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AN ELEMENTARY APPROACH TO A LATTICE-VALUED

BANACH-STONE THEOREM

JINXI CHEN

Abstract. Let X and Y be compact Hausdorff spaces, and E be a nonzero real Banach lattice.

In this note, we give an elementary proof of a lattice-valued Banach-Stone theorem by Cao, Reilly

and Xiong [3] which asserts that if there exists a Riesz isomorphism Φ : C(X, E) → C(Y, R) such

that Φ(f) has no zeros if f has none, then X is homeomorphic to Y and E is Riesz isomorphic

to R.

1. Introduction

Let X and Y be compact Hausdorff spaces, and E, F be nonzero real Banach lat-

tices. Let C(X, E) denote the Banach lattice of all continuous E-valued functions on X

equipped with the pointwise ordering and the sup norm. Let R be the Banach lattice of

real numbers with the usual norm and order. Note that in general, Riesz isomorphism

(i.e., lattice isomorphism) of C(X, E) and C(X, F ) does not necessarily imply topological

homeomorphism of X and Y (see [3]). Recently, Cao, Reilly and Xiong [3] established

the following lattice-valued Banach-Stone theorem:

Theorem A.([3], Theorem 3.3) Suppose there is a Riesz isomorphism Φ : C(X, E) →

C(Y, R) such that Φ(f) has no zeros if f has none. Then X is homeomorphic to Y and

E is Riesz isomorphic to R.

Towards their proof of Theorem A, they considered the support for a Riesz homo-

morphism and gave the following:

Theorem B.([3], Theorem 2.2) If Φ : C(X, E) → R is a Riesz homomorphism such

that Φ(1X ⊗ e) 6= 0 if e 6= 0, then Φ has a unique support.

In this short note we claim that Theorems A and B mentioned above can be deduced

from the following two well-known results, respectively:
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Theorem A′.([8]; cf. [1], Theorem 7.22) If C(X, R) and C(Y, R) are Riesz isomor-

phic, then X and Y homeomorphic.

Theorem B′.([8]; cf. [1], Theorem 7.21) For any Riesz homomorphism Φ : C(X, R) →
R with Φ(1X) = 1 there exists a unique a ∈ X such that Φ(f) = f(a) for each

f ∈ C(X, R).

Our elementary proof also establishes the conjecture posed by Cao, Reilly and Xiong
which asserts that Theorem A′ implies Theorem A.

In this note we mostly follow the notion and notations used in [3]. For ω ∈ C(X, R)
and e ∈ E, let ω⊗e ∈ C(X, E) be defined by (ω⊗e)(x) = ω(x)e for each x ∈ X . We call
a ∈ X a support for a Riesz homomorphism Φ : C(X, E) → F if Φ(f) = Φ(1X ⊗ f(a))
for every f ∈ C(X, E), where 1X ∈ C(X, R) is defined by 1X(x) = 1 for all x ∈ X . If
Φ : C(X, E) → C(Y, R) is a Riesz homomorphism, then define Φ̂(y)(u) = Φ(1X ⊗ u)(y)
for each u ∈ E and each y ∈ Y . Clearly, Φ̂(y) is a linear functional on E for each y ∈ Y .
For undefined terms and notions refer to [1] and [3].

2. The Elementary Proofs of Theorems A and B

We start with the proof of Theorem B.

Proof of Theorem B. First we claim that the Banach lattice E is Riesz isomorphic
to R, in notation E ∼= R. Suppose on the contrary that E is not Riesz isomorphic to
R. Then there would exist two elements e1, e2 ∈ E+ \ {0} such that e1 ∧ e2 = 0 (see
[4], P. 19). Since (1X ⊗ e1) ∧ (1X ⊗ e2) = 0 in C(X, E) and Φ is a Riesz isomorphism,
we have Φ(1X ⊗ e1) ∧ Φ(1X ⊗ e2) = 0 in R, which implies that Φ(1X ⊗ e1) = 0 or
Φ(1X ⊗ e2) = 0. This is impossible. Let u be an arbitrary nonzero element of E+. Then
E = {λu : λ ∈ R}. Next, we note that to every f ∈ C(X, E) there corresponds a unique
ωf ∈ C(X, R) such that f = ωf ⊗u. Clearly, this correspondence is a Riesz isomorphism
of C(X, E) onto C(X, R).

Now, let Γ(ω) = Φ(ω ⊗ u) for ω ∈ C(X, R). It is obvious that Γ : C(X, R) → R is
a Riesz homomorphism and Γ(1X) = Φ(1X ⊗ u) > 0. By Theorem B′, there exists a
unique a ∈ X such that Γ(ω) = ω(a)Φ(1X ⊗ u) for each ω ∈ C(X, R). Therefore, for
every f = ωf ⊗ u ∈ C(X, E) we have

Φ(f) = Φ(ωf ⊗ u) = Γ(ωf )

= ωf (a)Φ(1X ⊗ u)

= Φ(1X ⊗ (ωf (a)u))

= Φ(1X ⊗ f(a)).

So a is also a support for Φ.
It remains to show that Φ has a unique support. Let a1, a2 ∈ X be such that

Φ(f) = Φ(1X ⊗f(a1)) = Φ(1X⊗f(a2)) for all f ∈ C(X, E). Then we have f(a1) = f(a2)
for every f ∈ C(X, E), which implies a1 = a2.
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The proof of Theorem A. As proved in Lemma 3.1 of [3], E ∼= R (The proof of

surjectivity of Φ̂(y) is superfluous since the range space is R). Therefore it follows from

the proof of Theorem B that C(X, R) ∼= C(X, E) ∼= C(Y, R). In view of Theorem A′ we

can see that X and Y are homeomorphic.

We can say more about the Riesz isomorphism Φ. As done in the proof of Theorem

B, let u ∈ E+ \ {0} be fixed, and let the Riesz isomorphism Ψ : C(X, R) → C(X, E) be

defined by Ψ(ω) = ω ⊗ u for each ω ∈ C(X, R). Clearly, Φ ◦Ψ is a Riesz isomorphism of

C(X, R) onto C(Y, R). Then there exists a unique positive function π ∈ C(Y, R) and an

(onto) homeomorphism φ : Y → X such that

[(Φ ◦ Ψ)(ω)](y) = π(y)ω(φ(y))

for all y ∈ Y and all ω ∈ C(X, R) ( see, e.g. [1], Theorem 7.22). Here π = (Φ ◦ Ψ)(1X),

and π(y) > 0 for every y ∈ Y . Now, for every f = ωf ⊗ u ∈ C(X, E) and y ∈ Y , we have

[Φ(f)](y) = [(Φ ◦ Ψ)(ωf )](y) = π(y)ωf (φ(y)) = Π(y) f(φ(y)),

where Π(y) is a Riesz isomorphism of E onto R satisfying Π(y)(λu) = λπ(y), λ ∈ R.

That is, Φ can be written as a weighted composition operator.

Remark 1. Under the hypothesis of Theorem A, Φ and Φ−1 are disjointness preserv-

ing operators. Then the homeomorphism of Y onto X and the representation of Φ as a

weighted composition operator can be obtained from Gau, Jeang and Wong [5, Theorem

2.3].

Remark 2. In the above discussion and [3], the compactness of X and Y plays a key

role. If we weaken the compactness of X and Y to realcompactness, then the conclusion of

Theorem A is still valid. Indeed, we still have E ∼= R and C(X, R) ∼= C(X, E) ∼= C(Y, R)

as we did in the above proof of Theorem A. Then the desired conclusion follows from

Proposition 3 of [2].

If Φ : C(X, E) → C(Y, R) is a linear bijection such that Φf has no zeros if, and

only if, f has no zeros, then X, Y are homeomorphic even without the hypothesis that

Φ is a Riesz isomorphism, which is required for Theorem A. To prove this we need the

following proposition. Recall that a continuous scalar function is invertible whenever it

has no zeros.

Proposition. Let X, Y be compact Hausdorff connected topological spaces. Let T :

C(X, R) → C(Y, R) be a linear bijection such that Tf is invertible in C(Y, R) if, and

only if, f is invertible in C(X, R). Then there is a homeomorphism σ from Y onto X

and a strictly positive or negative function h in C(Y, R) such that

Tf = h · f ◦ σ, ∀f ∈ C(X, R).
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Proof. First note that the invertible function T1X is either strictly positive or strictly

negative on Y . Assume 0 < m < T1X(y) < M, ∀y ∈ Y . We claim that Φf ≥ 0 whenever

f ≥ 0. Indeed, Tf must assume positive values at some points. For else, Tf − δT1X < 0

for all δ > 0. Then f − δ is invertible. But this is impossible for some δ. Suppose Tf

also assumed negative values. Let ǫ > 0 be small enough that Tf + ǫT1X still assumes

both positive and negative values. In particular, Tf + ǫT1X is not invertible. Thus f + ǫ

is not invertible, a contradiction.

Let x ∈ X and let Mx be the subspace of C(X, R) consisting of all functions f in

C(X, R) with f(x) = 0. Let

KerTMx = {y ∈ Y : Tf(y) = 0, ∀f ∈ Mx}.

We claim that KerTMx is non-empty. Suppose, on contrary, that KerTMx is empty.

Then for each y in Y there is an fy in Mx such that Tfy is nonzero at y, and thus in

a neighborhood of y. We can assume further that both fy and Tfy are non-negative,

by replacing them by their positive parts or negative parts. By compactness of Y , we

can choose finitely many positive f1, . . . , fn from Mx such that the positive functions

Tf1, . . . , T fn have no common zero in Y . Hence T (f1 + · · ·+ fn) is strictly positive, and

thus invertible. This conflicts with the fact that f1 + · · · + fn vanishes at x.

Next, we claim that KerTMx is indeed a singleton. Indeed, if y1, y2 ∈ KerTMx

then we have TMx ⊆ Myi
, i = 1, 2. Applying the above argument for T−1, we shall

have T−1Myi
⊆ Mxi

for some xi in X , i = 1, 2. However, this gives TMx ⊆ Myi
⊆

TMxi
, i = 1, 2. It follows from the bijectivity of T that x = x1 = x2. Thus,

TMx = My1
= My2

and y1 = y2.

We can now define a bijective map σ : Y → X such that

TMσ(y) = My, ∀y ∈ Y.

Hence there is a (real) scalar function h on Y such that

Tf(y) = h(y)f(σ(y)), ∀y ∈ Y.

Clearly, h = T1X is a strictly positive function in C(Y, R). It is then routine to see that

σ is a homeomorphism from Y onto X . For the proof refer to [6], [7]. �

Now let E be a Banach space. Let Φ : C(X, E) → C(Y, R) is a linear bijection such

that Φf has no zeros if, and only if, f has no zeros. Then, for each y ∈ Y , Φ̂(y) defined

by Φ̂(y)(u) = Φ(1X ⊗u)(y) is a linear isomorphism from E onto R. Let u be an arbitrary

nonzero element of E. Let Ψ : C(X, R) → C(X, E) be defined by Ψ(ω) = ω ⊗ u for each

ω ∈ C(X, R). Clearly, Φ ◦ Ψ is a linear isomorphism of C(X, R) onto C(Y, R) such that

(Φ ◦ Ψ)ω is invertible in C(Y, R) if and only if ω is invertible in C(X, R). Therefore, we

have proved the following corollary.
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Corollary. Let X, Y be compact Hausdorff connected topological spaces. If Φ :

C(X, E) → C(Y, R) is a linear bijection such that Φf has no zeros if, and only if, f

has no zeros, then X, Y are homeomorphic.
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