over each triangle
which is all distinct.

1 2 15

3 16 17,

4 5 23

9 27 28,

6 7 18

13 24 25,

8 12 14
20 22 26,

10 11 19
21 29 30.

To construct our c-Erdösian of m triangles, we will use Skolem and Langford se-
quences. A Skolem sequence of order n is a sequence S = (s1, s2, . . . , s2n) of 2n integers
satisfying the conditions
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(S1) for every k ∈ {1, 2, . . . , n} there exist exactly two elements si, sj ∈ S such that

si = sj = k;

(S2) if si = sj = k with i < j, then j − i = k.

Skolem sequences can also be written as collections of ordered pairs {(ai, bi) : 1 ≤ i ≤

n, bi − ai = i} with
∑n

i=1{ai, bi} = {1, 2, . . . , 2n}. A hooked Skolem sequence of order n

is a sequence S = (s1, s2, . . . , s2n+1) of 2n + 1 integers satisfying the conditions (S1) and

(S2) above and

(S3) s2n = 0.

Skolem sequences can also be written as collections of ordered pairs {(pi, qi) : 1 ≤ i ≤

n, qi − pi = i} with
∑n

i=1{pi, qi} = {1, 2, . . . , 2n}.

A Langford sequence of order n and defect d, n > d, is a sequence L = (l1, l2, . . . , l2n)

of 2n integers satisfying the conditions

(L1) for every k ∈ {d, d + 1, . . . , d + n − 1} there exist exactly two elements li, lj ∈ L

such that li = lj = k, and

(L2) if li = lj = k with i < j, then j − i = k.

The hooked Langford sequences of order n and defect d is a sequence L = (l1, l2, . . . , l2n+1)

of 2n + 1 integers satisfying conditions (L1) and (L2) above and

(L3) l2n = 0.

Langford sequences are also written as collections of ordered pairs {(pi, qi) : d ≤ i ≤

d + n − 1, qi − pi = i} with
∑n

i=1{pi, qi} = {d, d + 1, . . . , d + 2n − 1}.

Clearly, a (hooked) Langford sequence with defect 1 is a (hooked) Skolem sequence.

It is well-known that a Skolem sequence of order n exists if and only if n ≡ 0,1 (mod

4) [6] and a hooked Skolem sequence of order n exists if and only if n ≡ 2,3 (mod 4)

[3]. The following theorem gives necessary and sufficient conditions for the existence of

Langford sequences.

Theorem 1. ([5]) A Langford sequence of order n and defect d exists if and only if

(i) n ≥ 2d − 1, and

(ii) n ≡ 0,1 (mod 4) and d is odd, or n ≡ 2,3 (mod 4) and d is even.

A hooked Langford sequence of order n and defect d exists if and only if

(i) n(n − 2d + 1) + 2 ≥ 0, and

(ii) n ≡ 2,3 (mod 4) and d is odd, or n ≡ 1,2 (mod 4) and d is even.
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The set of positive integers {c, c + 1, . . . , c + 3m − 1} can be decomposed into m

disjoint triples of the form {ai, bi, ai + bi} with i = 1, 2, . . . , m. Given a collection of
ordered pairs of Langford Sequence of order m, {(pi, qi) : c ≤ i ≤ c + m − 1, qi − pi = i}
with

∑m

i=1{pi, qi} = {c, c + 1, . . . , c + 2m − 1}. We obtain the following triples {(i, pi +
m + 1, qi + m + 1) : c ≤ i ≤ c + m − 1, qi − pi = i}. For example, given a Langford
sequence of order 5 and defect 3, L = (7, 5, 3, 6, 4, 3, 5, 7, 4, 6), we obtain the collection of
ordered pairs and triples respectively, as follows:

{(3, 6), (5, 9), (2, 7), (4, 10), (1, 8)};

{(3, 10, 13), (4, 12, 16), (5, 9, 14), (6, 11, 17), (7, 8, 15)}.

The hooked Langford sequences is defined similarly.
In the next example, we show how to use the triples that we obtain from Langford

sequences to construct m disjoint triangles which is c-Erdösian.

Example 4. Given a Langford sequence of order 3 and defect c = 2, L = (3, 4, 2, 3, 2, 4),
we rewrite in triples as {(2, 7, 9), (3, 5, 8), (4, 6, 10)}. The first two integers in each triple
are the vertex labels and the third vertex label can be obtained by using Proposition 7.
So the 2-Erdösian of GT3 is clear from the following 2-by-3 arrays:

2 7 12

9 14 19,

3 5 13

8 16 18,

4 6 11

10 15 17.

We next present a theorem involving the construction of c-Erdösian m disjoint trian-
gles by using the Langford sequences or hooked Langford sequences.

Theorem 2. For m ≡ 0, 1(4) and for any 1 ≤ c ≤ m+1
2 the graph GTm consisting of m

disjoint copies of the triangle K3 is c−Erdösian.

Proof. Let (xi, yi), i = 1, . . . , m be the collection of ordered pairs of Langford sequences
(or hooked Langford sequences) where m ≡ 0, 1(4) and it is clear that {yi − xi : i =
1, . . . , m} = {c, . . . , c+m−1}. Let ai = yi−xi, bi = xi+m and ci = 2c+6m−1−(ai+bi)
then the result follows from Theorem 1.

Example 5. From the collection of ordered pairs of hooked Langford sequence m = 5
and c = 2, i.e.,

{(2, 4), (7, 10), (5, 9), (3, 8), (6, 12)},

we obtain the triples as follows:

{(2, 7, 9), (3, 12, 15), (4, 10, 14), (5, 8, 13), (6, 11, 17)}.

Since ci = 2(2)+ 6(5)− 1− ai − bi = 33− ai − bi, then we have the following 2-Erdösian
arrays of GT5:

2 7 24

9 26 31,

3 12 18

15 21 30,

4 10 19

14 23 29,

5 8 20

13 25 28,

6 11 16

17 22 27.
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Proposition 8. Assume that GTm is c-Erdösian that satisfies the condition (iii). The
set of positive integers {c, c+1, . . . , c+3m−1} can be decomposed into m disjoint triples
of the form {ai, bi, ai + bi} with i = 1, 2, . . . , m. In addition, the sum of the third vertex
labels c1 + c2 + · · · + cm takes the value

m
∑

i=1

ci =
m

4
(2c + 15m − 1).

The set of values {ci, ai + ci : i = 1, 2, . . . , m} constitutes the fourth and fifth run of the
integers in {c, . . . , c + 6m − 1}, that is

{ci, ai + ci : i = 1, 2, . . . , m} = {c + 3m, c + 3m + 1, . . . , c + 5m − 1},

and hence it satisfies (iv), that is the integers {bi + ci : i = 1, 2, . . . , m} constitute the top
run of integers

{bi + ci : i = 1, 2, . . . , m} = {c + 5m, c + 5m + 1, . . . , c + 6m − 1}.

Proof. Since ci = 2c + 6m − 1 − (ai + bi) and
∑m

i=1 (ai + bi) = 3m
4 (2c + 3m − 1), it is

clear that
∑m

i=1 ci = m
4 (2c + 15m− 1).

Proposition 9. For all m ≥ 1, there exists a 1-Erdösian GTm that satisfies the condi-
tions (i) and (iii).

Proof. Let gi, hi be distinct integers for all i = 1, . . . , m. By using the Skolem sequences
or hooked Skolem sequences, we are able to get hi = gi + i for all i = 1, . . . , m. Note
that we obtain a 1-Erdösian GTm as follows:

i gi ki

hi i + ki gi + ki

for all i = 1, . . . , m, and

i + gi + ki =
1 + · · · + 6m

3m
=

6m

2
(1 + 6m)(

1

3m
) = 1 + 6m.

Example 6 (i) From the Skolem sequence of order 4 in triples
{(1, 11, 12), (2, 6, 8), (3, 7, 10), (4, 5, 9)}, we obtain the following 1-Erdösian of GT4:

1 11 13

12 14 24,

2 6 17

8 19 23,

3 7 15

10 18 22,

4 5 16

9 20 21.

(ii) Given a hooked Skolem sequence of order 6 in triples
{(3, 16, 19), (6, 11, 17), (5, 10, 15), (2, 12, 14), (4, 9, 13), (1, 7, 8)}, we obtain a 1-Erdösian
of GT6 as follows:

1 7 29

8 30 36,

2 12 23

14 25 35,

3 16 18

19 21 34,

4 9 24

13 28 33,

5 10 22

15 27 32,

6 11 20

17 26 31.
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Proposition 10. Assume that GTm is c-Erdösian that satisfies the conditions (i) and
(iii). The set of positive integers {c, c + 1, . . . , c + 3m − 1} can be decomposed into
m disjoint triples of the form {ai, bi, ai + bi} and also the set of m triples {ai, ci −
2m, ai + ci − 2m}, respectively, for i = 1, 2, . . . , m. The two triples {ai, bi, ai + bi} and
{ai, ci − 2m, ai + ci − 2m} satisfy the following comparability property:
The sequence of sums of the middle values corresponding to the same difference ai forms
a run of integers:

{bi + ci − 2m : i = 1, 2, . . . , m} = {c + 3m, c + 3m + 1, . . . , c + 4m − 1}.

Proof. Note that
∑m

i=1 ai = m
2 (2c + m − 1),

∑m

i=1(ai + bi + ci) = m(2c + 6m − 1)
and

∑m

i=1 ai + bi = 3m
4 (2c + 3m − 1). Since

∑m

i=1 ci = m
4 (2c + 15m − 1), we have

∑m

i=1[2(ai + ci) − 4m] = 3m
2 (2c + 3m − 1) = c + · · · + (c + 3m − 1). Hence, The set of

positive integers {c, c + 1, . . . , c + 3m − 1} can be decomposed into m disjoint triples of
the form {ai, ci − 2m, ai + ci − 2m}.

Proposition 11. Assume that GTm is c-Erdösian that satisfies the conditions (i) and
(ii). It trivially also satisfies condition (v). Then the function π(ai) = bi − m is a
permutation of the set {c, c + 1, . . . , c + m − 1}.

Proof. Since c + m ≤ bi ≤ c + 2m − 1, i = 1, . . . , m and bi 6= bj for all i 6= j, we
have c ≤ bi − m ≤ c + m − 1. Then π(ai) = bi − m is a permutation of the set
{c, c + 1, . . . , c + m − 1}.
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