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GLOBAL BEHAVIOR OF A THIRD ORDER DIFFERENCE EQUATION

R. ABO-ZEID AND M. A. AL-SHABI

Abstract. The aim of this paper is to investigate the global stability and periodic nature

of the positive solutions of the difference equation

xn+1 =
A+B xn−1

C +Dxn xn−2
, n = 0,1,2, . . .

where A,B are nonnegative real numbers and C ,D > 0.

1. Introduction and preliminaries

Difference equations, although their forms look very simple, it is extremely difficult to

understand thoroughly the global behaviors of their solutions. One can refer to [1, 7]. The

study of nonlinear rational difference equations of higher order is of paramount importance,

since we still know so little about such equations. It is worthwhile to point out that although

several approaches have been developed for finding the global character of difference equa-

tions [7, 8, 9, 10], relatively a large number of difference equations have not been thoroughly

understood yet [4, 11, 12].

Cinar [3] examined the global asymptotic stability of all positive solutions of the rational

difference equation

xn+1 =
axn−1

1+bxn xn−1
, n = 0,1,2, . . .

Xiaofan yang et all [13] investigated the global attractivity of all solutions of the difference

equation

xn+1 =
axn +bxn−1

c +d xn xn−1
, n = 0,1,2, . . .

where a ≥ o,b,c ,d > 0.

C. H. Gibbons et al. [6] investigated the global asymptotic behavior of the difference

equation

xn+1 =
α+βxn−1

γ+xn
, n = 0,1,2, . . .
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where β> 0 and α,γ≥ 0.

In [2] we have discussed the global asymptotic stability of the difference equation

xn+1 =
Axn−2r−1

B +C xn−2l xn−2k
, n = 0,1,2, . . . (1.1)

where A,B ,C are nonnegative real numbers and r, l ,k are nonnegative integers such that

l ≤ k and r ≤ k .

In this paper, we study the global asymptotic stability of all solutions of the difference

equation

xn+1 =
A+B xn−1

C +Dxn xn−2
, n = 0,1,2, . . . (1.2)

where where A,B are nonnegative real numbers and C ,D > 0.

We give some preliminaries which will be needed in this paper.

Consider the difference equation

xn+1 = f (xn , xn−1, . . . , xn−k ), n = 0,1, . . . (1.3)

where f : Rk+1 → R .

Definition 1.1 ([7]). An equilibrium point for equation (1.3) is a point x̄ ∈ R such that x̄ =
f (x̄, x̄, . . . , x̄).

Definition 1.2 ([7]). (1) An equilibrium point x̄ for equation (1.3) is called locally stable if

for every ǫ > 0, there exists a δ > 0 such that every solution {xn} with initial conditions

x−k , x−k+1,. . . , x0 ∈]x̄−δ, x̄+δ[ is such that xn ∈]x̄−ǫ, x̄+ǫ[ for all n ∈N. Otherwise x̄ is said

to be unstable.

(2) The equilibrium point x̄ of equation (1.3) is called locally asymptotically stable if it is lo-

cally stable and there exists γ > 0 such that for any initial conditions x−k , x−k+1, . . . , x0 ∈
]x̄ −γ, x̄ +γ[, the corresponding solution {xn} tends to x̄.

(3) An equilibrium point x̄ for equation (1.3) is called a global attractor if every solution {xn}

converges to x̄ as n →∞.

(4) The equilibrium point x̄ for equation (1.3) is called globally asymptotically stable if it is

locally asymptotically stable and global attractor.

Suppose that f is continuously differentiable in some open neighborhood of x̄.

Let

ai =
∂ f

∂xn−i
(x̄ , . . . , x̄), for i = 0,1, . . . ,k
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denote the partial derivatives of f (xn , xn−1, . . . , xn−k ) with respect to xn−i evaluated at the

equilibrium point x̄ of equation (1.3). Then the equation

zn+1 =
k
∑

i=0

ai zn−i , n = 0,1, . . . (1.4)

is called the linearized equation associated with equation (1.3) about the equilibrium point x̄,

and the equation

λk+1 −
k
∑

i=0

aiλ
k−i = 0 (1.5)

is called the characteristic equation associated with equation (1.4) about the equilibrium

point x̄.

Theorem 1.3 ([7]). Assume that f is a C 1 function and let x̄ be an equilibrium point of equation

(1.3). Then the following statements are true:

(1) If all roots of equation (1.5) lie in the open disk |λ| < 1, then x̄ is locally asymptotically

stable.

(2) If at least one root of equation (1.5) has absolute value greater than one, then x̄ is unstable.

Theorem 1.4 ([5]). Assume that
∑k

i=0 | ai |< 1. Then every root of equation (1.5) has absolute

value less than one.

Definition 1.5 ([11]). A positive semicycle of a solution {xn}∞
n=−k

of equation (1.3) consists of

a "string" of terms {xl , xl+1, . . . , xm}, all greater than or equal to the equilibrium x̄, with l ≥−1

and m ≤∞ and such that

either l =−k , or l >−k and xl−1 < x̄

and

either m =∞, or m <∞ and xm+1 < x̄.

Definition 1.6 ([11]). A negative semicycle of a solution {xn}∞
n=−k

of equation (1.3) consists of

a "string" of terms {xl , xl+1, . . . , xm}, all less than or equal to the equilibrium x̄, with l ≥−1 and

m ≤∞ and such that

either l =−k , or l >−k and xl−1 ≥ x̄

and

either m =∞, or m <∞ and xm+1 ≥ x̄.

The change of variables xn =
√

C
D yn reduces equation (1.2) to the difference equation

yn+1 =
α+βyn−1

1+ yn yn−2
, n = 0,1,2, . . . (1.6)
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where α= A
C

√

D
C ,β= B

C .

When α= 0, equation (1.6) becomes

yn+1 =
βyn−1

1+ yn yn−2
, n = 0,1,2, . . . (1.7)

This equation is a special case of (1.1) with r = 0, l = 0 and k = 1.

2. Linearized stability analysis

Now we determine the equilibrium points of equation (1.6) and discuss their local asymp-

totic behavior. It is clear that the values of the equilibrium points depends on α and β.

Lemma 2.1. Assume that the function f (x) = x3 + (1−β)x −α, where α and β are positive real

numbers. Then the following statements are true:

(1) If β< 1, then f (x) has a unique zero x∗ > 0,

(2) If β> 1, then we have the following:

• If α> 2(
β−1

3 )
3
2 , then there exists a unique zero x∗ > 0.

• Ifα< 2(
β−1

3
)

3
2 , then there exist three zeros x∗>

√

β−1, −
√

β−1

3
< x∗∗ < 0 and−

√

β−1 <

x∗∗∗ <−
√

β−1

3

Proof. We can see that the function f (x) has a positive zero whatever the value of β. As

f ′(x) = 3x2 + 1−β, the function f (x) is increasing everywhere when β < 1. Therefore, the

function f (x) has a unique (positive) zero.

When β> 1, the zeros of the function f (x) depends on the relation between α and β. ���

Clear that, the equilibrium points of equation (1.6) are the zeros of the function f (ȳ) =
ȳ3 + (1−β)ȳ −α. When β< 1, equation (1.6) has a unique (positive) equilibrium point ȳ such

that ȳ >
√

1−β if α> 2(1−β)
3
2 and 0 < ȳ <

√

1−β if α< 2(1−β)
3
2 . When β> 1, equation (1.6)

has a unique (positive) equilibrium point ȳ >
√

β−1 if α > 2(
β−1

3
)

3
2 and three equilibrium

points ȳ >
√

β−1, −
√

β−1

3 < ȳ1 < 0 and −
√

β−1 < ȳ2 <−
√

β−1

3 if α< 2(
β−1

3 )
3
2 .

We fucus our interest on the positive equilibrium point ȳ .

The linearized equation associated with equation (1.6) about ȳ is

zn+1 +
ȳ2

1+ ȳ2
zn −

β

1+ ȳ2
zn−1 +

ȳ2

1+ ȳ2
zn−2 = 0, n = 0,1,2, . . . (2.1)

the characteristic equation associated with this equation is

λ3 +
ȳ2

1+ ȳ2
λ2 −

β

1+ ȳ2
λ+

ȳ2

1+ ȳ2
= 0. (2.2)

We summarize the results of this section in the following theorem.
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Theorem 2.2. The following statements are true:

(1) If β< 1, then

(a) ȳ is locally asymptotically stable if α< 2(1−β)
3
2 .

(b) ȳ is a saddle point if α> 2(1−β)
3
2 .

(2) If β> 1, then ȳ is is a saddle point.

Proof.

(1) Assume that β< 1.

(a) If α< 2(1−β)
3
2 , that is ȳ <

√

1−β, then using theorem (1.4) we get the result.

(b) Assume that α< 2(1−β)
3
2 and consider the function g (λ) =λ3+ ȳ 2

1+ȳ 2 λ
2− β

1+ȳ 2λ+
ȳ 2

1+ȳ 2 .

Clear that g (λ) has a real root λ1 in (−∞,−1). As g (− ȳ 2

1+ȳ 2 ) > 0, we have λ1 < −1 <

− ȳ 2

1+ȳ 2 . That is |λ1 |>
ȳ 2

1+ȳ 2 .

But
ȳ2

1+ ȳ2
=|

2
∏

i=0

λi |=|λ1 ||λ2 ||λ3 |>
ȳ2

1+ ȳ2
|λ2 ||λ3 |=

ȳ2

1+ ȳ2
|λ2 |2,

where |λ2 |=|λ3 |. Then |λ2 |2< 1 and so |λ2 |=|λ3 |< 1 which completes the proof.

(2) The proof is similar to that of 1 (b) and will be omitted. ���

3. Periodicity and semicycle analysis of equation (1.6)

Theorem 3.1. Let {yn}∞n=−2 be a nontrivial solution of equation (1.6) and let ȳ denote the

unique positive equilibrium of equation (1.6). Then the following statements are true:

(1) Assume that either,

(C1) y−1 < ȳ ≤ y−2, y0

or

(C2) y−2, y0 < ȳ ≤ y−1

is satisfied. Then {yn}∞n=−2 oscillates about ȳ with semicycles of length one.

(2) Equation (1.6) has the periodic solution . . . ,ϕ,ψ,ϕ,ψ, . . . where ϕ,ψ are the roots of the

equation

t 2 +
1

β−1
t −β+1 = 0

if β< 1 and α> 2(1−β)
3
2 .

Proof.

(1) Clear and will be omitted.
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(2) Let {. . . ,ϕ,ψ,ϕ,ψ, . . .} be a periodic solution of equation (1.6) with β< 1. This implies that

ϕ= α+βϕ
1+ψ2 ,ψ= α+βψ

1+ϕ2 . Hence we have, ϕψ= 1−β and ϕ+ψ= α
1−β . Therefore, ϕ,ψ are the

roots of the equation

t 2 +
1

β−1
t −β+1 = 0.

Now consider the discriminate L = ( α
1−β )2 − 4(1−β). It is clear that L > 0 if β < 1 and

α> 2(1−β)
3
2 . ���

4. Global behavior of equation (1.6)

This section is devoted to study the global stability of the positive equilibrium point ȳ

and the existence of unbounded solutions under certain conditions.

Theorem 4.1. Assume that β < 1 and α < 2(1−β)
3
2 . Then the positive equilibrium point 0 <

ȳ <
√

1−β is globally asymptotically stable.

Proof. Let {yn}∞n=−2 be a solution of equation (1.6). Then

yn+1 =
α+βyn−1

1+ yn yn−2
<α+βyn−1, n = 0,1,2, . . . .

It follows that there exists a real number γ> 0 such that yn <γ, n ≥−2.

This implies that

yn+1 =
α+βyn−1

1+ yn yn−2
>

α

1+γ2
.

Let λ= liminf yn andΛ= limsup yn . Hence we have

α+βλ

1+Λ2
≤λ≤Λ≤

α+βΛ

1+λ2
.

This implies that

α+βλ≤λ+λΛ2

and

Λ+Λλ2 ≤α+βΛ.

Then

αλ+βλ2 ≤λ2 +λ2
Λ

2

and

Λ
2 +Λ2λ2 ≤αΛ+βΛ2.

Hence we get that

αλ+λ2(β−1) ≤αΛ+Λ2(β−1).
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That is

λ2(1−β)−αλ≥Λ2(1−β)−αΛ. (4.1)

Consider the function h(x)= (1−β)x2−αx. As α< 2(1−β)
3
2 , we have α

2(1−β)
< ȳ <

√

1−β, and

h(x) is increasing on ( α
2(1−β) ,∞). In view of equation (4.1), we have a contradiction. Therefore

λ=Λ= ȳ . This completes the proof. ���

Lemma 4.2. Assume that β> 2 and α> 0. Then the following statements are true:

(1) If x >
√

β−1+ αp
β−1

, then
√

β−1 > α
x2−β+1

.

(2) If x >
√

β−1 and y > α
x2−β+1

, then y > α+βy

1+x2 .

Theorem 4.3. Assume thatβ> 2. Then equation (1.6) has solutions which are neither bounded

nor persist.

Proof. Let {yn}∞n=−2 be a solution of equation (1.6) with initial conditions α
y 2
−1−β+1

< y0 < y−2 <
√

β−1 and y−1 >
√

β−1+ αp
β−1

. Then

y1 =
α+βy−1

1+ y0 y−2
>

α+βy−1

β
=

α

β
+ y−1,

where y0 y−2 <β−1.

y2 =
α+βy0

1+ y1 y−1
<

α+βy0

1+ y2
−1

< y0,

where y1 > y−1, y−1 >
√

β−1+ αp
β−1

, and y0 > α
y 2
−1−β+1

(using lemma (4.2) (2)).

Now suppose that
α

y2
2n−1 −β+1

< y2n < y2n−2 <
√

β−1

and

y2n−1 >
√

β−1+
α

√

β−1
.

Then

y2n+1 =
α+βy2n−1

1+ y2n y2n−2
>

α+βy2n−1

β
=

α

β
+ y2n−1 (4.2)

where y2n y2n−2 < y2
2n−2 <β−1, and

y2n+2 =
α+βy2n

1+ y2n+1 y2n−1
<

α+βy2n

1+ y2
2n−1

< y2n ,

where y2n+1 > y2n−1, y2n−1 >
√

β−1+ αp
β−1

, and y2n > α
y 2

2n−1−β+1
. Finally from equation (4.2)

we have

y2n+1 >
α

β
+ y2n−1 >

α

β
+ (

α

β
+ y2n−3)> ·· · > (n +1)

α

β
+ y−1.
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If limn→∞ y2n+1 = L and limn→∞ y2n+2 = M , then L = limn→∞ y2n+1 = ∞ and M = limn→∞

y2n+2 = limn→∞
α+βy2n

1+y2n+1 y2n−1
= 0. This completes the proof. ���

5. Case β= 0

When β= 0, equation (1.6) becomes

yn+1 =
α

1+ yn yn−2
, n = 0,1,2, . . . (5.1)

It is clear that equation (5.1) has the unique positive equilibrium point 0 < ȳ <α.

Theorem 5.1. (1) If α< 2, then the equilibrium point ȳ is locally asymptotically stable.

(2) If α> 2, then the equilibrium point ȳ is unstable (saddle point).

Proof. It is sufficient to consider the linearized equation

zn+1 +
ȳ2

1+ ȳ2
(zn + zn−2)= 0, n = 0,1,2, . . .

and its associated characteristic equation

λ3 +
ȳ2

1+ ȳ2
(λ2 +1) = 0. ���

Theorem 5.2. The following statements are true:

(1) Every solution of equation (5.1) is bounded and persists.

(2) Assume that α< 2. Then the equilibrium point ȳ is globally asymptotically stable.

(3) Assume that α> 2. Then equation (5.1) has the unique periodic solution {. . . ,ϕ,ψ,ϕ,ψ, . . .},

where ϕ,ψ are the roots of the equation

t 2 −αt +1 = 0.

Proof.

(1) It is clear that α
1+α2 ≤ yn+1 ≤α, n = 0,1,2, . . .

The proof of (2) and (3) are easy to establish and will be omitted. ���
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