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DISPERSION OF A SOLUTE IN PERISTALTIC MOTION

OF A COUPLE STRESS FLUID THROUGH A POROUS MEDIUM

HABTU ALEMAYEHU AND G. RADHAKRISHNAMACHARYA

Abstract. The paper presents an analytical solution for dispersion of a solute in the peri-

staltic motion of a couple stress fluid through a porous medium in the presence of both

homogeneous and heterogeneous chemical reactions. The average effective dispersion

coefficient has been found using Taylor’s limiting condition and long wavelength approx-

imation. The effects of various relevant parameters on the average coefficient of disper-

sion have been studied. The average effective dispersion coefficient increases with per-

meability parameter but decreases with homogeneous chemical reaction rate parameter,

couple stress parameter and heterogeneous reaction rate parameter.

1. Introduction

Dispersion (or diffusion) of a solute describes the spread of particles through random

motion from regions of higher concentration to regions of lower concentration. The disper-

sion of a solute plays an important role in physiological systems. For example, the knowledge

of substances injected in to a blood vessel is useful for many clinical and physiological pur-

poses and also in the distribution of drugs in the human body (Radhakrishnamacharya [21]).

The dispersion of soluble matter in fluids has many biological applications especially in the

study of blood circulation. Several authors have studied various characteristics of dispersion

in fluid dynamical situations which can be applied to biological systems.

Dispersion of a solute in a viscous liquid flowing in a circular pipe under laminar condi-

tions was studied by Taylor [32, 33, 34] and Aris [3]. In all these investigations, it is assumed

that the solute does not chemically react in the liquid in which it is dispersed. However, in a

wide variety of problems of chemical engineering, diffusion of a solute takes place with simul-

taneous chemical reaction in situations such as hydrolysis, gas absorption in an agitated tank,

esterification (Padma and Ramana Rao [19]). Hence, Gupta and Gupta [10] and Padma and

Ramana Rao [19], Ramana Rao and Padma [24, 25] dealt with the effect of chemical reaction

on dispersion in Newtonian fluids. Shukla et al. [27], Soundalgekar and Chaturani [29] and
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Dutta et al. [7] studied dispersion in non-Newtonian fluids by considering only homogeneous

first-order chemical reaction in the bulk of the fluid. Chandra and Agarwal [5] considered

dispersion in simple microfluid flows taking only homogeneous reaction into consideration.

Philip and Chandra [20] also investigated the effects of heterogeneous and homogeneous re-

actions on the dispersion of a solute in simple microfluid.

Flows through porous media have several applications present in nature: flow in sand

beds, in petroleum reservoir rocks, slurries, sedimentation, etc. Many industrial applications

involve the modeling of flow through porous media, such as filters, catalyst beds, and packing.

Porous materials are used in various engineering devices such as catalytic converters and

fuel cells due to advantages in dispersion and chemical reaction by their large contact area.

The flow of non-Newtonian fluids through a porous medium under different conditions were

studied by Abbasbandy et al. [1], Ashgar et al.[4], Ellahi and Afzal [8], Khan et al. [13] and

Khan and Ellahi[14]. Further, several authors have studied the dispersion of a solute through

a porous medium under different conditions (Dulal [6], Mehta and Tiwari [15], Al-Nimr and

Alkam [2]). Flows through porous media may be relevant in many physiological situations

such as the flow of blood in the micro-vessels of the lungs which may be treated as a channel

bounded by two thin porous layers (Misra and Ghosh [18]).

Peristalsis is an important physiological mechanism for mixing and transporting fluids,

which is generated by a progressive wave of area contraction or expansion moving on the wall

of the tube containing fluid. The mechanism is found to be relevant in the gastrointestinal,

urinary, reproductive tracts and many other glandular ducts in a living body. Further, peri-

staltic pumping occurs in many practical applications involving roller and finger pumps. The

study of the mechanism of peristaltic transport has been the subject of scientific and engi-

neering research in the last few decades. Several theoretical and experimental studies have

been conducted to understand peristaltic transport under different conditions (Ramachan-

draRao and Manoranjan [23]). Fung and Yih [9], Shapiro et al. [26] studied peristaltic trans-

port of Newtonian fluids under different situations.

It is well known that most physiological fluids including blood behave as non-Newtonian

fluids. Hence, the study of peristaltic transport of non-Newtonian fluids may help to get bet-

ter understanding of the biological systems. Several researchers studied peristaltic transport

of non-Newtonian fluids (Radhakrishnamacharya [22], Ramachandra Rao and Mishra [23],

Misra and Pandey [17] and Hayat et al. [11]).

Couple stress fluids are fluids consisting of rigid, randomly oriented particles suspended

in a viscous medium, such as blood, lubricants containing small amount of high polymer

additive, electro-rheological fluids and synthetic fluids. The main feature of couple stress

fluids is that the stress tensor is anti-symmetric and their accurate flow behavior cannot be

predicted by the classical Newtonian theory. Stokes [31] generalized the classical model to
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include the effect of the presence of the couple stresses and this couple stress fluid model

has been widely used because of its relative mathematical simplicity compared with other

models developed for the couple stress fluid (Islam and Zhou[12]). For couple stress fluids,

there have been a number of studies carried out due to its widespread industrial and scientific

applications, such as the works of Stokes [31], Srivastava [30], Mekheimer and Abd elmaboud

[16] and Sobh [28].

Dispersion of a solute in peristaltic motion of a couple stress fluid through porous medium

has not received much attention. Peristalsis and diffusion are very important aspects in bi-

ological systems. It is realized that peristalsis may have effect on dispersion of a solute in

fluid flow. This, in turn, may help in better absorption of nutrients and drugs in physiological

systems. Hence, the study of the interaction of peristalsis with diffusion under different con-

ditions may lead to better understanding of the flow situation in physiological systems. The

objective of this paper is to study the dispersion of a solute in peristaltic motion of a couple

stress fluid through a porous medium. Using long wavelength approximation and Taylor’s

approach, closed form solutions have been obtained for the dispersion coefficients for both

the cases of homogeneous first-order irreversible chemical reaction and combined first-order

homogeneous and heterogeneous chemical reactions. The effects of various relevant param-

eters on the average effective dispersion coefficient are studied.

2. Mathematical formulation

Consider dispersion of a solute in peristaltic flow of couple stress fluid in an infinite uni-

form channel of width 2d . It is assumed that the channel is filled with porous material. Fur-

ther, the walls of the channel are supposed to be flexible on which traveling sinusoidal waves

of long wavelength are imposed. Cartesian coordinate system (x, y) is chosen with the x-axis

aligned with the center line of the channel. The traveling waves are represented by (Figure 1)

y =±h =±

[

d +a sin
2π

λ
(x −ct )

]

(2.1)

where a is the amplitude, c is the wave speed and λ is the wavelength of the peristaltic wave.

Under long wavelength approximation and neglecting body forces and body couples, the

equations governing the peristaltic motion of incompressible couple stress fluid through a

porous medium for the present problem are given as

∂u

∂x
+
∂v

∂y
= 0 (2.2)

−
∂p

∂x
+µ

∂2u

∂y2
−η

′ ∂4u

∂y4
−

µ

k0
u = 0 (2.3)
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Figure 1: Geometry of the problem.

−
∂p

∂y
= 0 (2.4)

where u(x, y, t ) and v(x, y, t ) are the velocity components in the x and y directions respec-

tively, P is the pressure, µ is the viscosity coefficient of classical fluid dynamics, η
′

is the couple

stress fluid viscosity and k0 is permeability constant of the medium.

We assume that the walls are inextensible so that only lateral motion takes place and the

horizontal displacement of the wall is zero.Thus, the relevant boundary conditions for the

velocity are given by

u = 0,
∂2u

∂y2
= 0 at y =±h (2.5)

Solving (2.2)-(2.4) under the boundary conditions (2.5), the velocity is given as

u(y)=−
k0

µ

∂p

∂x

[

S2 cosh(m∗

1 y)−S1 cosh(m∗

2 y)+1
]

(2.6)

where

m∗

1 =

√

√

√

√

µ

2η
′

(

1+

√

1−
4η

′

µk0

)

, m∗

2 =

√

√

√

√

µ

2η
′

(

1−

√

1−
4η

′

µk0

)

,

S1 =

(m∗

1 )2

cosh(m∗

2 h)
[

(m∗

1 )2
− (m∗

2 )2
] , S2 =

(m∗

2 )2

cosh(m∗

1 h)
[

(m∗

1 )2
− (m∗

2 )2
] .

Further, the mean velocity is defined as

ū =
1

2h

∫

+h

−h
u(y)d y (2.7)
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Substituting (2.6) in (2.7) we get,

ū =−
k0

µ

∂p

∂x

[

S2

m∗

1 h
sinh(m∗

1 h)−
S1

m∗

2 h
sinh(m∗

2 h)+1

]

. (2.8)

If we now consider convection across a plane moving with the mean speed of the flow, then

relative to this plane, the fluid velocity is given by

ux = u − ū

= −
k0

µ

∂p

∂x

[

S2 cosh(m∗

1 y)−S1 cosh(m∗

2 y)−
S2

m∗

1 h
sinh(m∗

1 h)+
S1

m∗

2 h
sinh(m∗

2 h)

]

. (2.9)

2.1. Diffusion with a homogeneous first-order chemical reaction

It is assumed that a solute diffuses and simultaneously undergoes a first order irreversible

chemical reaction in peristaltic transport of a couple stress fluid in a channel filled with porous

material under isothermal conditions. Hence, the equation for the concentration C of the so-

lute for the present problem satisfies the diffusion equation

∂C

∂t
+u

∂C

∂x
= D

(

∂2C

∂x2
+
∂2C

∂y2

)

−k1C (2.10)

where D is the molecular diffusion coefficient (assumed to be constant) and k1 is the first

order reaction rate constant. In deriving (2.10), it is assumed that the solute is present in a

small concentration. Using Taylor’s assumption (Taylor [32, 33, 34]), i.e., ∂2C
∂x2 <<

∂2C
∂y 2 , (2.10)

becomes
∂C

∂t
+u

∂C

∂x
= D

∂2C

∂y2
−k1C (2.11)

For typical values of physiologically relevant parameters of this problem, it is realized

that ū ≈ c . Using this condition and making use of the following dimensionless quantities

θ = t /t̄ , t̄ =λ/ū, η= y/d , ξ= (x − ūt )/λ, H = h/d (2.12)

equation (2.9) reduces to

ux =−
k0

µ

∂p

∂x

[

S2 cosh(m1η)−S1 cosh(m2η)−
S2 sinh(m1H )

m1H
+

S1 sinh(m2H )

m2H

]

. (2.13)

where

m1 = m∗

1 d =

√

√

√

√

m2

2

(

1+

√

1−
4

m2Da

)

, Da =
k0

d 2
,
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m2 = m∗

2 d =

√

√

√

√

m2

2

(

1−

√

1−
4

m2Da

)

, m = d (µ/η
′

)1/2,

m is the couple stress parameter and Da is the permeability parameter (or Darcy number).

Further, (2.11) becomes
∂2C

∂η2
−

k1d 2

D
C =

d 2

λD
ux

∂C

∂ξ
. (2.14)

Assuming that there is no absorption at the walls, the boundary conditions for the concentra-

tion C are
∂C

∂η
= 0 f or η=±H =±[1+ǫsin(2πξ)] (2.15)

where ǫ= a/d is the amplitude ratio.

Assuming that ∂C /∂ξ is independent of η at any cross-section and solving (2.14) under

the boundary conditions (2.15), the solution for the concentration of the solute C is given as

C (η) = A cosh(αη)−
d 2

λD

∂C

∂ξ

k0

µ

∂p

∂x

{

S2

m2
1 −α2

cosh(m1η)−
S1

m2
2 −α2

cosh(m2η)

+
S2

α2m1H
sinh(m1H )−

S1

α2m2H
sinh(m2H )

}

(2.16)

where

A =
d 2

λD

∂C

∂ξ

k0

µ

∂p

∂x

1

L

[

m1S2

m2
1 −α2

sinh(m1H )−
m2S1

m2
2 −α2

sinh(m2H )

]

, (2.17)

α= d (k1/D)1/2 and L =αsinh(αH ).

The volumetric rate Q at which the solute is transported across a section of the channel

of unit breadth is defined by

Q =

∫

+H

−H
Cuxdη. (2.18)

Substituting (2.16) and (2.13) in (2.18), we get the volumetric rate Q as

Q =−
2d 6

λµ2D

∂C

∂ξ

(

∂p

∂x

)2

F (ξ,ǫ,α,Da,m) (2.19)

where

F (ξ,ǫ,α,Da,m) = (Da)2

{

S2

L(m2
1 −α2)

(

m1S2 sinh(m1H )

m2
1 −α2

−
m2S1 sinh(m2H )

m2
2 −α2

)

B1

+
S1

L(m2
2 −α2)

(

m2S1 sinh(m2H )

m2
2 −α2

−
m1S2 sinh(m1H )

m2
1 −α2

)

B2

+
S1S2

α2H
sinh(m1H )sinh(m2H )

(

m1

m2(m2
1 −α2)

+
m2

m1(m2
2 −α2)

)
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−

S2
2 sinh2(m1H )

α2 H (m2
1 −α2)

−

S2
1 sinh2(m2H )

α2H (m2
2 −α2)

−

S2
2

m2
1 −α2

(

H +
sinh(2m1 H )

2m1

)

+

S2
2 sinh2(m1H )

m2
1 H (m2

1 −α2)
+

S1S2

m2
1 −α2

(

1

m2
1 −α2

+
1

m2
2 −α2

)

B3

−
S1S2

m1m2H
sinh(m1H )sinh(m2H )

(

1

m2
1 −α2

+
1

m2
2 −α2

)

−

S2
1

m2
2 −α2

(

H +
sinh(2m2H )

2m2

)

+

S2
1 sinh2(m2H )

m2
2 H (m2

2 −α2)

}

, (2.20)

B1 = m1 cosh(αH )sinh(m1H )−αcosh(m1H )sinh(αH ),

B2 = m2 cosh(αH )sinh(m2H )−αcosh(m2H )sinh(αH ),

and

B3 = m1 cosh(m2H )sinh(m1H )−m2 cosh(m1H )sinh(m2H ).

Comparing (2.19) with Fick’s law of diffusion, we find that the solute is dispersed relative

to a plane moving with the mean speed of the flow with an effective dispersion coefficient D∗

given by

D∗
= 2

d 6

µ2D

(

∂p

∂x

)2

F (ξ,ǫ,α,Da,m). (2.21)

Let the average of F be F and is defined by

F =

∫1

0
F (ξ,ǫ,α,Da,m)dξ. (2.22)

2.2. Diffusion with combined homogeneous and heterogeneous chemical reactions

We now discuss the problem of diffusion with a first-order irreversible chemical reaction

taking place both in the bulk of the medium (homogeneous) as well as at the walls (heteroge-

neous) of the channel which are assumed to be catalytic to chemical reaction. The simplified

diffusion equation is same as (2.11), i.e.,

∂C

∂t
+u

∂C

∂x
= D

∂2C

∂y2
−k1C

The differential material balance at the walls (Philip and Peeyush [20]) gives the boundary

conditions

∂C

∂y
+ f C = 0 at y = h =

[

d +a sin
2π

λ
(x − ūt )

]

, (2.23)
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∂C

∂y
− f C = 0 at y =−h =−

[

d +a sin
2π

λ
(x − ūt )

]

. (2.24)

If we introduce the dimensionless variables (2.12) and assume the limiting condition of

Taylor [32, 33, 34], the diffusion equation remains as (2.14) but subject to the boundary con-

ditions

∂C

∂η
+βC = 0 for η= H = [1+ǫsin(2πξ)], (2.25)

∂C

∂η
−βC = 0 for η=−H =−[1+ǫsin(2πξ)], (2.26)

where β = f d is the heterogeneous reaction rate parameter corresponding to catalytic reac-

tion at the walls.

The solution of (2.14) satisfying the boundary conditions (2.25) and (2.26) is

C (η) = A
′

cosh(αη)+
d 2

λD

∂C

∂ξ

k0

µ

∂p

∂x

[

S2

m2
1 −α2

cosh(m1η)

−
S1

m2
2 −α2

cosh(m2η)+
S2

α2m1H
sinh(m1H )−

S1

α2m2H
sinh(m2H )

]

(2.27)

where

A
′

=
d 2

λD

∂C

∂ξ

k0

µ

∂p

∂x

1

L
′

[

m1S2

m2
1 −α2

sinh(m1H )−
m2S1

m2
2 −α2

sinh(m2H )

+
βS2

m2
1 −α2

cosh(m1H )−
βS1

m2
2 −α2

cosh(m2H )+
βS2

α2m1H
sinh(m1H )

−
βS1

α2m2H
sinh(m2H )

]

(2.28)

and L
′

=αsinh(αH )+βcosh(αH ).

Substituting (2.27) and (2.13) in (2.18), we get

Q =−2
d 6

λµ2D

∂C

∂ξ

(

∂p

∂x

)2

G(ξ,ǫ,α,β,Da,m) (2.29)

where

G(ξ,ǫ,α,β,Da,m) = (Da)2

{

S2

L
′

(m2
1 −α2)

(

m1S2 sinh(m1H )

m2
1 −α2

−
m2S1 sinh(m2H )

m2
2 −α2

)

B1

+
S1

L
′

(m2
2 −α2)

(

m2S1 sinh(m2H )

m2
2 −α2

−
m1S2 sinh(m1H )

m2
1 −α2

)

B2

−

S2
2 sinh2(m1H )sinh(αH )

αHL
′

(m2
1 −α2)

−

S2
1 sinh2(m2H )sinh(αH )

αHL
′

(m2
2 −α2)
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+
S1S2

αHL
′

(

m1

m2(m2
1 −α2)

+
m2

m1(m2
2 −α2)

)

sinh(m1H )sinh(m2H )sinh(αH )

+
βS2

L
′

(m2
1 −α2)

(

S2 cosh(m1H )

m2
1 −α2

−
S1 cosh(m2H )

m2
2 −α2

)

B1

+
βS1

L
′

(m2
2 −α2)

(

S1 cosh(m2H )

m2
2 −α2

−
S2 cosh(m1H )

m2
1 −α2

)

B2

+
βS2 cosh(m1 H )sinh(αH )

αHL
′

(m2
1 −α2)

(

S1 sinh(m2H )

m2
−

S2 sinh(m1H )

m1

)

+
βS1 cosh(m2 H )sinh(αH )

αHL
′

(m2
2 −α2)

(

S2 sinh(m1H )

m1
−

S1 sinh(m2H )

m2

)

+
βS2

α2HL
′

(m2
1 −α2)

(

S2 sinh(m1H )

m1
−

S1 sinh(m2H )

m2

)

B1

+
βS1

α2HL
′

(m2
2 −α2)

(

S1 sinh(m2H )

m2
−

S2 sinh(m1H )

m1

)

B2

+
βS2 sinh(m1H )sinh(αH )

α3m1H 2L
′

(

S1 sinh(m2H )

m2
−

S2 sinh(m1H )

m1

)

+
βS1 sinh(m2H )sinh(αH )

α3m2H 2L
′

(

S2 sinh(m1H )

m1
−

S1 sinh(m2H )

m2

)

−

S2
2

m2
1 −α2

(

H +
sinh(2m1 H )

2m1

)

+
S1S2

m2
1 −α2

(

1

m2
1 −α2

+
1

m2
2 −α2

)

B3

+

S2
2 sinh2(m1H )

m2
1 H (m2

1 −α2)
−

S1S2

m1m2H
sinh(m1H )sinh(m2H )

(

1

m2
1 −α2

+
1

m2
2 −α2

)

−

S2
1

m2
2 −α2

(

H +
sinh(2m2H )

2m2

)

+

S2
1 sinh2(m2H )

m2
2 H (m2

2 −α2)

}

. (2.30)

Comparing (2.29) with Fick’s Law of Diffusion, we find that the solute is dispersed relative

to a plane moving with the mean speed of the flow with an effective dispersion coefficient D∗

given by

D∗
= 2

d 6

µ2D

(

∂p

∂x

)2

G(ξ,ǫ,α,β,Da,m). (2.31)

The average of G denoted by G is defined as

G =

∫1

0
G(ξ,ǫ,α,β,Da,m)dξ. (2.32)

3. Results and discussion

As given in (2.22)and (2.32), the expressions for F and G have been obtained by numerical

integration using MATHEMATICA software. The effects of various parameters on the average
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Figure 2: Effect of Da on F for m = 2.0 and ǫ= 0.2.

effective dispersion coefficient can be observed through the functions F (ξ,ǫ,α,β,Da,m) (for

homogeneous case) and G(ξ,ǫ,α,β,Da,m) (for combined homogeneous and heterogeneous

case). The functions F and G have been numerically evaluated for different values of relevant

parameters and presented graphically. The important parameters involved in the expressions

are: the amplitude ratio ǫ, the homogeneous reaction parameter α, the heterogeneous reac-

tion rate parameter β, the permeability parameter (or Darcy number) Da, and couple stress

parameter m.

4. Homogeneous chemical reaction

Figs. 2-4 show that average effective dispersion coefficient F decreases with homoge-

neous reaction rate parameter α. This implies that homogeneous chemical reaction tends

to decrease the dispersion of the solute. This result is expected since increase in α leads to

increasing number of moles of solute undergoing chemical reaction, which results in the de-

crease of dispersion. The result that dispersion decreases with α agrees with previous results

obtained by Gupta and Gupta [10], Dutta et al.[7], Ramana Rao and Padma [24, 25], Padma

and Ramana Rao [19], Shukla et al. [27]. Further, average dispersion increases with perme-

ability parameter (or Darcy number) Da (Fig.2) but decreases with amplitude ratio ǫ (Fig.3)

and couple stress parameter m (Fig. 4). The result that dispersion decreases with couple stress

parameter m agrees with the result obtained by Soundalgekar and Chaturani [29].
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Figure 3: Effect of ǫ on F for m = 2.0 and Da = 0.002.

Figure 4: Effect of m on F for ǫ= 0.2 and Da = 0.002.

5. Combined homogeneous and heterogeneous chemical reactions

Figs. 5-8 show the effects of various parameters on the average dispersion coefficient

G for the case of combined first order chemical reactions both in the bulk and at the walls.

Average dispersion coefficient G increases with permeability parameter Da (Fig.5). But G de-

creases with homogeneous chemical reaction parameter α (Fig.6), couple stress parameter

m (Fig.7) and amplitude ratio ǫ (Fig.8). Further, Figs. 5-8 reveal that dispersion decreases
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Figure 5: Effect of Da on G for α= 1.0, m = 2.0 and ǫ= 0.2.

Figure 6: Effect of α on G for m = 2.0, Da = 0.002 and ǫ= 0.2.

with heterogeneous reaction parameter β. The result that dispersion decreases with hetero-

geneous reaction rate parameter β agrees with previous results obtained by Gupta and Gupta

[10], Ramana Rao and Padma [24, 25], Padma and Ramana Rao [19]. This implies that hetero-

geneous chemical reaction tends to decrease the dispersion of the solute.
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Figure 7: Effect of m on G for α= 1.0, Da = 0.002 and ǫ= 0.2.

Figure 8: Effect of ǫ on G for m = 2.0, Da = 0.002 and α= 1.0.

6. Conclusion

The dispersion of a solute in peristaltic motion of a couple stress fluid through a porous

medium with both homogeneous and heterogeneous chemical reactions has been studied

under long wavelength approximation and Taylor’s limiting condition. It is observed that

average effective coefficient of dispersion increases with permeability parameter. But it de-

creases with homogeneous chemical reaction rate parameter α, couple stress parameter m,

amplitude ratio ǫ and heterogeneous chemical reaction rate parameter β.
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