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A CLASS OF SHANNON-MCMILLAN THEOREMS FOR
MTH-ORDER MARKOV INFORMATION SOURCE

ON GENERALIZED RANDOM SELECTION SYSTEM

KANGKANG WANG AND DECAI ZONG

Abstract. In this paper, our aim is to establish a class of Shannon-McMillan theorems
for mth-order nonhomogeneous Markov information source on the generalized random
selection system by constructing the consistent distribution functions. As corollaries, we
obtain some Shannon-McMillan theorems for mth-order nonhomogeneous Markov in-
formation source and the general nonhomogeneous Markov information source. Some
results which have been obtained are extended. In the proof, a new technique for study-
ing Shannon-McMillan theorems in information theory is applied.

1. Introduction

Let (Ω,F ,P ) be a probability space, {Xn ,n ≥ 0} be an arbitrary information source de-

fined on (Ω,F ,P ) which takes values on the alphabet set S = {s1, s2, . . . , sM } with joint distri-

bution:

P (X0 = x0, . . . , Xn = xn) = p(x0, . . . , xn) > 0, xi ∈ S, 0 ≤ i ≤ n. (1)

Let

fn(ω) =− 1

n +1
log p(X0, . . . , Xn),

where log is natural logarithmic, fn(ω) is called the relative entropy density of {Xi ,0 ≤ i ≤ n}.

If {Xn ,n ≥ 0} be an mth-order nonhomogeneous Markov information source, then as

n ≥ m,

P (Xn = xn |X0 = x0, . . . , Xn−1 = xn−1) = P (Xn = xn |Xn−m = xn−m , . . . , Xn−1 = xn−1). (2)

Denote

q(i0, . . . , im−1) = P (X0 = i0, . . . , Xm−1 = im−1), (3)
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pn( j |i1, . . . , im) = P (Xn = j |Xn−m = i1, . . . , Xn−1 = im). (4)

q(i0, . . . , im−1) is called the m dimensional initial distribution. pn( j |i1, . . . , im),n ≥ m are called

the mth-order transition probabilities, and

Pn = (pn( j |i1, . . . , im)) (5)

are called the mth-order transition matrices. In the case,

p(x0, . . . , xn) = q(x0, . . . , xm−1)
n∏

k=m
pk (xk |xk−m , . . . , xk−1), (6)

fn(ω) =− 1

n +1
[log q(X0, . . . , Xm−1)+

n∑
k=m

log pk (Xk |Xk−m , . . . , Xk−1)]. (7)

The convergence of fn(ω) in a sense (L1 convergence, convergence in probability, a.s.

convergence) is called Shannon-McMillan theorem or entropy theorem or asymptotic equipar-

tition property (AEP) in information. Shannon [1] first proved the AEP for convergence in

probability for stationary ergodic information source with a finite alphabet set. McMillan [2]

and Breiman [3] proved the AEP in L1 and a.s. convergence, respectively, for stationary er-

godic information source. Chung [4] considered the case of the countable alphabet. The AEP

for general stochastic processes can be found, for example, in Barron [5] and Algoet and Cover

[6]. Liu and Yang [7] have proved AEP for a class of nonhomogeneous Markov information

sources.

The conception of random selection derives from gambling. We consider a sequence of

Bernoulli trial, and suppose that at each trial the bettor has the free choice of whether or not

to bet. A theorem on gambling system asserts that under any non-anticipative system the

successive bets form a sequence of Bernoulli trial with unchanged probability for success.

The importance of this statement was recognized by von Mises, who introduced the impos-

sibility of a successful gambling system as a fundamental axiom (see [8], [9]). This topic was

discussed still further by Kolmogrov (see [10]) and Liu and Wang (see [11] and [12]).

Many of practical information source, such as language and image information, are often

mth-order Markov information source, and always nonhomogeneous. Hence it is of impor-

tance to study the AEP for the mth-order nonhomogeneous Markov information source in the

information theory. The purpose of this paper is to generalize Shannon-McMillan theorems

for mth-order nonhomogeneous Markov information source to the case of the generalized

random selection system by constructing the consistent distribution functions and nonneg-

ative sup-martingale. As corollaries, we obtain some Shannon-McMillan theorems for mth-

order Markov chain and the general Markov chain. Some results of Liu and Yang (see [13] and
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[7]) are extended. In the proof, we apply a new technique to studying the strong limit theo-

rems for entropy density in information theory. Afterward, many scholars (see [15]-[33]) have

studied all kinds of stochastic processes and some limit properties with their applications for

mth-order nonhomogeneous Markov chains on the generalized gambling system.

In order to extend the conception of random selection, which is the crucial part of the

gambling system, we first give a set of real-valued functions fn(x0, . . . , xn) defined on Sn+1(n =
1,2, . . .), which will be called the generalized selection functions if they take values in an ar-

bitrary real interval of [a,b], (a,b ∈ R) (The traditional random selection system [12] takes

values in the set of {0,1}). We let

Y0 = y(y is an arbitrary real number)
(8)

Yn+1 = fn(X0, . . . , Xn), n ≥ 0,

where {Yn ,n ≥ 0} is called as the generalized gambling system or the generalized random se-

lection system. Let δi ( j ) be the Kronecker delta function on S, that is for i , j ∈ S

δi ( j ) =
0, i ̸= j ,

1, i = j .

We can obtain the following definition:

Definition 1. Let {Yn ,n ≥ 0} be a generalized random selection system defined as (8), {σn(ω),

n ≥ 0} be a nonnegative increasing stochastic sequence. We call

S[σn (ω)](ω) =−(1

/
[σn (ω)]∑

k=m
Yk )[Y0 log q(X0, . . . , Xm−1)+

[σn (ω)]∑
k=m

Yk log pk (Xk |Xk−m , . . . , Xk−1)]. (9)

the relative entropy density of mth-order nonhomogeneous Markov information source {Xi ,

0 ≤ i ≤ [σn(ω)]} on the generalized random selection system, where [σn(ω)] represents the

integral part of σn(ω). Obviously, the generalized relative entropy density S[σn (ω)](ω) is just

the general relative entropy density fn(ω) if σn(ω) = n, Yn ≡ 1, n ≥ 0.

Definition 2. Let

hk (xk−m , . . . , xk−1) =−∑
xk∈S pk (xk |xk−m , . . . , xk−1) log pk (xk |xk−m , . . . , xk−1), (10)

H(pk (s1|X k−1
k−m), . . . , pk (sM |X k−1

k−m)) = hk (Xk−m , . . . , Xk−1), k ≥ m. (11)

H(pk (s1|X k−1
k−m), . . . , pk (sM |X k−1

k−m)) is called the random conditional entropy of Xk with respect

to Xk−m , . . . , Xk−1.

We denote X n = {X0, . . . , Xn}, X n
m = {Xm , . . . , Xn}. xn , xn

m the realization of X n , X n
m .
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2. Main results and the proof

Theorem 1. Let {Xn ,n ≥ 0} be an mth-order nonhomogeneous Markov chain with the m di-

mensional initial distribution (3) and the mth-order transition matrices (5). S[σn (ω)](ω) and

H(pk (s1|X k−1
k−m), . . . , pk (sM |X k−1

k−m)) are defined by (9) and (11), respectively. Denote

D(ω) = {ω : lim
n→∞σn(ω) =∞, 0 < limsup

n→∞

(
σn(ω)

/
[σn (ω)]∑

k=m
Yk

)
≤ Mo}, (12)

then

lim
n→∞[S[σn (ω)](ω)− 1∑[σn (ω)]

k=m Yk

[σn (ω)]∑
k=m

Yk H(pk (s1|X k−1
k−m), . . . , pk (sM |X k−1

k−m))] = 0.

P −a.s. ω ∈ D(ω). (13)

Proof. On the probability space (Ω,F ,P ), let λ be a constant, δi ( j ) be Kronecker function.

Denote gk ( j ) =− log pk ( j |X k−1
k−m), we construct the following product distribution:

µ(x0, . . . xn ;λ) = q(x0, . . . , xm−1)
n∏

k=m
exp{λyk gk ( j )δ j (xk )}[

pk (xk |xk−1
k−m)

1+ (eλyk gk ( j ) −1)pk ( j |xk−1
k−m)

], n ≥ m.

(14)

Where

yk = fk−1(x0, . . . xk−1), k ≥ 1.

By (14), we have

∑
xn∈S

µ(x0, . . . xn ,λ) =
∑

xn∈S
q(x0, . . . , xm−1)

n∏
k=m

exp{λgk ( j )ykδ j (xk )}
[ pk (xk |xk−1

k−m)

1+(eλgk ( j )yk −1)pk ( j |xk−1
k−m)

]
= µ(x0, . . . xn−1;λ)

∑
xn∈S

exp{λyn gn( j )δ j (xn)}
[ pn(xn |xn−1

n−m)

1+ (eλgn ( j )yn −1)pn( j |xn−1
n−m)

]
= µ(x0, . . . xn−1;λ)

1

1+ (eλgn ( j )yn −1)pn( j |xn−1
n−m)

[ ∑
xn= j

+ ∑
xn ̸= j

]
= µ(x0, . . . xn−1;λ)

eλgn ( j )yn pn( j |xn−1
n−m)+1−pn( j |xn−1

n−m)

1+ (eλgn ( j )yn −1)pn( j |xn−1
n−m)

= µ(x0, . . . xn−1;λ). (15)

Therefore µ(x0, . . . xn ;λ), n = 1,2, . . . are a family of consistent distribution functions on Sn+1.

Let

Un(λ,ω) = µ(X0, . . . Xn ;λ)

p(X0, . . . , Xn)
. (16)

By (6), (14) and (16), we have

Un(λ,ω) = exp{
n∑

k=m
λYk gk ( j )δ j (Xk )}

n∏
k=m

[
1

1+ (eλYk gk ( j ) −1)pk ( j |X k−1
k−m)

], n ≥ m. (17)
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It is easy to see that Un(λ,ω) is a nonnegative sup-martingale from Doob’s martingale

convergence theorem (see [14]). Therefore,

lim
n→∞Un(λ,ω) =U∞(λ,ω) <∞. P −a.s. (18)

By (12), (18) we have

limsup
n→∞

1∑[σn (ω)]
k=m Yk

logU[σn (ω)](λ,ω) ≤ 0. P −a.s. ω ∈ D(ω) (19)

By (17) and (19) we have

limsup
n→∞

{ 1∑[σn (ω)]
k=m Yk

[σn (ω)]∑
k=m

λYk gk ( j )δ j (Xk )

− 1∑[σn (ω)]
k=m Yk

[σn (ω)]∑
k=m

log[1+ (eλYk gk ( j ) −1)pk ( j |X k−1
k−m)]

}
≤ 0.

P −a.s. ω ∈ D(ω) (20)

By (20), the inequalities 1−1/x ≤ ln x ≤ x−1,(x > 0), ex −1−x ≤ (1/2)x2e |x| and the prop-

erties of superior limit

limsup
n→∞

(an −bn) ≤ 0 ⇒ limsup
n→∞

(an −cn) ≤ limsup
n→∞

(bn − cn) ,

we have

limsup
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

λYk {gk ( j )δ j (Xk )− gk ( j )pk ( j |X k−1
k−m)}

≤ limsup
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

{log[1+ (eλYk gk ( j ) −1)pk ( j |X k−1
k−m)]−λYk gk ( j )pk ( j |X k−1

k−m)}

≤ limsup
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

pk ( j |X k−1
k−m)[eλYk gk ( j ) −1−λYk gk ( j )]

≤ (λ2/2)limsup
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

pk ( j |X k−1
k−m)g 2

k ( j )Y 2
k e |λYk gk ( j )|

= (λ2/2)limsup
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

Y 2
k log2 pk ( j |X k−1

k−m) ·pk ( j |X k−1
k−m)1−|λYk |.

P −a.s. ω ∈ D(ω). (21)

Noticing that α= max{|a|, |b|} exists and |Yk | ≤α, taking 0 < λ< 1/α, dividing both sides

of (21) by λ, we have

limsup
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

Yk {gk ( j )δ j (Xk )− gk ( j )pk ( j |X k−1
k−m)}
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≤ λ

2
limsup

n→∞
1∑[σn ]

k=m Yk

[σn ]∑
k=m

Y 2
k log2 pk ( j |X k−1

k−m) ·pk ( j |X k−1
k−m)1−λ|Yk |

≤ λα

2
limsup

n→∞
1∑[σn ]

k=m Yk

[σn ]∑
k=m

|Yk | log2 pk ( j |X k−1
k−m) ·pk ( j |X k−1

k−m)1−λα.

P −a.s. ω ∈ D(ω). (22)

Consider the function

ϕ(x) = (log x)2x1−λ, 0 < x ≤ 1, 0 <λ< 1. (set ϕ(0) = 0) (23)

Letting

ϕ′(x) = x−λ[2(log x) + (1−λ)(log x)2] = 0,

it can be concluded that on the internal [0,1],

max{ϕ(x),0 ≤ x ≤ 1} =ϕ(e2/(λ−1)) = (
2

λ−1
)2e−2. (24)

By (22), (23) and (24), in the case 0 <λ< 1/α, we have

limsup
n→∞

1∑[σn ]
k=m Yk

[σn (ω)]∑
k=m

Yk {gk ( j )δ j (Xk )− gk ( j )pk ( j |X k−1
k−m)}

≤ λα

2
limsup

n→∞
1∑[σn ]

k=m Yk

[σn (ω)]∑
k=m

|Yk |(
2

λα−1
)2e−2

≤ 2λαe−2

(1−λα)2 limsup
n→∞

(
[σn (ω)]∑

k=m
|Yk |

/
[σn (ω)]∑

k=m
Yk

)
. P −a.s. ω ∈ D(ω) (25)

By (12) we have

limsup
n→∞

(
[σn (ω)]∑

k=m
|Yk |

/
[σn (ω)]∑

k=m
Yk

)
≤ limsup

n→∞

(
[σn (ω)]∑

k=m
α

/
[σn (ω)]∑

k=m
Yk

)

≤ limsup
n→∞

(
α(σn(ω)−m +1)

/
[σn (ω)]∑

k=m
Yk

)
≤ limsup

n→∞

(
α ·σn(ω)

/
[σn (ω)]∑

k=m
Yk

)
≤αMo .

P −a.s. ω ∈ D(ω) (26)

It follows from (25) and (26) that

limsup
n→∞

1∑[σn ]
k=m Yk

[σn (ω)]∑
k=m

Yk {gk ( j )δ j (Xk )− gk ( j )pk ( j |X k−1
k−m)} ≤ 2λα2e−2Mo

(1−λα)2 .

P −a.s. ω ∈ D(ω) (27)
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We choose 0 <λi < 1/α (i = 1,2, . . .) such that λi → 0+ (i →∞), it follows from (27) that

limsup
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

Yk {gk ( j )δ j (Xk )− gk ( j )pk ( j |X k−1
k−m)} ≤ 0. P −a.s. ω ∈ D(ω) (28)

It follows from (9), (10), (11), (28) and gk ( j ) =− log pk ( j |X k−1
k−m) that

limsup
n→∞

[S[σn ](ω)− 1∑[σn ]
k=m Yk

[σn ]∑
k=m

Yk H(pk (s1|X k−1
k−m), . . . , pk (sM |X k−1

k−m))]

= limsup
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

Yk [− log pk (Xk |X k−1
k−m)−E(− log pk (Xk |X k−1

k−m)|X k−1
k−m)]

= limsup
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

sM∑
j=s1

Yk [gk ( j )δ j (Xk )− gk ( j )pk ( j |X k−1
k−m)]

≤
sM∑

j=s1

limsup
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

Yk [gk ( j )δ j (Xk )− gk ( j )pk ( j |X k−1
k−m)]

≤ 0. P −a.s. ω ∈ D(ω) (29)

Take −1/α<λ< 0, it follows from (21) that

liminf
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

Yk {gk ( j )δ j (Xk )− gk ( j )pk ( j |X k−1
k−m)}

≥ λ

2
limsup

n→∞
1∑[σn ]

k=m Yk

[σn ]∑
k=m

Y 2
k log2 pk ( j |X k−1

k−m) ·pk ( j |X k−1
k−m)1+λ|Yk |

≥ λα

2
limsup

n→∞
1∑[σn ]

k=m Yk

[σn ]∑
k=m

|Yk | log2 pk ( j |X k−1
k−m) ·pk ( j |X k−1

k−m)1+λα.

P −a.s. ω ∈ D(ω) (30)

We have by (23), (24), (26) and (30) that

liminf
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

Yk {gk ( j )δ j (Xk )− gk ( j )pk ( j |X k−1
k−m)}

≥ λα

2
limsup

n→∞
1∑[σn ]

k=m Yk

[σn ]∑
k=m

|Yk | ·
(

2

1+λα

)2

e−2

≥ 2λα2e−2Mo

(1+λα)2 . P −a.s. ω ∈ D(ω) (31)

We choose −1/α<λi < 0 (i = 1,2, . . .) such that λi → 0− (i →∞), it follows from (31) that

liminf
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

Yk {gk ( j )δ j (Xk )− gk ( j )pk ( j |X k−1
k−m)} ≥ 0. P −a.s. ω ∈ D(ω) (32)
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In a similar way, it follows from (9), (10), (11), (32) and gk ( j ) =− log pk ( j |X k−1
k−m) that

liminf
n→∞ [S[σn ](ω)− 1∑[σn ]

k=m Yk

[σn ]∑
k=m

Yk H(pk (s1|X k−1
k−m), . . . , pk (sM |X k−1

k−m))]

= liminf
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

Yk [− log pk (Xk |X k−1
k−m)−E(− log pk (Xk |X k−1

k−m)|X k−1
k−m)]

= liminf
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

sM∑
j=s1

Yk [gk ( j )δ j (Xk )− gk ( j )pk ( j |X k−1
k−m)]

≥
sM∑

j=s1

liminf
n→∞

1∑[σn ]
k=m Yk

[σn ]∑
k=m

Yk [gk ( j )δ j (Xk )− gk ( j )pk ( j |X k−1
k−m)]

≥ 0. P −a.s. ω ∈ D(ω) (33)

By (29) and (33) we have

lim
n→∞[S[σn ](ω)− 1∑[σn ]

k=m Yk

[σn ]∑
k=m

Yk H(pk (s1|X k−1
k−m), . . . , pk (sM |X k−1

k−m))] = 0. P −a.s. ω ∈ D(ω)

(34)

The proof is accomplished. ���

3. Some Corollaries for Shannon-McMillan theorems

Corollary 1 ([13]). Let {Xn ,n ≥ 0} be an mth-order nonhomogeneous Markov chain with the

m dimensional initial distribution (3) and the mth-order transition matrices (5), fn(ω) and

H [pk (s1|X k−1
k−m), . . . , pk (sM |X k−1

k−m)] be defined by (7) and (11), respectively. Then

lim
n→∞{ fn(ω)− 1

n

n∑
k=m

H [pk (s1|X k−1
k−m), . . . , pk (sM |X k−1

k−m)]} = 0. P −a.s. (35)

Proof. In Theorem 1 letting σn(ω) = n, Yn ≡ 1, n ≥ 0, we obtain S[σn ](ω) = fn(ω),

limsup
n→∞

(
σn(ω)

/
[σn (ω)]∑

k=m
Yk

)
= limsup

n→∞

(
n

/
n∑

k=m
Yk

)
= limsup

n→∞
n

n −m +1
= 1. (36)

Hence D(ω) =Ω. (35) follows from (13) immediately. ���
Corollary 2 ([7]). Let {Xn ,n ≥ 0} be a nonhomogeneous Markov chain, denote

fn(ω) =− 1

n +1
[log p(X0)+

n∑
k=1

log pk (Xk |Xk−1)],

H(pk (s1|Xk−1), . . . , pk (sM |Xk−1)) =− ∑
xk∈S

pk (xk |Xk−1) log pk (xk |Xk−1).

Then

lim
n→∞{ fn(ω)− 1

n

n∑
k=1

H [pk (s1|Xk−1), . . . , pk (sM |Xk−1)]} = 0. P −a.s. (37)

Proof. Letting m = 1 in Corollary 1, (37) follows from (35) directly. ���
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