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ON THE INVERSE LAPLACE TRANSFORM OF H-FUNCTION
ASSOCIATED WITH FEYNMAN TYPES INTEGRALS

V. B. L. CHAURASIA AND HARI SINGH PARTHAR

Abstract. The Laplace transform and its inverse are fundamental and powerful tools in solving boundary value prob-
lems occurring in the diverse fields of engineering. Here we will establish some useful formulas giving the inverse
Laplace transform of various products of algebraic powers and H-function, involving one and more variables, which

are unified and likely to have applications in several different areas.

1. Introduction

The H-function, due to Inayat-Hussain [1, 2] which is a generalization of the familiar Fox
H-function, contains as special cases, a certain class of Feynman integrals, the exact partition
function of the Gaussian model in statistical mechanics, the polylogarithm of order p and
several other functions, is given by (cf. [8])
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This contains the fractional powers of some of the Gamma functions. Here and throughout
the paper a; (j = 1,...,p) and b; (j = 1,...q) are complex parameters, a; =0 (j = 1,..., p),
Bj=0(j=1,...,q) (not all zero simultaneously) and the exponents A; (j = 1,...,n) and B;
(j=m+1,...,q) can take non-integer values.

The contour in (1.1) is imaginary axis Re(s) = 0. It is suitably indented in order to avoid
the singularities of the Gamma functions and to keep those singularities on appropriate sides.
Again, for A; (j =1,..., n) not an integer, the poles of the Gamma functions of the numerator
in (1.2) are converted to the branch points. However, as long as there is no coincidence of
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poles from any I'(b; — B;s) (j=1,...,m) andI'(1 —a; + a;s) (j = 1,..., n) pair, the branch cuts
can be chosen so that the path of integration can be distorted in the usual manner.

The convergence conditions and other details of the above function are given by Buschman
and Srivastava [8]. We assume that the convergence and sufficient condition of above func-
tion, given by equation (1.1) is satisfied by each of the various H-function involved throughout
the present work.

The behavior of the H-function for small values of |z| follows easily from a result recently
given by Rathie [5, p.306, Eq. (6.9)], we have

ﬁzl;in[z]:OUZ'a)' a= min [Re(bj/Bj)], |z|—0. (1.3)
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2. Main Results

In this section, we will obtain the inverse Laplace transform of various products of alge-
braic powers and H-function.
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1
(E —A—v,p+0;1),(aj,aj;Aj)1,N, (aj,aj)N+1,P
b}, Bj; Bjm+1,0,1—v,0;1),A-A-v—r,p+0;1),

1 s 2.3
(E—}L—v—r,p+a;1),(1—2/1—2v,2p+20;1) (2:3)
provided that Re(p) >0, Re(A) >0, Re(v) = 0.
(D)L—l{(p2+b2)—1/2{p+(p2+b2)1/2}—)t
—M,N 2 1 21/2—p| @i AN, (@, aj)N+LP . }
H +(p°+b e ;
“HRQ [z{p (P " ‘(bj;ﬁj)l,My(bj,ﬁj;Bj)M+l,Q]
i( l)r(bZr 7L+2r)
— rl 2A+2r
N pr‘(aj»aj;Aj)l,N, (aj,aj)N+1,p ] @.4)
Hpan (bj, Bj)1.m (b, Bjs Bj)m+1,0: (A=1,0;1) 1 )
provided that Re(p) > 0, Re(A) > —1 and Re(1 + ps) > —1.
1) v —umMN[ gl (aj,aj; AN, (@), @) N+1,P
ELl{V”H zP"fff'ff';x,}
®) P4 "Hero [ P-4 )(bj;ﬁj)l,M,(bj;ﬁj;Bj)M+1,Q] Y
—lyu—l
—=M,N (aj,aj; AN, (@j, @ j)N+1,P
H o|\@jQj, A1, el , , 2.5
. BQ+2 o ‘(b],ﬁ])l,M,(b];,B];B])M+1,Q;(1_V;P»l),(l_IJ,U,D] ( )

provided that Re(v) > 0, Re(u) >0, Re(p) >0, Re(q) > 0.

Proof.
By using the definition of ‘H-function {Eqn. (1.1) and (1.2)} in the L. H. S. of (2.1), we have
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Now expanding J+ys(bx) in summation form and after a little simplification, we have
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Finally, on reinterpreting the contour integral thus obtained in terms of H-function, we get R.
H. S. of (2.1) after a little simplification.

Similarly, the proofs of (2.2) through (2.5) can be established by using the definition of H-
function and known results [4, p.240, Eqn. (23)], [4, p.238, Eqn. (10)], [4, p.240, Eqn. (21)] and
(4, p-239, Eqn. (18)].

3. Particular Cases
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where pTQ [7,p.271, Eqn. (6)] is the generalized Wright hypergeometric function and p?Q is
a particular case of p¥q [7, Eqn. (9)].
Similarly, we can find special cases for (2.2), (2.3), (2.4) and (2.5).
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where ]/’{ ., is aWright-Bessel function [6, p.19, Eq. (2.6.10)]
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The above function is connected with certain class of Feynman integrals [2].
Similarly, we can reduce Eqn. (2.2) in a function, which is connected with certain class of
Feynman integrals [2].
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where Ej A+r+1 (Z_P) is Mittage - Leffler function [3, p.65, Eq. (2.9.28)].

A number of other special cases can also be obtained with the help of our Eqn. (2.1)
through (2.5) but we do not record them here due to lack of space.
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