APPLICATIONS OF FRACTIONAL CALCULUS TO k-UNIFORMLY STARLIKE AND k-UNIFORMLY CONVEX FUNCTIONS OF ORDER α

AJAB AKBARALLY AND MASLINA DARUS

Abstract. A new subclass of analytic functions $k - SP_{\lambda}(\alpha)$ is introduced by applying certain operators of fractional calculus to k-uniformly starlike and k-uniformly convex functions of order α . Some theorems on coefficient bounds and growth and distortion theorems for this subclass are found. The radii of close to convexity, starlikeness and convexity for this subclass is also derived

1. Introduction

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

analytic and normalized in the open unit disk $U = \{z : |z| < 1\}$ and S denote the subclass of A that are univalent in U. Let T denote the subclass of S consisting of functions of the form

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \qquad a_n \ge 0$$
 (1.2)

We denote by ST and CV the subclasses of S that are respectively starlike and convex. Goodman [2][3]introduced and defined the following subclasses of CV and ST.

A function f(z) is uniformly convex (uniformly starlike) in U if f(z) is in CV(ST) and has the property that for every circular arc γ contained in U, with center ξ also in U, the arc $f(\gamma)$ is convex (starlike) with respect to $f(\xi)$. The class of uniformly convex functions is denoted by UCV and the class of uniformly starlike functions by S_p . From Ronning [9] and Ma and Minda [6] it is well known that

$$f \in S_p \Leftrightarrow Re\left\{\frac{zf'(z)}{f(z)}\right\} \ge \left|\frac{zf'(z)}{f(z)} - 1\right|.$$

Received June 9, 2005; revised September 26, 2005.

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. Fractional calculus, k-uniformly starlike, k-uniformly convex.

and

$$f \in UCV \Leftrightarrow Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} \ge \left|\frac{zf''(z)}{f'(z)}\right|.$$

Note that $f(z) \in UCV \Leftrightarrow zf'(z) \in S_p$.

Kanas and Wisniowska [4][5] defined the functions $f \in S$ to be k-uniformly convex (k-uniformly starlike) if for $0 \le k < \infty$ the image of every circular arc γ contained in U with center ξ where $\xi \leq k$ is convex (starlike). In the same period, Kanas and Srivastava [11] studied extensively on linear operators associated with k-uniformly convex functions.

Bharati, Parvatham and Swaminathan [1]
defined $k-S_p(\alpha)$ to be the class of functions f(z) of the form (1.1) with $0 \le k < \infty$ and $0 \le \alpha < 1$ that satisfies the condition

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} \ge k\left|\frac{zf'(z)}{f(z)} - 1\right| + \alpha.$$
 (1.3)

In [1], $k - UCV(\alpha)$ is defined to be the class of functions f(z) of the form (1.1) with $0 \le k < \infty$ and $0 \le \alpha < 1$ that satisfies the condition

$$Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} \ge k \left| \frac{zf''(z)}{f'(z)} \right| + \alpha. \tag{1.4}$$

Owa and Srivastava [7]introduced the operator $\Omega: A \to A$ defined by

$$\Omega^{\lambda} f(z) := \Gamma(2 - \lambda) z^{\lambda} D_{z}^{\lambda} f(z), \qquad (\lambda \neq 2, 3, 4...)$$

$$\tag{1.5}$$

where $D_z^{\lambda}f(z)$ is the fractional derivative of f of order λ defined by Owa [8] to be

$$D_z^{\lambda} f(z) = \frac{1}{\Gamma(1-\lambda)} \frac{d}{dz} \int_0^z \frac{f(\xi)}{(z-\xi)^{\lambda}} d\xi, \qquad 0 \le \lambda < 1.$$
 (1.6)

Following the work of Srivastava and Mishra [10] we introduce a class of analytic functions related to $k - S_p(\alpha)$ and $k - UCV(\alpha)$ using the operator Ω^{λ} defined by (1.5).

Definition 1.1. Let f be of the form (1.1), $0 \le k < \infty$, and $0 \le \alpha < 1$. Then $f \in k - SP_{\lambda}(\alpha)$ if and only if f satisfies the condition

$$Re\left\{\frac{z(\Omega^{\lambda}f(z))'}{\Omega^{\lambda}f(z)}\right\} \ge k \left|\frac{z(\Omega^{\lambda}f(z))'}{\Omega^{\lambda}f(z)} - 1\right| + \alpha. \tag{1.7}$$

It follows that $k - SP_0(\alpha) \equiv k - S_p(\alpha)$ and $k - SP_1(\alpha) \equiv k - UCV(\alpha)$.

Define $k - TSP_{\lambda}(\alpha)$ to be $k - TSP_{\lambda}(\alpha) = k - SP_{\lambda}(\alpha) \cap T$.

The aim of this paper is to investigate several basic properties of the class $k-TSP_{\lambda}(\alpha)$.

104

2. Coefficient estimates

Theorem 2.1 Let f be of the form (1.1). Then for $0 \le k < \infty$ and $0 \le \alpha < 1$, $f \in k - SP_{\lambda}(\alpha)$ if

$$\sum_{n=2}^{\infty} \left[n(1+k) - (\alpha+k) \right] \frac{\Gamma(2-\lambda)\Gamma(n+1)}{\Gamma(n-\lambda+1)} |a_n| \le 1 - \alpha. \tag{2.1}$$

Proof. It suffices to show that

$$k \left| \frac{z(\Omega^{\lambda} f(z))'}{\Omega^{\lambda} f(z)} - 1 \right| - Re \left\{ \frac{z(\Omega^{\lambda} f(z))'}{\Omega^{\lambda} f(z)} - 1 \right\} \leq 1 - \alpha.$$

First of all, it is easily seen from (1.6) that

$$D_z^{\lambda} \left\{ z^n \right\} = \frac{\Gamma(n+1)}{\Gamma(n-\lambda+1)} z^{n-\lambda}.$$

We have

$$k \left| \frac{z(\Omega^{\lambda} f(z))'}{\Omega^{\lambda} f(z)} - 1 \right| - Re \left\{ \frac{z(\Omega^{\lambda} f(z))'}{\Omega^{\lambda} f(z)} - 1 \right\} \le (1 + k) \left| \frac{z(\Omega^{\lambda} f(z))'}{\Omega^{\lambda} f(z)} - 1 \right|$$

$$\le \frac{(1 + k) \sum_{n=2}^{\infty} (n - 1) \frac{\Gamma(2 - \lambda) \Gamma(n + 1)}{\Gamma(n - \lambda + 1)} |a_n|}{1 - \sum_{n=2}^{\infty} \frac{\Gamma(2 - \lambda) \Gamma(n + 1)}{\Gamma(n - \lambda + 1)} |a_n|}$$

The last expression is bounded above by $(1 - \alpha)$ if

$$\sum_{n=2}^{\infty} [n(1+k) - (\alpha+k)] \frac{\Gamma(2-\lambda)\Gamma(n+1)}{\Gamma(n-\lambda+1)} |a_n| \le 1 - \alpha$$

and hence the proof is complete.

Theorem 2.2. A necessary and sufficient condition for f of the form (1.2) to be in the class $k - TSP_{\lambda}(\alpha)$ for $0 \le k < \infty$ and $0 \le \alpha < 1$ is that

$$\sum_{n=2}^{\infty} \left[n(1+k) - (\alpha+k) \right] \frac{\Gamma(2-\lambda)\Gamma(n+1)}{\Gamma(n-\lambda+1)} |a_n| \le 1 - \alpha.$$
 (2.2)

Proof. In view of Theorem 2.1, we need only to prove that if (2.1) is true then $f(z) \in k - TSP_{\lambda}(\alpha)$. Now suppose $f(z) \in k - TSP_{\lambda}(\alpha)$ and z is real, then

$$\frac{1 - \sum_{n=2}^{\infty} n \frac{\Gamma(2-\lambda)\Gamma(n+1)}{\Gamma(n-\lambda+1)} a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} \frac{\Gamma(2-\lambda)\Gamma(n+1)}{\Gamma(n-\lambda+1)} a_n z^{n-1}} - \alpha \ge k \left| \frac{\sum_{n=2}^{\infty} (1-n) \frac{\Gamma(2-\lambda)\Gamma(n+1)}{\Gamma(n-\lambda+1)} a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} \frac{\Gamma(2-\lambda)\Gamma(n+1)}{\Gamma(n-\lambda+1)} a_n z^{n-1}} \right|.$$

Letting $z \to 1$ along the real axis we obtain

$$\frac{(1-\alpha)-\sum_{n=2}^{\infty}[n(1+k)-(\alpha+k)]\frac{\Gamma(2-\lambda)\Gamma(n+1)}{\Gamma(n-\lambda+1)}|a_n|}{1-\sum_{n=2}^{\infty}\frac{\Gamma(2-\lambda)\Gamma(n+1)}{\Gamma(n-\lambda+1)}|a_n|}\geq 0.$$

This is only possible if (2.1) holds. Therefore we obtain the desired results.

3. Crowth and distortion theorems

In this section we prove some growth and distortion theorems for the subclass $k - TSP_{\lambda}(\alpha)$.

Theorem 3.1. If $f(z) \in k - TSP_{\lambda}(\alpha)$ then

$$r - \frac{(1-\alpha)(2-\lambda)}{2(2-\alpha+k)}r^2 \le |f(z)| \le r + \frac{(1-\alpha)(2-\lambda)}{2(2-\alpha+k)}r^2 \quad (|z|=r)$$

with equality for

$$f(z) = z - \frac{(1-\alpha)(2-\lambda)}{2(2-\alpha+k)}z^2$$
 $(z = \mp r).$

Proof. Since $f(z) \in k - TSP_{\lambda}(\alpha)$ by applying assertion (2.1) of Theorem 2.1, we obtain

$$\frac{[2(1+k)-(\alpha+k)]\Gamma(2-\lambda)\Gamma(3)}{\Gamma(3-\lambda)}\sum_{n=2}^{\infty}|a_n| \leq \sum_{n=2}^{\infty}[n(1+k)-(\alpha+k)]\frac{\Gamma(2-\lambda)\Gamma(n+1)}{\Gamma(n-\lambda+1)}|a_n| \leq 1-\alpha$$

which immediately yields

$$\sum_{n=2}^{\infty} |a_n| \le \frac{(1-\alpha)(2-\lambda)}{2(2-\alpha+k)}.$$
 (3.1)

From (1.2) and (3.1) we have

$$|f(z)| \le |z| + \sum_{n=2}^{\infty} |a_n| |z|^n \le |z| + \frac{(1-\alpha)(2-\lambda)}{2(2-\alpha+k)} |z|^2.$$

Also from (1.2) and (3.1)

$$|f(z)| \ge |z| - \sum_{n=2}^{\infty} |a_n| |z|^n \ge |z| - \frac{(1-\alpha)(2-\lambda)}{2(2-\alpha+k)} |z|^2.$$

Thus, the proof of Theorem 3.1 is complete.

Theorem 3.2. If $f(z) \in k - TSP_{\lambda}(\alpha)$ then

$$1 - \frac{(1 - \alpha)(2 - \lambda)}{2 - \alpha + k} r \le |f'(z)| \le 1 + \frac{(1 - \alpha)(2 - \lambda)}{2 - \alpha + k} r \qquad (|z| = r)$$

with equality for

$$f(z) = z - \frac{(1-\alpha)(2-\lambda)}{2(2-\alpha+k)}z^2$$
 $(z = \mp r).$

Proof. From the proof of Theorem 3.1

$$|f(z)| \le |z| + \frac{(1-\alpha)(2-\lambda)}{2(2-\alpha+k)}|z|^2.$$

Therefore

$$|f'(z)| \le 1 + \frac{2(1-\alpha)(2-\lambda)}{2(2-\alpha+k)}|z|.$$

Also, from the proof of Theorem 3.1,

$$|f(z)| \ge |z| - \frac{(1-\alpha)(2-\lambda)}{2(2-\alpha+k)}|z|^2.$$

Therefore

$$|f'(z)| \ge 1 - \frac{2(1-\alpha)(2-\lambda)}{2(2-\alpha+k)}|z|.$$

4. Close-to-convexity, starlikeness and convexity

For some $\delta(0 \le \delta < 1)$ and all $z \in U$:

A function $f \in T$ is said to be close-to-convex of order δ if it satisfies

$$Re\{f'(z)\} > \delta.$$
 (4.1)

A function $f \in T$ is said to be starlike of order δ if it satisfies

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > \delta.$$
 (4.2)

A function $f \in T$ is said to be convex of order δ if and only if zf'(z) is starlike of order δ that is, if

$$Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \delta. \tag{4.3}$$

Theorem 4.1. If $f(z) \in k - TSP_{\lambda}(\alpha)$ then f is close-to-convex of order δ in $|z| < r_1(k, \alpha, \lambda, \delta)$ where

$$r_1(k,\alpha,\lambda,\delta) = \inf_{n} \left[\frac{(1-\delta)[n(1+k) - (\alpha+k)]\Gamma(2-\lambda)\Gamma(n+1)}{n(1-\alpha)\Gamma(n-\lambda+1)} \right]^{\frac{1}{n-1}}.$$

Proof. It is sufficient to show that

$$|f'(z) - 1| < \sum_{n=2}^{\infty} na_n |z|^{n-1} \le 1 - \delta.$$
 (4.4)

But in view of (2.1) the inequality (4.4) holds true if

$$\frac{n|z|^{n-1}}{1-\delta} \le \frac{[n(1+k) - (\alpha+k)]\Gamma(2-\lambda)\Gamma(n+1)}{(1-\alpha)\Gamma(n-\lambda+1)}.$$
(4.5)

Solving (4.5) for |z| we obtain

$$|z| \le \left[\frac{(1-\delta)[n(1+k) - (\alpha+k)]\Gamma(2-\lambda)\Gamma(n+1)}{n(1-\alpha)\Gamma(n-\lambda+1)} \right]^{\frac{1}{n-1}}$$
 $n = 2, 3, 4, \dots$

Theorem 4.2. If $f(z) \in k - TSP_{\lambda}(\alpha)$ then f is starlike of order δ in $|z| < r_2(k, \alpha, \lambda, \delta)$ where

$$r_2(k,\alpha,\lambda,\delta) = \inf_n \left[\frac{(1-\delta)[n(1+k) - (\alpha+k)]\Gamma(2-\lambda)\Gamma(n+1)}{(n-\delta)(1-\alpha)\Gamma(n-\lambda+1)} \right]^{\frac{1}{n-1}}.$$

Proof. We must show that

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le \frac{\sum_{n=2}^{\infty} (n-1)a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} a_n |z|^{n-1}} < 1 - \delta. \tag{4.6}$$

But in view of (2.1) the inequality (4.6) holds true if

$$\frac{(n-\delta)|z|^{n-1}}{1-\delta} \le \frac{[n(1+k) - (\alpha+k)]\Gamma(2-\lambda)\Gamma(n+1)}{(1-\alpha)\Gamma(n-\lambda+1)}.$$
(4.7)

Solving (4.7) for |z| we obtain

$$|z| \le \left[\frac{(1-\delta)[n(1+k) - (\alpha+k)]\Gamma(2-\lambda)\Gamma(n+1)}{(n-\delta)(1-\alpha)\Gamma(n-\lambda+1)} \right]^{\frac{1}{n-1}} \qquad n = 2, 3, 4, \dots$$

Theorem 4.3. If $f(z) \in k-TSP_{\lambda}(\alpha)$ then f is convex of order δ in $|z| < r_3(k, \alpha, \lambda, \delta)$ where

$$r_3(k,\alpha,\lambda,\delta) = \inf_n \left[\frac{(1-\delta)[n(1+k) - (\alpha+k)]\Gamma(2-\lambda)\Gamma(n+1)}{n(n-\delta)(1-\alpha)\Gamma(n-\lambda+1)} \right]^{\frac{1}{n-1}}.$$

Proof. We must show that

$$\left|1 + \frac{zf''(z)}{f'(z)}\right| \le \frac{\sum_{n=2}^{\infty} n(n-1)a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} na_n |z|^{n-1}} < 1 - \delta. \tag{4.8}$$

But in view of (2.1) the inequality (4.8) holds true if

$$\frac{n(n-\delta)|z|^{n-1}}{1-\delta} \le \frac{[n(1+k) - (\alpha+k)]\Gamma(2-\lambda)\Gamma(n+1)}{(1-\alpha)\Gamma(n-\lambda+1)}.$$
(4.9)

Solving (4.9) for |z| we obtain

$$|z| \le \left\lceil \frac{(1-\delta)[n(1+k) - (\alpha+k)]\Gamma(2-\lambda)\Gamma(n+1)}{n(n-\delta)(1-\alpha)\Gamma(n-\lambda+1)} \right\rceil^{\frac{1}{n-1}} \qquad n = 2, 3, 4, \dots$$

Acknowledgement

The second author is currently supported by SAGA Grant: STGL-012-2006, Academy of Sciences, Malaysia.

References

- [1] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28(1997), 17–32.
- [2] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56(1991), 87–92.
- [3] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. & Appl. 155(1991), 364-370.
- [4] S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105(1999), 327–336.
- [5] S. Kanas and A. Wisniowska, *Conic regions and k-starlike functions*, Rev. Roumaine Math. Pures Appl. **45**(2000), 647–657.
- [6] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57(1992), 165–175.
- [7] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39(1987), 1057–1077.
- [8] S. Owa, On the distortion theorems I, Kyungpook Math. J. 18(1978), 53–59.
- [9] F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118(1993), 189–196.
- [10] H. M. Srivastava and A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl. 39(2000), 57–69.
- [11] S. Kanas and H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transform. Spec. Funct. 9(2000), 121–132.

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor D. Ehsan, Malaysia.

E-mail: maslina@pkrisc.cc.ukm.my