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SOME RESULTS CONCERNING FRAMES IN BANACH SPACES

S. K. KAUSHIK

Abstract. A necessary and sufficient condition for the associated sequence of functionals to a

complete minimal sequence to be a Banach frame has been given. We give the definition of a

weak-exact Banach frame, and observe that an exact Banach frame is weak-exact. An example

of a weak-exact Banach frame which is not exact has been given. A necessary and sufficient

condition for a Banach frame to be a weak-exact Banach frame has been obtained. Finally, a

necessary condition for the perturbation of a retro Banach frame by a finite number of linearly

independent vectors to be a retro Banach frame has been given.

1. Introduction

Frames for Hilbert spaces were introduced by Duffin and Schaeffer [4], while address-
ing some deep problems in non-harmonic Fourier series. Gröchenig [6] generalized frames
for Banach spaces and called them atomic decompositions. He also introduced a more

general concept of Banach spaces called Banach frames. Banach frames were further
studied in [1, 2, 3, 5, 7].

In the present paper, we give a necessary and sufficient condition for the associated
sequence of functionals to a complete minimal sequence to be a Banach frame. Also it

has been shown that a continuous linear mapping from a Banach space E onto another
Banach space F determines a Banach frame for F (Section 3). In Section 4, w-exact
Banach frames has been defined and a necessary and sufficient condition for a Banach

frame to be a w-exact Banach frame has been given. Finally, in Section 5, we considered
perturbation of a retro Banach frame by a finite number of linearly independent vectors
and obtained a necessary condition for the perturbed sequence to be a retro Banach

frame.

2. Preliminaries

Throughout this paper E will denote a Banach space over the scalar field K (R or
C), E∗ the conjugate space of E, u the canonical isomorphism of E into [fn]∗, [xn] the

closed linear span of {xn} in the norm topology of E, [f̃n] the closed linear span of {fn}
in the σ(E∗, E)-topology, Ed and (E∗)d, respectively, the associated Banach spaces of
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the scalars-valued sequences indexed by N, and γE(V ) the greatest number r such that

the unit ball {f ∈ V : ‖f‖ ≤ 1} of V is σ(E∗, E)-dense in the ball {f ∈ E∗ : ‖f‖ ≤ r} of
E∗.

A sequence {xn} in E is said to be complete if [xn] = E and a sequence {fn} in
E∗ is said to be total over E if {x ∈ E : fn(x) = 0, n ∈ N} = {0}. A pair (xn, fn)

({xn} ⊂ E, {fn} ⊂ E∗) is called a biorthogonal system if fi(xj) = δij (Kronecker’s delta)
for all i, j ∈ N and E-complete biorthogonal system if it is a biorthogonal system such
that [xn] = E. A sequence {xn} ⊂ E is minimal if there exists a sequence {fn} ⊂ E∗ such
that (xn, fn) is a biorthogonal system. If (xn, fn) is a E-complete biorthogonal system,

then {xn} is a complete minimal sequence and {fn} is called the associated sequence of
functional (a.s.f.) to the sequence {xn}.

Definition 2.1.([6]) Let E be a Banach space and Ed be an associated Banach space
of scalar-valued sequences, indexed by N. Let {fn} ⊂ E∗ and S : Ed → E be given. The

pair ({fn}, S) is called a Banach frame for E with respect to Ed if
(i) {fn(x)} ∈ Ed for each x ∈ E,
(ii) there exist positive constants A and B with 0 < A ≤ B <∞ such that

A‖x‖E ≤ ‖{fn(x)}‖Ed
≤ B‖x‖E , x ∈ E (2.1)

(iii) S is a bounded linear operator such that

S({fn(x)}) = x , x ∈ E .

The positive constants A and B, respectively, are called lower and upper frame bounds

of the Banach frame ({fn}, S). The operator S : Ed → E is called the reconstruction

operator (or, the pre-frame operator). The inequality (2.1) is called the frame inequality.
The Banach frame ({fn}, S) is called tight if A = B and normalized tight if A = B = 1.

If removal of one fn renders the collection {fn} ⊂ E∗ no longer a Banach frame for E,
then ({fn}, S) is called an exact Banach frame.

The following results which are refered in this paper are listed in the form of lemmas.

Lemma 2.1.([9]) If E is a Banach space and {fn} ⊂ E∗ is total over E, then E

is linearly isometric to the associated Banach space Ed = {{fn(x)} : x ∈ E}, where the

norm is given by ‖{fn(x)}‖Ed
= ‖x‖E, x ∈ E.

Lemma 2.2.([8]) Let ({fn}, S) ({fn} ⊂ E∗, S : Ed → E) be a Banach frame for E
with respect to Ed. Then ({fn}, S) is exact if and only if fn /∈ [f̃i]i6=n, for all n.

Proof. Suppose first that the Banach frame ({fn}, S) is exact. Then for some n ∈ N,

there exists no reconstruction operator S0 such that ({fi}i6=n, S0) is a Banach frame for

E. Therefore, [̃fi]i6=n 6= E∗. Hence fn /∈ [̃fi]i6=n. Conversely, let fn /∈ [̃fi]i6=n and

let ({fn}, S) be not exact. Then there exists a reconstruction operator S1 defined by
S1 : ({fi(x)}i6=n) = x, x ∈ E such that ({fi}i6=n, S1) is a Banach frame for E. Therefore,

by frame inequality, [̃fi]i6=n = E∗. This gives fn ∈ [̃fi]i6=n which is a contradiction.
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Finally, in this section, we give the definition of a retro Banach frame introduced in

[7].

Definition 2.2. Let E be a Banach space and E∗ be its conjugate space. Let

(E∗)d be a Banach space of scalar valued sequences associated with E∗ indexed by N.

Let{xn} ⊂ E and T : (E∗)d → E∗ be given. The pair ({xn}, T ) is called a retro Banach

frame (RBF) for E∗ with respect to (E∗)d if

(i) {f(xn)} ∈ (E∗)d for each f ∈ E∗,

(ii) there exist positive constants A and B with 0 < A ≤ B <∞ such that

A‖f‖E∗ ≤ ‖{f(xn)}‖(E∗)d
≤ B‖f‖E∗ , f ∈ E∗ (2.2)

(iii) T is a bounded linear operator such that T ({f(xn)}) = f , f ∈ E∗ .

The positive constants A and B, respectively, are called lower and upper frame bounds

of the retro Banach frame ({xn}, T ). The operator T : (E∗)d → E∗ is called the recon-

struction operator (or, the pre-frame operator). The inequality (2.2) is called the retro

frame inequality.

3. Banach frames

We begin this section with a necessary and sufficient condition for the associated

sequence of functionals to a complete minimal sequence in E to be a Banach frame for

E.

Theorem 3.1. Let (xn, fn) ({xn} ⊂ E, {fn} ⊂ E∗) be an E-complete biorthogonal

system. Then there exists an associated Banach space Ed and a bounded linear operator

S : Ed → E such that ({fn}, S) is a normalized tight and exact Banach frame for E with

respect to Ed if and only if

lim
n→∞

α
(n)
i = 0 , i ∈ N =⇒ lim

n→∞

mn∑

i=1

α
(n)
i xi = 0 , i ∈ N .

Proof. Suppose lim
n→∞

α
(n)
i = 0 for each i ∈ N and x = lim

n→∞

mn∑
i=1

α
(n)
i xi. Then for each

j ∈ N

fj(x) = lim
n→∞

mn∑

i=1

α
(n)
i fj(xi) = lim

n→∞
α

(n)
j = 0 .

Therefore, by frame inequality for the Banach frame ({fn}, S), x = 0.

Conversely, let x ∈ E be such that fj(x) = 0 for all j ∈ N. Since [xn] = E,

x = lim
n→∞

pn∑

i=1

β
(n)
i xi and so for all j ∈ N , lim

n→∞
β

(n)
j = fj(x) = 0 .
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Then, by hypothesis, x = 0. Therefore, by Lemma 2.1, there exists an associated Banach

space Ed = {{fn(x) : x ∈ E}} and a bounded linear operator S : Ed → E given by

S({fn(x)}) = x, x ∈ E such that ({fn}, S) is a normalized tight Banach frame for E

with respect to Ed. Further since fi(xj) = δij , for all i, j ∈ N, fn /∈ [f̃i]i6=n. Indeed, if

fn ∈ [f̃i]i6=n, then each fn has the form

fn = σ([xn]∗, [xn]) − lim
p→∞

mp∑

i=1

i6=n

α
(p)
i fi .

Then fn(xn) = 0, a contradiction. Hence, by Lemma 2.2, ({fn}, S) is an exact Banach

frame for E with respect to Ed.

Let v be a continuous linear mapping from E onto another Banach space F . If E has

a Banach frame, then the following theorem shows that we may have a Banach frame for

F .

Theorem 3.2. Let ({fn}, S) ({fn} ⊂ E∗, S : Ed → E) be a Banach frame for E

with respect to Ed. Let {gn} ⊂ F ∗, where F is any other Banach space. If there exists a

continuous linear mapping v from E onto F such that v∗(gn) = fn, n ∈ N. Then there

exists an associated Banach space Fd and a bounded linear operator U : Fd → F such

that ({gn}, U) is a normalized tight Banach frame for F with respect to Fd. Moreover, if

({fn}, S) is exact, then ({gn}, U) is also exact.

Proof. For each y ∈ F there exists an x ∈ E such that v(x) = y. Let gn(y) = 0 for

all n ∈ N. Then

fn(x) = v∗(gn)(x) = gn(v(x)) = gn(y) = 0, for all n ∈ N .

Therefore, by frame inequality for the Banach frame ({fn}, S), x = 0 and so y = 0.

Then by Lemma 2.1 there exists an associated Banach space Fd = {{gn(y)} : y ∈ F}

and a bounded linear operator U : Fd → F given by U({gn(y)}) = y, y ∈ F such that

({gn}, U) is a normalized tight Banach frame for F with respect to Fd. Further since the

Banach frame ({fn}, S) is exact, by Lemma 2.2. fn /∈ [f̃i]i6=n, for all n ∈ N. Therefore

there exists a sequence {xn} ⊂ E such that fi(xj) = δij , for all i, j ∈ N. Put yn = v(xn),

n ∈ N. Then {yn} ⊂ F is such that

gi(yj) = gi(v(xj)) = v∗(gi)(xj) = fi(xj) = δij , i, j ∈ N .

Thus gn /∈ [̃gi]i6=n. Hence, by Lemma 2.2, ({gn}, U) is an exact Banach frame for F with

respect to Fd.

Let ({fn}, S) ({fn} ⊂ E∗, S : Ed → E) be an exact Banach frame for E with respect

to Ed. Then, in view of Lemma 2.2, there exists a unique sequence {xn} ⊂ E, called the

admissible sequence to the Banach frame ({fn}, S), such that for all i, j ∈ N, fi(xj) = δij .
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If sup1≤n<∞

∥∥ ∑n

i=1 αifi

∥∥ <∞, then the following result shows that αi’s are determined
by f(xi) for each i ∈ N, provided γ[xn][fn] > 0.

Theorem 3.3. Let ({fn}, S) ({fn} ⊂ E∗, S : Ed → E) be an exact Banach frame for

E with respect to Ed and with the admissible sequence {xn} ⊂ E such that γ[xn][fn] > 0
and sup1≤n<∞

∥∥ ∑n

i=1 αifi

∥∥ < ∞. Then there exists an f ∈ E∗ such that f(xn) = αn,

n ∈ N.

Proof. Let W be the natural canonical embedding of [fn] into [u(xn)]∗. Since
[u(xn)] is separable, the σ([u(xn)]∗, [u(xn)])-topology is metrizable on bounded sets of
[u(xn)]∗ ([10], Theorem 3.1.1). Therefore there exists a subsequence {

∑nk

i=1 αiW (fi)}k
of

{
∑n

i=1 αiW (fi)}n
which is σ([u(xn)]∗, [u(xn)])-convergent to some ψ ∈ [u(xn)]∗. Since

γ[xn][fn] > 0, W is an isomorphism of [fn] onto [u(xn)]∗. Therefore there exists an
f ∈ [fn] such that ψ = W (f).

Hence

f(xn) = (W (f))(u(xn))

= ψ(u(xn))

= σ([u(xn)]∗, [u(xn)]) − lim
k→∞

nk∑

i=1

αiW (fi)(u(xn))

= αn , n ∈ N .

4. Weak-exact Banach frames

Definition 4.1. A Banach frame ({fn}, S) ({fn} ⊂ E∗, S : Ed → E) for E with
respect to Ed is called weak exact (in short, w-exact) if there exists a sequence {φn} ⊂
E∗∗, called an admissible sequence to ({fn}, S), such that φi(fj) = δij , for all i, j ∈ N.

An admissible sequence to a w-exact Banach frame ({fn}, S) need not be unique as
in case of exact Banach frames.

Example 4.1. Let E = l1 and let {fn} be the sequence of unit vectors in E∗. Then
by Lemma 2.1 there exists an associated Banach space Ed = {{fn(x)} : x ∈ E} and a
reconstruction operator S : Ed → E given by S({fn}(x)) = x, x ∈ E such that ({fn}, S)
is a Banach frame for E with respect to Ed. Define {gn} ⊂ E∗∗ by

gn(f) = ξn (f = {ξn} ∈ E∗, n ∈ N) .

Then {gn} is an admissible sequence to the w-exact Banach frame ({fn}, S). Let e ∈ E∗

be such that e /∈ [fn] = c0. Let g0 ∈ E∗∗ be such that g0(e) 6= 0 and g0([fn]) = {0}.
Define {hn} ⊂ E∗∗ by h1 = g1 − g0, hn = gn, n = 2, 3, . . . . Then hi(fj) = δij for all
i, j ∈ N. So {hn} is another admissible sequence to ({fn}, S).

We now give a necessary and sufficient condition for the uniqueness of the admissible
sequence to a w-exact Banach frame.
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Theorem 4.1. An admissible sequence to a w-exact Banach frame ({fn}, S) is unique

if and only if ({fn}, S) is a retro Banach frame for E∗∗ with respect to Ed.

Proof. Let {φn} ⊂ E∗∗ be the unique admissible sequence to ({fn}, S). Suppose

({fn}, S) is not a retro Banach frame for E∗∗. Then by Theorem 3.1 in [7], [fn] 6= E∗.

Define {ψn} ⊂ E∗∗ by ψ1 = φ1 − φ0 and ψn = φn, n = 2, 3, . . . . Then ψi(fj) = δij , for

all i, j ∈ N. This is a contradiction.

Conversely, let {gn} and {hn} in E∗∗ be two admissible sequences to the w-exact

Banach frame ({fn}, S). Then (gi − hi)(fj) = δi,j , for all i, j ∈ N. Since ({fn}, S) is a

retro Banach frame for E∗∗, [fn] = E∗. Hence gi = hi for all i ∈ N.

In view of Lemma 2.2 one may observe that an exact Banach frame for E is a w-exact

Banach frame for E. The converse however need not be true as shown by the following

example.

Example 4.2. Let E = c0. Define {fn} ⊂ E∗ by





f1 = (1, 0, 0, . . .)

fn = ((−1)n+1, 0, 0, . . . , 1
↓

nth place

, 0, . . .), (n = 2, 3, . . .)

and {φn} ⊂ E∗∗ by





φ1 = (1, 1,−1, 1,−1, 1, . . .)

φn = (0, 0, . . . , 1
↓

nth place

, 0, . . .), (n = 2, 3, . . .)

Then by Lemma 2.1 there exist an associated Banach spaceEd = {{fn(x)} : x ∈ E} and a

reconstruction operator S : Ed → E given by S({fn(x)}) = x, x ∈ E such that ({fn}, S)

is a Banach frame for E with respect to Ed. Also since φi(fj) = δij for all i, j ∈ N,

({fn}, S) is a w-exact Banach frame. Further since [fn] = E∗, by Theorem 3.1 in [7],

({fn}, S) is a retro Banach frame for E∗∗. Therefore, by Theorem 4.1, {φn} is the unique

admissible sequence to the w-exact Banach frame ({fn}, S). But φ1 /∈ π(E), where π is

the canonical isomorphism of E into E∗∗. So there exists no sequence {xn} ⊂ E such

that fi(xj) = δij , for all i, j ∈ N. Hence, by Lemma 2.2, ({fn}, S) is not exact.

We now give a necessary and sufficient condition for a Banach frame to be w-exact.

Theorem 4.2. Let ({fn}, S) ({fn} ⊂ E∗, S : Ed → E) be a Banach frame for E

with respect to Ed. Then ({fn}, S) is w-exact if and only if

lim
n→∞

mn∑

i=1

α
(n)
i fi = 0 ⇒ lim

n→∞
α

(n)
i = 0, for each i .
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Proof. Suppose {φn} ⊂ E∗∗ be an admissible sequence to the w-exact Banach frame

({fn}, S). Let limn→∞

∑mn

i=1 α
(n)
i fi = 0. Then for each j ∈ N,

lim
n→∞

α
(n)
j = lim

n→∞

mn∑

i=1

α
(n)
i φj(fi) = 0 .

Conversely, let Q = {
∑n

i=1 αifi : fi ∈ E∗, αi ∈ K; i ∈ N}. Let {gn} ⊂ E∗∗ be such
that for each j ∈ N, gj (

∑n

i=1 αifi) = αj . If f ∈ Q̄, the closure of Q, then f =

limn→∞

∑mn

i=1 α
(n)
i fi. So, by hypothesis, gj(f) = lim

n→∞
α

(n)
j for each j ∈ N. Thus, for

each j, gj is a continuous linear functional on Q̄. Also gj(fi) = δij , for all i, j ∈ N. Hence
({fn}, S) is w-exact.

5. Perturbation of Banach frames

Let ({fn}, S) ({fn} ⊂ E∗, S : Ed → E) be a Banach frame for E with respect to
Ed and let f0 be a nonzero functional in E∗. If ({fn}, S) is an exact Banach frame for
E, then for a non-zero functional f0 ∈ E∗, the following example shows that there may
exists a reconstruction operator S0 such that ({fn + f0}, S0) is a Banach frame for E
which is not exact.

Example 5.1. Let E = c0. Define {hn} ∈ E∗ by

hn(x) = ξn , x = {ξj} ∈ E .

Then by Lemma 2.1 there exists an associated Banach space Ed = {{hn(x)} : x ∈ E} and
a bounded linear operator S : Ed → E such that ({hn}, S) is a normalized tight exact
Banach frame for E with respect to Ed. Now observe that the sequence {hn + h1} ⊂ E∗

is total over E. Therefore, again by Lemma 2.1 there exists an associated Banach space
Ed1

= {{(hn + h1)(x)} : x ∈ E} and a reconstruction operator S1 : Ed1
→ E such that

({hn + h1}, S1) is a Banach frame for E with respect to Ed1
. Further by Lemma 2.2

({hh + h1}, S1) is not exact since ˜[hn + h1]n6=1 = E∗.

It is natural to ask under what condition the Banach frame ({hn + h1}, S1) is exact.
The following theorem answers this query.

Theorem 5.1. Let ({fn}, S) ({fn} ⊂ E∗, S : Ed → E) be an exact Banach frame

for E with admissible sequence {xn} ⊂ E such that [xn] = E. Let f0 be a non-zero

functional in E∗. If there exists an associated Banach space Ed0
and a reconstruction

operator S0 : Ed0
→ E such that ({fn + f0}, S0) is a Banach frame for E, then the

Banach frame ({fn + f0}, S0) is non-exact.

Proof. Since {xn} ⊂ E is an admissible sequence to the Banach frame ({fn}, S),
fi(xj) = δij , for all i, j ∈ N. Suppose ({fn + f0}, S0) is exact. Then, by Lemma 2.2,
there exists a sequence {yn} ⊂ E such that (fi + f0)(yj) = δij , for all i, j ∈ N. Since
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f0 6= 0, there exists a p ∈ N such that f0(xp) 6= 0. Let m ≥ p be a fixed but arbitrary
integer and α1, α2, . . . , αm be any scalars. Then

∣∣
m∑

i=1

αi(fi + f0)(xp)
∣∣ =

∣∣∣∣αp +

m∑

i=1

αif0(xp)

∣∣∣∣

≥

∣∣∣∣
m∑

i=1

αi

∣∣∣∣|f0(xp)| −

∣∣∣∣
m∑

i=1

αi(fi + f0)(yp)

∣∣∣∣ .

This gives ∣∣∣∣∣

m∑

i=1

αi

∣∣∣∣∣ ≤ (‖xp‖ + ‖yp‖)(f0(xp))
−1

∥∥∥∥∥

m∑

i=1

αi(fi + f0)

∥∥∥∥∥ .

Therefore, by Helly’s theorem ([11], p.109), there exists an element x ∈ E such that
(fi + f0)(x) = 1, for all i ∈ N. Put y = x/(1 − f0(x)). Then y ∈ E is such that
fi(y) = 1, for all i ∈ N. Let f ∈ E∗ be such that f(y) 6= 0. Put f0 = ((−1)/f(y))f .
Then 0 6= f0 ∈ E∗ is such that (fi + f0)(y) = 0, for all i ∈ N. This is a contradiction.

In the following theorem, we consider perturbation of a retro Banach frame (RBF)
by a finite number of linearly independent elements and obtain a necessary condition for
the perturbed sequence to be a RBF.

Theorem 5.2. Let ({xn}, U) ({xn} ⊂ E,U : (E∗)d → E∗) be a RBF for E∗ with

respect to (E∗)d. Let {zk}
m
k=1 be a linearly independent set of vectors in E and let for

each k (1 ≤ k ≤ m) there exists an fk ∈ E∗ such that fk(xn) = c
(n)
k , for all n ∈ N. If({

xn +
∑m

k=1 c
(n)
k zk

}
, V

)
is a RBF for E∗ with respect to (E∗)d, where V : (E∗)d → E∗

is a reconstruction operator, then −1 is not an eigen value of the matrix



f1(z1) f2(z1) . . . fm(z1)

f1(z2) f2(z2) . . . fm(z2)
...

...
...

...
f1(zm) f2(zm) . . . fm(zm)


 .

Proof. It is enough to prove the result for the case m = 2. Suppose −1 is an
eigenvalue of the matrix

(
f1(z1) f2(z1)
f1(z2) f2(z2)

)
.

Then ∣∣∣∣
f1(z1) + 1 f2(z1)

f1(z2) f2(z2) + 1

∣∣∣∣ = 0.

So there exists scalars α, β not both zero, such that

αf1(z1) + βf2(z1) = −α

αf1(z2) + βf2(z2) = −β .
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Put g = −αf1 − βf2. Then, g is a non-zero functional in E∗ such that

g(xn) = −αc
(n)
1 − βc

(n)
2 , for all n ∈ N ,

where c
(n)
i = fi(xn), i = 1, 2.

Now

g(zk) = −αf1(zk) − βf2(zk) , k = 1, 2 .

Therefore g(z1) = α and g(z2) = β. Thus

g(xn + c
(n)
1 z1 + c

(n)
2 z2) = 0 , for all n ∈ N .

Since
({
xn +

∑2
k=1 c

(n)
k zk

}
, V

)
is a RBF for E∗, it follows from the retro frame inequal-

ity that g = 0. This is a contradiction.

As an application to the above theorem, we give the following example.

Example 5.2. Let E = c0 and let {xn} ⊂ E be the sequence of unit vectors. Then,

by Lemma 2.1, there exists an associated Banach space (E∗)d = {{f(xn)} : f ∈ E∗} and

a reconstruction operator U : (E∗)d → E∗ such that ({xn}, U) is a RBF for E∗ with

respect to (E∗)d.

Let z1, z2 ∈ E be given by

z1 = (1, 0, 0, . . .), z2 = (0, 1, 0, . . .)

and let f1, f2 ∈ E∗ be given by

f1 = (−1, 0, 0, . . .) , f2 = (0,−1, 0, . . .) .

Then −1 is an eigen value of the matrix

(
f1(z1) f2(z1)
f1(z2) f2(z2)

)
.

Therefore, by Theorem 5.2, there exists no reconstruction operator V : (E∗)d → E∗ such

that
({
xn +

∑2
k=1 c

(n)
k zk

}
, V

)
is a RBF for E∗ with respect to (E∗)d, where c

(n)
k =

fk(xn), k = 1, 2.
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