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DOUBLE-DIFFUSIVE CONVECTION IN

A VISCOELASTIC FLUID

PARDEEP KUMAR AND HARI MOHAN

Abstract. The double-diffusive convection in an Oldroydian viscoelastic fluid is math-

ematical investigated under the simultaneous effects of magnetic field and suspended

particles through porous medium. A sufficient condition for the invalidity of the ‘prin-

ciple of exchange of stabilities’ is derived, in the context, which states that the exchange

principle is not valid provided the thermal Rayleigh number R, solutal Rayleigh number

RS , the medium permeability P1 and the suspended particles parameter B are restricted

by the inequality
BP1

π2 (R +RS ) < 1.

1. Introduction

The study of a layer of fluid heated from below in porous media is motivated both theo-

retically and by its practical applications in engineering. Among the applications in engineer-

ing discipline one can find the food process industry, chemical process industry, solidifica-

tion and centrifugal casting of metals. The development of geothermal power resources has

increased general interest in the properties of convection in porous medium. When a fluid

permeates an isotropic and homogeneous porous medium, the gross effect is represented by

the Darcy’s law. A great number of applications in geophysics may be found in the books by

Phillips [1], Ingham and Pop [2], and Nield and Bejan [3].

The theoretical and experimental results on thermal convection in a fluid layer, in the

absence and presence of rotation and magnetic field have been given by Chandrasekhar [4].

The problem of thermohaline convection in a layer of fluid heated from below and subjected

to a stable salinity gradient has been considered by Veronis’ [5]. The buoyancy force can arise

not only from density differences due to variations in temperature but also from those due to

variations in solute concentration. Double-diffusive convection problems arise in oceanog-

raphy, limnology and engineering. Examples of particular interest are provided by ponds built

to trap solar heat (Tabor and Matz [6]) and some Antarctic lakes (Shirtcliffe [7]). The physics
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is quite similar in the stellar case in that helium acts like salt in raising the density and in

diffusing more slowly than heat. The conditions under which convective motions are impor-

tant in stellar atmospheres are usually far removed from consideration of a single component

fluid and rigid boundaries, and therefore it is desirable to consider a fluid acted on by a solute

gradient and free boundaries.

The problem of thermosolutal convection in fluids in a porous medium is of importance

in geophysics, soil sciences, ground water hydrology and astrophysics. The development of

geothermal power resources has increased general interest in the properties of convection in

porous media. The scientific importance of the field has also increased because hydrother-

mal circulation is the dominant heat-transfer mechanism in young oceanic crust (Lister [8]).

Generally it is accepted that comets consists of a dusty ‘snowball’ of a mixture of frozen gases

which in the process of their journey changes from solid to gas and vice- versa. The physical

properties of comets, meteorites and interplanetary dust strongly suggest the importance of

porosity in the astrophysical context (McDonnel [9]). The effect of a magnetic field on the sta-

bility of such a flow is of interest in geophysics, particularly in the study of Earth’s core where

the Earth’s mantle, which consists of conducting fluid, behaves like a porous medium which

can become convectively unstable as a result of differential diffusion. The other application

of the results of flow through a porous medium in the presence of a magnetic field is in the

study of the stability of a convective flow in the geothermal region.

In geophysical situations, more often than not, the fluid is not pure but may instead be

permeated with suspended (or dust) particles. The effect of suspended particles on the stabil-

ity of superposed fluids might be of industrial and chemical engineering importance. Further,

motivation for this study is the fact that knowledge concerning fluid-particle mixtures is not

commensurate with their industrial and scientific importance. Scanlon and Segel [10] have

considered the effect of suspended particles on the onset of Benard convection and found

that the critical Rayleigh number was reduced solely because the heat capacity of the pure

gas was supplemented by that of the particles. The effect of suspended particles was found to

destabilize the layer whereas the effect of a magnetic field was stabilizing. Palaniswamy and

Purushotham [11] have studied the stability of shear flow of stratified fluids with fine dust and

found the effect of fine dust to increase the region of instability. Alloui et al. [12] have studied

the onset of double-diffusive convection in a horizontal Brinkman cavity and analysis made

on the linear stability of the quiescent state within a horizontal porous cavity subject to ver-

tical gradients of temperature and solute. Recently spacecraft observations have confirmed

that the dust particle play an important role in the dynamics of atmosphere as well as in the

diurnal and surface variations in the temperature of the Martian weather. It is, therefore, of

interest to study the presence of suspended particles in astrophysical situations. The fluid has

been considered to be Newtonian in all the above studies.
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With the growing importance of non-Newtonian fluids in geophysical fluid dynamics,

chemical technology and petroleum industry, the investigations on such fluids are desirable.

The stability of a horizontal layer of Maxwell’s viscoelastic fluid heated from below has been

investigated by Vest and Arpaci [13]. The nature of the instability and some factors may have

different effects on viscoelastic fluids as compared to the Newtonian fluids. For example, Bha-

tia and Steiner [14] have considered the effect of a uniform rotation on the thermal instability

of a Maxwell fluid and have found that rotation has a destabilizing effect in contrast to the

stabilizing effect on Newtonian fluid. Experimental demonstration by Toms and Strawbridge

[15] has revealed that a dilute solution of methyl methacrylate in n-butyl acetate agrees well

with the theoretical model of the Oldroyd fluid. The thermal instability of an Oldroydian vis-

coelastic fluid has been considered in the presence of rotation (Eltayeb [16], Sharma [17])

and magnetic field (Sharma [18]). The thermosolutal instability of an Oldroydian viscoelastic

fluid in porous medium has been considered by Sharma and Bhardwaj [19]. Kumar et al. [20]

have considered the instability of the plane interface between two Oldroydian viscoelastic

superposed fluids in the presence of uniform rotation and variable magnetic field in porous

medium. It is found that the magnetic field succeeds in stabilizing certain wave-number

range, which were unstable in the absence of magnetic field and rotation for the potentially

unstable configuration. Linear stability analysis of Maxwell fluid in the Beńard problem for

a double-diffusive mixture in a porous medium based on the Darcy Maxwell model has been

studied by Wang and Tan [21]. Sekhar and Jayalatha [22] have considered the linear stabil-

ity analysis of convection in viscoelastic liquids with temperature-dependent viscosity using

normal modes and Galerkin method. It is found that the stationary convection be the pre-

ferred mode of instability when the ratio of strain retardation parameter to stress relaxation

parameter is greater than unity while the possibility of oscillatory convection arise when this

ratio is less than unity. The heat transport in Rayleigh-Beńard convection in viscoelastic liq-

uid with/without gravity modulation using a most minimal representation of Fourier series

and a representation with higher modes is studied by Siddeshwar et al. [23] and shown that

the effect of gravity modulation is stabilizing thereby leading to a situation of reduced heat

transfer. The problem of double-diffusive convection and cross-diffusion in a Maxwell fluid

in a horizontal layer in porous media by using the modified Darcy-Brinkman model has been

considered by Awad et al. [24] and analytical expression of the critical Darcy-Rayleigh num-

bers for the onset of stationary and oscillatory convection are derived. Recently, Wang and

Tan [25] have studied the double-diffusive convection of viscoelastic fluid with Soret effect in

a porous medium by using a modified-Maxwell-Darcy model and have shown that for oscilla-

tory convection the system is destabilizing in the presence of Soret effect. The relaxation time

also enhances the instability of the system.

Keeping in mind the importance and applications in chemical engineering, biomechan-

ics and various applications mentioned above, the effects of magnetic field and suspended
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particles on double-diffusive convection in an Oldroydian viscoelastic fluid through porous

medium has been considered in the present paper.

2. Formulation of the problem and perturbation equations

Let Ti j , τi j , ei j , µ, λ, λ0 (<λ), p , δi j , vi , xi and d
dt denote respectively the total stress ten-

sor, the shear stress tensor, the rate-of-strain tensor, the viscosity, the stress relaxation time,

the strain retardation time, the isotropic pressure, the Kronecker delta, the velocity vector, the

position vector and the mobile operator. Then the Oldroydian viscoelastic fluid is described

by the constitutive relations

Ti j =−pδi j +τi j ,

(

1+λ d
dt

)

τi j = 2µ
(

1+λ0
d

dt

)

ei j ,

ei j =
1
2

(

∂vi

∂x j
+

∂v j

∂xi

)

.



























(1)

Relations of the type (1) were proposed and studied by Oldroyd [26]. Oldroyd showed that

many rheological equations of general validity reduce to (1) when linearized. λ0 = 0 yields the

Maxwellian fluid, whereas λ=λ0 = 0 gives the Newtonian viscous fluid.

Here we consider an infinite horizontal layer of an electrically conducting incompressible

Oldroydian viscoelastic fluid-particle layer of depth d in porous medium which is acted on by

a uniform vertical magnetic field ~H(0,0, H ) and gravity field ~g (0,0,−g ).

Let δρ, δp , θ, γ, ~q(u, v, w ), ~qd (l ,r, s) and ~h(hx ,hy ,hz ) denote respectively the perturba-

tions in density ρ, pressure p , temperature T , solute concentration C , fluid velocity (initially

zero), particle velocity (initially zero) and magnetic field ~H . Let κ, κ′, α, α′, β(= |
dT
dz

|), β′(|dC
dz

|)

stand for thermal diffusivity, solute diffusivity, thermal coefficient of expansion, an analo-

gous solvent expansion, uniform temperature gradient and uniform solute gradient respec-

tively. The linearized thermosolutal hydromagnetic perturbation equations through porous

medium containing suspended particles, following Boussinesq approximation, are

ρ0

ε

(

1+λ
∂

∂t

)∂~q

∂t
=

(

1+λ
∂

∂t

)[

−∇δp +~gδρ+
µe

4π
{(∇×~h)× ~H }+

K N

ε
(~qd −~q)

]

−

(

1+λ0
∂

∂t

) µ

k1

~q, (2)

(m

K

∂

∂t
+1

)

~qd = ~q, (3)

∇·~q = 0, (4)

∇·~h = 0, (5)

(E +bε)
∂θ

∂t
= β(w +bs)+κ∇2θ, (6)
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(E ′
+bε)

∂γ

∂t
= β′(w +bs)+κ′

∇
2γ, (7)

ε
∂~h

∂t
= (~H ·∇)~q +εη∇2~h, (8)

where N (x̄, t ), denote the number density of the suspended particles, ε is the medium poros-

ity and K = 6πµη′ is the Stokes’ drag coefficient, η′ being the particle radius.

Here x̄(x, y, z), E = ε+ (1−ε)
ρs Cs

ρ0C and ρ0, C f ; ρs , Cs stand for density and heat capacity of

fluid and solid matrix, respectively. E ′ is an analogous solute parameter, b =
mNCp t

ρ0C f
, m is the

mass of particles per unit volume. C ,η and e stand for speed of light, electrical resistivity and

charge of an electron.

The equation of state is

ρ = ρ0[1−α(T −T0)+α′(C −C0)], (9)

where the suffix zero refers to values at the reference level z = 0, i.e. ρ0, T0 and C0 stand for

density, temperature and solute concentration at the lower boundary z = 0.

The change in density δρ, caused by the perturbation θ,γ, in temperature and solute

concentration, respectively, is given by

δρ =−ρ0(αθ−α′γ). (10)

3. Dispersion relation

Analyzing the disturbances into normal modes, we assume that the perturbation quan-

tities are of the form

[w,hz ,ζ,ξ,θ,γ] = [W (z),K (z), Z (z), X (z),Θ(z),Γ(z)]exp(i kx x + i ky y +nt ), (11)

where kx ,ky are horizontal wave numbers, k = (k2
x +k2

y )1/2 is the resultant wave number and

n is, in general, a complex constant. ζ= ∂v
∂x

− ∂u
∂y

and ξ=
∂hy

∂x
−

∂hx

∂y
are the z-components of the

vorticity and current density, respectively.

Expressing the coordinates (x, y, z) in the new unit of length ‘d ’ and letting

a = kd , σ=
nd 2

ν
, p1 =

ν

κ
, p2 =

ν

η
, P1 =

k1

d 2
, M =

mN

ρ0
, B = b +1, E1 = E +bε

E2 = E ′
+bε, q =

ν

κ′
, τ1 =

τν

d 2
, F =

λν

d 2
, F0 =

λ0ν

d 2
, D∗

= d ·
d

d z
= dD

and suppressing the superscript. The physical significance of suspended particles parameter

B is that it does not depend on the model under consideration, however, it does depend upon

the porosity of the medium.
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Equations (2)-(9) with the help of equations (10) and (11), in non-dimensional form be-

come

[σ

ε

(

1+
M

1+τ1σ

)

+
1+F0σ

(1+Fσ)P1

]

(D2
−a2)W =

µe Hd

4πρ0ν
(D2

−a2)DK −
g d 2a2

ν
(αΘ−α′

Γ), (12)

(D2
−a2

−σp2)K = −
Hd

εη
DW, (13)

(D2
−a2

−σE1p1)Θ = −
βd 2

κ

(B +τ1σ

1+τ1σ

)

W, (14)

(D2
−a2

−σE2q1)Γ = −
β′d 2

κ′

(B +τ1σ

1+τ1σ

)

W. (15)

Here we consider the case where both the boundaries are free and the medium adjoining the

fluid is non-conducting. The case of two free boundaries is slightly artificial, except in stellar

atmospheres (Spiegel [27]) and in certain geophysical situations where it is most appropriate.

However, the case of two free boundaries allows us to obtain analytical solution without af-

fecting the essential features of the problem. The appropriate boundary conditions for this

case are

W = D2W = 0, Θ= 0, Γ= 0, D Z = 0, X = 0, at z = 0 and z = 1. (16)

Further K = 0 on both the boundaries if the regions outside the fluid are perfectly conducting

or DK =∓aK on both the boundaries if the region outside the fluid are insulating. (17)

4. Mathematical analysis

We first prove the following lemma:

Lemma. If [σ=σr +iσi ,W,Θ,Γ,K ] is a non-trivial solution of the double eigen value problem

for σr andσi described by the equations (12)-(15) with the boundary conditions (16) and (17).

Then a necessary condition for σ= 0 (i.e. σr =σi = 0) to be an eigen value is that

∫1

0
(|DΘ|

2
+a2

|Θ|
2)d z ≤

β2d 4B 2

κ2π2

∫1

0
|W |

2d z,

Proof of Lemma. Since σ= 0 is an eigen value, we have from equation (14)

(D2
−a2)Θ=−

βd 2B

κ
W. (18)

Multiplying both sides of equation (18) by Θ
∗ (the complex conjugate of Θ), integrating the re-

sulting equation by parts for sufficient number of times over the vertical range of z by making

the use of boundary condition (16) and separating the real parts of both sides of the equation

so obtained, we get

∫1

0
(|DΘ|

2
+a2

|Θ|
2)d z =Re

βd 2B

κ

∫1

0
Θ
∗W d z =

βd 2B

κ
Re

∫1

0
Θ
∗W d z. (19)
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Now

Re

∫1

0
Θ
∗W d z ≤

∣

∣

∣

∫1

0
Θ
∗W d z

∣

∣

∣≤

∫1

0
|Θ

∗W |d z ≤

∫1

0
|Θ||W |d z

≤

√

∫1

0
|Θ|2d z

√

∫1

0
|W |2d z, (by Schwartz inequality).

Equation (18) and inequality (19) implies that

∫1

0
(|DΘ|

2
+a2

|Θ|
2)d z ≤

βd 2B

κ

√

∫1

0
|Θ|2d z

√

∫1

0
|W |2d z, (20)

which in turn implies that

∫1

0
|DΘ|

2d z ≤
βd 2B

κ

√

∫1

0
|Θ|2d z

√

∫1

0
|W |2d z, (21)

whence we derive from inequality (21) using Rayleigh-Ritz inequality

∫1

0
|DΘ|

2d z ≥ π2

∫1

0
|Θ|

2d z, (since Θ= 0 at z = 0 and z = 1) (22)

√

∫1

0
|Θ|2d z ≤

βd 2B

π2κ

√

∫1

0
|W |2d z. (23)

Inequalities (20) and (23) lead to

∫1

0
(|DΘ|

2
+a2

|Θ|
2)d z ≤

(βd 2B

πκ

)2
∫1

0
|W |

2d z, (24)

and hence the lemma.

The contents of the above lemma when presented otherwise from the point of view of

theoretical hydrodynamics imply that

Lemma. A necessary condition for the validity of the principle of exchange of stabilities in

thermohaline convection configuration of an Oldroydian viscoelastic fluid in porous medium

in the presence of magnetic field and suspended particles is that

∫1

0
(|DΘ|

2
+a2

|Θ|
2)d z ≤

(βd 2B

πκ

)2
∫1

0
|W |

2d z.

Similarly,
∫1

0
(|DΓ|

2
+a2

|Γ|
2)d z ≤

(β′d 2B

πκ′

)2
∫1

0
|W |

2d z. (25)

The essential contents of lemma are true for this case also.

We now prove the following theorem:
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Theorem. If [σ=σr +iσi ,W,Θ,Γ,K ] is a non-trivial solution of the double eigen value problem

for σr and σi described by the equations (12)-(15) with the boundary conditions (16) and (17)

for given values of other parameters, then a sufficiency condition for the invalidity of σ= 0 (i.e.

σr =σi = 0) to be an eigen value is that
BP1

π2 (R +RS) < 1.

Proof. Multiplying equation (12) by W ∗ (the complex conjugate of W ) and integrating the

resulting equation over the vertical range of z, we obtain

[σ

ε

(

1+
M

1+τ1 +σ

)

+
1+F0σ

(1+Fσ)P1

]

∫1

0
W ∗(D2

−a2)W d z −
µe Hd

4πρ0ν

∫1

0
W ∗(D2

−a2)DK d z

+
g d 2a2

ν

∫1

0
W ∗(αΘ−α′

Γ)d z = 0,(26)

Integrating equation (26) by parts for sufficient times by making use of boundary conditions

(16) and (17) and equations (13)-(15), it follows that

[σ

ε

(

1+
M

1+τ1σ

)

+
1+F0σ

(1+Fσ)P1

]

I1 +
µeεd

4πρ0ν
[I2 +σ∗p2{I3 +a(|K |

2
1 +|K |

2
0)}]

−
g a2

ν

( 1+τ1σ
∗

B +τ1σ∗

)[ακ

β
(I4 +σ∗E1p1I5)−

α′κ′

β′
(I6 +σ∗E2q1I7)

]

= 0, (27)

where σ∗ is the complex conjugate of σ and

I1 =

∫1

0
(|DW |

2
+a2

|W |
2)d z, I2 =

∫1

0
|(D2

−a2)K |
2d z, I3 =

∫1

0
(|DK |

2
+a2

|K |
2)d z,

I4 =

∫1

0
(|DΘ|

2
+a2

|Θ|
2)d z, I5 =

∫1

0
|Θ|

2d z, I6 =

∫1

0
(|DΓ|

2
+a2

|Γ|
2)d z, I7 =

∫1

0
|Γ|

2d z,

where the integrals I1 − I7. are all positive definite.

Putting σr = 0 in equation (27) and separating the real and imaginary parts of the result-

ing equation, we derive

[ Mτ1σ
2
i

ε(1+σ2
i
τ2

1)
+

(1+F F0σ
2
i

)

P1(1+F 2σ2
i

)

]

I1 +
µeεη

4πρ0ν
I2 −

g a2

ν

( B +σ2
i
τ2

i

B 2 +σ2
i
τ2

i

)[ακ

β
I4 −

α′κ′

β′
I6

]

+
g a2

ν

(B −1)τ1σ
2
i

B 2 +σ2
i
τ2

1

[ακ

β
E1p1I5 −

α′κ′

β′
E2q1I7

]

= 0, (28)

and

σi







[

1
ε

(

1+ M
1+σ2

i
τ2

1

)

−
(F−F0)

1+F 2σ2
i

]

I1 −
µeεηp2

4πρ0ν
[I3 +a{(|K |2)1 + (|K |2)0}]

−
g a2

ν

(

τ1(1−B )

B 2+σ2
i
τ2

1

[

ακ
β I4 −

α′κ′

β′ I6

]

−
B+τ2

i
σ2

i

B 2+σ2
i
τ2

i

[

ακ
β E1p1I5 −

α′κ′

β′ E2q1I7

])






= 0. (29)

Equations (28) and (29) must be satisfied when σr = 0. Further since σi is also zero as a

necessary condition of the theorem, equation (29) is identically satisfied while equation (28)

reduces to
1

P1
I1 +

µeεη

4πρ0ν
I2 −

g a2ακ

νβB
I4 +

g a2α′κ′

νβ′B
I6 = 0. (30)
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Now making use of inequalities (24), (25) and the inequality

∫1

0
(|DW |

2
+a2

|W |
2)d z ≥ a2

∫1

0
|W |

2d z, (which is always valid),

we derive from the equation (30)

{ 1

P1
I1 +

µeεη

4πρ0ν
I2 +

g a2α′κ′

νβ′B
I6 +

g a2ακ

νβB
I4

}

>

{ a2

P1

[

1−
BP1

π2
(R +RS)

]

∫1

0
|W |

2d z +
µeεη

4πρ0ν
I2 +

2g a2α′κ′

νβ′B
I6

}

, (31)

where R =
gαβd4

νκ
and RS =

gα′β′d4

νκ′ are the thermal Rayleigh number and solutal Rayleigh num-

ber, respectively.

Now if BP1

π2 (R +RS) < 1, then the right hand side of inequality (31) is a positive definite

which in turn implies that the left hand side of the inequality (31) must also be positive defi-

nite and therefore (30) can not be satisfied. Thus a sufficiency condition for the invalidity of

zero being an eigen-value for σ is that BP1

π2 (R +RS) < 1.

It is clear from above that when regions outside the fluid are perfectly conducting

a{(|K |
2)1 + (|K |

2)0} = 0, (32)

and hence the above analysis holds good for this case.

Presented otherwise from the point of view of theoretical hydrodynamics, we have the

following theorem:

Theorem. A sufficiency condition for the invalidity of principle of exchange of stabilities in a

double-diffusive convection configuration of an Oldroydian viscoelastic fluid in porous medium

in the presence of suspended particles and magnetic field is that the thermal Rayleigh number

R, solutal Rayleigh number RS , the medium permeability P1 and suspended particles parame-

ter B are restricted by the inequality BP1

π2 (R +RS) < 1,

or in the context of overstability, we can state the above theorem as:

Theorem. A sufficiency condition for the existence of overstability in a double-diffusive con-

vection configuration of an Oldroydian viscoelastic fluid in porous medium in the presence

of suspended particles is that the thermal Rayleigh number R, solutal Rayleigh number RS ,

medium permeability P1 and suspended particles parameter B are restricted by the inequality
BP1

π2 (R +RS) < 1.
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