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SOME REMARKS ON RECONSTRUCTION FROM

LOCAL WEIGHTED AVERAGES

P. DEVARAJ

Abstract. We solve the convolution equation of the type f ⋆µ = g , where f ⋆µ is the

convolution of f and µ defined by ( f ⋆µ)(x) =
∫

R
f (x− y)dµ(y), g is a given function and

µ is a finite linear combination of translates of an indicator function on an interval.

1. Introduction

We consider the convolution equation of the following type:

f ⋆µ= g , (1)

where g is a known continuous function, µ is a compactly supported measure and f is an un-

known continuous function. Delsarte [3] was interested in solving the particular case of equa-

tion (1) which is of the type
1

τ

∫x+ τ
2

x− τ
2

f (t )d t = g (x). In the case when f is an integrable func-

tion with compact support van der Pol [15, 16] has obtained reconstruction formula using two

sided Laplace Transform. But such transform methods can not be used for the case of contin-

uous functions on R. The special case of equation (1), namely g = 0, was analyzed by many au-

thors citebag,ber1,deva,Ehr1,Ehr2,kah,schwartz,thangavelu,wei,sze on various groups. The

solutions (1) for the particular case when g = 0 are called mean periodic functions. Laurent

Schwartz [18] gave an intrinsic characterization of such solutions. The corresponding non-

homogeneous type equation is analysed in [14]for the special case of when µ is the indicator

function on the interval [−a, a]. An explicit construction of a solution is given in [17] for the

same equation on the three dimensional Euclidean space when µ is the indicator function

of a ball in R
3 using plane wave decomposition. When µ is finitely supported, the equation

(1) gets reduced to a non-homogeneous constant coefficient difference equation. Edgar and

Rosenblatt [6] have studied the homogeneous equation (ie, when g=0). They have shown that

a complex valued function f has linearly independent translates precisely when f does not
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satisfy a nontrivial homogeneous difference equation. An explicit construction of a solution

is given in [4] on R when µ is an arbitrary finitely supported measure and g is a continuous

function.

Malgrange [13], Ehrenpreis [9], John [10], and Hörmander [11] have studied the convolu-

tion equation of the type analogous to equation (1)

P(D)u = f , (2)

where P(D) is a constant coefficient partial differential operator and f is a given function.

A criterion was given by Hörmander for the existence of solution u ∈ D ′
F (Ω) for an arbitrary

f ∈ D ′
F (Ω) on an open set Ω⊆R

n .

In general, no necessary and sufficient conditions for the existence of solutions of equa-

tion (1) are known. One can easily see the following:

(i) Equation (1) has no solution in C (R) when g is a non smooth function and µ is a com-

pactly supported continuous function.

(ii) If f0 is a particular solution of equation (1), then every other solution f can be written as

f = f0 +h, where h ⋆µ= 0.

(iii) If the Fourier-Laplace transform µ̂(λ) = 0 for some λ ∈ C and if there exists a solution to

equation (1), then there are infinitely many solutions to equation (1).

The methods of [14] can not be extended to the case when µ is a sum of more than one in-

dicator function. In this paper we analyze the case when µ is a finite linear combination of

the translates of an indicator function on an interval. A solution f ∈ C r (R) is constructed for

every g ∈C r+1(R).

2. Reconstruction Results

Definition 1 ([4]). We say a compactly supported Borel measure on R is a discrete Borel mea-

sure, if there exists a finite set of distinct real numbers x1, x2, . . . , xn and nonzero complex con-

stants c1,c2, . . . ,cn such that µ(E ) =
n
∑

i=1

ciδxi
(E ) for every Borel set E . The set of all compactly

supported discrete Borel measures on R is denoted by Mcd (R).

For a,b ∈R, the indicator function on the interval [a,b] is denoted byχ[a,b] and LST (χ[a,b])

denotes the linear span of the translates of χ[a,b]. The set of all compactly supported regular

Borel measures on R is denoted by Mc(R). We note that LST (χ[a,b]) ⊂ Mc(R).

Definition 2. For f ∈C (R) and µ ∈ Mc (R), the convolution of f with µ is defined as

( f ⋆µ)(x) =

∫

R

f (x − y)dµ(y).
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When µ=

n
∑

i=1

ciχ[ai ,bi ], the convolution becomes

( f ⋆µ)(x) =
n
∑

i=1

ci

∫bi

ai

f (x − y)d y.

Definition 3. [4] For every real or complex valued function f and discrete measureµ=

n
∑

i=1

ciδxi

∈ Mcd (R), the convolution of f and µ is defined by

( f ⋆µ)(x) =
n
∑

i=1

ci f (x −xi ).

In [4] the special case r = 0 of the following lemma is proved. We extend the same for

r > 0 along the lines of [4].

Lemma 1. For µ,ν ∈ Mcd (R) and g ∈C r (R), the following hold:

(i) If supp(µ) ⊂ (−∞,−α) for some α > 0 and supp(g ) ⊂ (−∞,β) for some β ∈ R, then there

exists f ∈C r (R) such that f ⋆ (δ0 +µ) = g .

(ii) If supp(ν)⊂ (α,∞) for some α> 0 and supp(g )⊂ (β,∞) for some β ∈R, then there exists

f ∈C r (R) such that f ⋆ (δ0 +ν) = g .

Proof. (i) We denote by µm the convolution of µ with itself m-times. As supp(µ)⊂ (−∞,−α),

we have supp(µn) ⊂ (−∞,−nα). Let µn =
∑l

i=1 ciδyi
. Then

(g ( j )
⋆µn)(x) =

l
∑

i=1

ci g ( j )(x − yi ).

Since supp(µn) ⊂ (−∞,−nα), yi <−nα and hence x − yi > x +nα>β for sufficiently large n.

Therefore for every x, (g ( j )
⋆µn)(x) = 0 for n sufficiently large and for 0 ≤ j ≤ r.

We define

f (x) := g (x)+
∞
∑

n=1

(−1)n (g ⋆µn)(x).

Let us consider the following partial sums:

sn(x) = g (x)+
n
∑

k=1

(−1)k (g ⋆µk )(x).

Then

s
( j )
n (x) = g ( j )(x)+

n
∑

k=1

(−1)k (g ( j )
⋆µk )(x).
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We show that the above sequence converges uniformly on every compact set for 0 ≤ j ≤ r .

For, let K be a compact subset of R. Then K ⊂ [a,b] for some real numbers a and b. Choose N

such that a +nα>β and b +nα>β, for n ≥ N . For x ≥ a, x − yi ≥ a +nα>β. Now

s
( j )
n (x)− s

( j )
m (x)=

n
∑

k=m+1

(−1)k (g ( j )
⋆µk )(x) = 0,

for n ≥ m ≥ N .

This implies that the sequence of functions {s
( j )

k
(x)} is uniformly cauchy on every compact set

and hence converges uniformly on every compact set for 0 ≤ j ≤ r .

Therefore we get s
( j )

k
(x) converges uniformly to f ( j )(x) on every compact set and

f ( j )(x) := g ( j )(x)+
∞
∑

n=1

(−1)n (g ( j )
⋆µn)(x)

for 0 ≤ j ≤ r . Hence f (r ) is continuous and hence f (r ) ∈ C r (R). It is very easy to check that

f ⋆ (δ0 +µ) = g .

(ii) Since supp(ν) ⊂ (α,∞), we have supp(νn) ⊂ (nα,∞). Suppose the representation of

νn is of the form: νn =
∑l

i=1
diδzi

. Then (g ( j )
⋆νn)(x) =

∑l
i=1

di g ( j )(x − zi ). Since supp(νn) ⊂

(nα,∞), zi > nα and hence x − zi < x −nα< β for sufficiently large n. Therefore for every x,

(g ( j )
⋆νn)(x) = 0 for n sufficiently large. Hence g ( j )(x)+

∞
∑

m=1

(−1)m (g ( j )
⋆νm)(x) is a finite sum

for every x.

We define

f (x) := g (x)+
∞
∑

m=1

(−1)m (g ⋆νm)(x). (3)

To show

f (r )(x) := g (r )(x)+
∞
∑

m=1

(−1)m(g (r )
⋆νm)(x),

it is sufficient if we show that the partial sums of the series (3) and their derivatives converge

uniformly on compact sets. For, let K be a compact subset of R. Then K ⊂ [a,b] for some real

numbers a and b. Choose N such that b −nα < β, for n ≥ N . Let us take the partial sums of

the series as

tk(x) = g (x)+
k
∑

m=1

(−1)m (g ⋆νm)(x).

For x ≤ b, x − zi < x −nα≤ b −nα. Choose N such that b −nα<β for n ≥ N . Then

t
( j )
n (x)− t

( j )
m (x) =

n
∑

k=m+1

(−1)k (g ( j )
⋆νk )(x) = 0,

for n ≥ m ≥ N and 0 ≤ j ≤ r. This implies that the sequence {t
( j )
n (x)} is uniformly cauchy and

hence converges uniformly on every compact set. Hence we get t
( j )
n (x) → f ( j )(x). Therefore

f ∈C r (R). One easily verifies f ⋆ (δ0 +ν) = g . ���
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Lemma 2. Forµ= χ[a,b] and g ∈C r+1(R), the following hold: If supp(g )⊂ (−∞,β) or supp(g ) ⊂

(β,∞) for some β ∈R, then there exists f ∈C r (R) such that f ⋆µ= g .

Proof. Case(i): Suppose that supp(g )⊂ (−∞,β).

We can write

f ⋆χ[a,b] = f ⋆χ[ a−b
2

, b−a
2

] ⋆δ a+b
2

.

Define

f1(x) =−

∞
∑

n=0

(

g ′
⋆δ2n+1

a−b
2

)

(x).

We show that the above series converges uniformly on compact sets. For, let K be a compact

subset of R. Then K ⊂ [c ,d ] for some c ,d ∈R. Let us take

sn(x) =−

n
∑

k=0

(

g ′
⋆δ2k+1

a−b
2

)

(x).

Then

s
( j )
n (x) =−

n
∑

k=0

(

g ( j+1)
⋆δ2k+1

a−b
2

)

(x).

Now

g ′
⋆δ2k+1

a−b
2

(x) = g ′

(

x + (2k +1)(
b −a

2
)

)

.

Choose N such that c + (2k +1)( b−a
2 ) > β for k ≥ N . Then g ( j+1)δ2k+1

a−b
2

(x) = 0 for k ≥ N for all

x ∈ K . Therefore s
( j )
n (x)− s

( j )
m (x) = 0 for all n,m ≥ N , for all x ∈ K and for 0 ≤ j ≤ r. Hence

s
( j )
n (x) → f

( j )
1 (x) uniformly on K .

Therefore f
j

1 (x)=−
∑

∞
n=0 g ( j+1)

⋆δ2n+1
a−b

2

(x) and f1 ∈C r (R). Now

f1 ⋆χ[ a−b
2

, b−a
2

] = −

∞
∑

n=0

(

(

g ′
⋆χ[ a−b

2
, b−a

2
]

)

⋆δ2n+1
a−b

2

)

(x)

= −

∞
∑

n=0

∫ b−a
2

a−b
2

g (x + (2n +1)(
b −a

2
)− y)d y

=

∞
∑

n=0

[

g

(

x + (2n +1)(
b −a

2
)−

b −a

2

)

− g

(

x + (2n +1)(
b −a

2
)+

b −a

2

)]

= g (x).

Define f (x) = f1 ⋆δ
−( a+b

2
). One easily verifies f ⋆χ[a,b] = g .

Case(ii): Suppose that supp(g ) ⊂ (β,∞). Now f ⋆ χ[a,b] = f ⋆ χ[ a−b
2

, b−a
2

] ⋆ δ a+b
2

. Define

f1(x) =
∑

∞
n=0 g ′

⋆δ2n+1
b−a

2

(x). We show that the above series converges uniformly on compact

sets. For, let K be a compact subset of R. Then K ⊂ [c ,d ] for some c ,d ∈ R. Let sn(x) =
∑n

k=0
g ′

⋆δ2k+1
b−a

2

(x). Then s
( j )
n (x) =

∑n
k=0

g ( j+1)
⋆δ2k+1

b−a
2

(x).
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We can write

g ⋆δ2k+1
b−a

2

(x) = g (x − (2k +1)(
b −a

2
)).

Choose N such that c − (2k +1)( b−a
2

) < β for k ≥ N . Then g ( j+1)δ2k+1
b−a

2

(x) = 0 for k ≥ N for all

x ∈ K . Therefore s
( j )
n (x)− s

( j )
m (x) = 0 for all n,m ≥ N , for all x ∈ K and for 0 ≤ j ≤ r. Hence

s
( j )
n (x) → f

( j )

1 (x) uniformly on K .

Therefore f
j

1 (x) =
∑

∞
n=0 g ( j+1)

⋆δ2n+1
b−a

2

(x). and f1 ∈C r (R).

Now

f1 ⋆χ[ a−b
2

, b−a
2

] =−

∞
∑

n=0

g ′
⋆χ[ a−b

2
, b−a

2
] ⋆δ2n+1

b−a
2

(x)

=

∞
∑

n=0

∫ b−a
2

a−b
2

g (x − (2n +1)(
b −a

2
)− y)d y

= −

∞
∑

n=0

[

g

(

x − (2n +1)(
b −a

2
)−

b −a

2

)

− g

(

x − (2n +1)(
b −a

2
)+

b −a

2

)]

= g (x).

Define f (x) = f1 ⋆δ
−( a+b

2
). It is easy to check that f ⋆χ[a,b] = g . ���

Lemma 3. Let µ=
∑n

i=1 ciχ[ai ,bi ] be a finite linear combination of indicator functions on inter-

vals. If there exists r ∈R such that bi−ai

r
∈Z, then the following hold:

(i) There exists g ∈ LST (χ[a,b]) such that µ= g almost everywhere for some a,b ∈R.

(ii) There exits µ ∈ Mcd (R), such that µ= χ[a,b]⋆ν a.e and f ⋆µ= f ⋆χ[a,b]⋆ν for all f ∈C (R).

Proof. (i) Let bi−ai

r
= mi . Then χ[ai ,bi ] =

∑mi

j=1
χ[ai+( j−1)r,ai+ j r ] a.e. As the indicator functions

χ[ai+( j−1)r,ai+ j r ] are translates of the indicator function on [0,r ], we have χ[ai+( j−1)r,ai+ j r ] ∈

LST (χ[0,r ]). Hence gi =
∑mi

j=1
χ[ai+( j−1)r,ai+ j r ] ∈ LST (χ[0,r ]). Therefore g =

∑n
i=1 ci gi ∈ LST (χ[0,r ])

and hence µ=
∑n

i=1 ciχ[ai ,bi ] = g a.e.

(ii) In the above proof,

gi =

mi
∑

j=1

χ[ai+( j−1)r,ai+ j r ]

=

mi
∑

j=1

χ[0,r ] ⋆δai+( j−1)r

= χ[0,r ] ⋆ (
mi
∑

j=1

δai+( j−1)r )

= χ[0,r ] ⋆νi ,
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where νi =
∑mi

j=1
δai+( j−1)r ∈ Mcd (R). But g =

∑n
i=1 ci gi a.e. Therefore

g =

n
∑

i=1

ci gi

=

n
∑

i=1

χ[0,r ] ⋆ciνi

= χ[0,r ] ⋆ (
n
∑

i=1

ciνi )

= χ[0,r ] ⋆ν,

where ν=
∑n

i=1 ciνi ∈ Mcd (R). Since µ= g a.e, we have µ= χ[0,r ] ⋆ν a.e.

Also we have

f ⋆χ[ai ,bi ](x) =

∫bi

ai

f (x − y)d y =

mi
∑

j=1

∫ai+ j r

ai+( j−1)r
f (x − y)d y = ( f ⋆ gi )(x).

Therefore f ⋆µ= f ⋆ g = f ⋆χ[0,r ] ⋆ν. ���

The first part of the following theorem is an extension of [4] and the second part is a

simple extension of [14].

Theorem 2.1. (i) For every g ∈ C r (R) and every ν ∈ Mcd (R) with ν 6= 0 there exists f ∈C r (R)

such that f ⋆ν= g .

(ii) For every g ∈C r+1(R), there exists f ∈C r (R) such that f ⋆χ[a,b] = g .

Proof. For ǫ> 0, choose φǫ ∈C r+1(R) such that supp(φǫ) ⊂ (−ǫ,ǫ) and

∫ǫ

−ǫ
φǫ(x)d x = 1.

Define η1,η2 ∈C (R) by

η1(x) :=















0 if x ≤−k
x+k
2k if −k ≤ x ≤ k

1 if x ≥ k

η2(x) :=















1 if x ≤−k
k−x
2k if −k ≤ x ≤ k

0 if x ≥ k

.

It is simple to check that η1(x)+η2(x) = 1 for all x ∈ R. Convolving both sides with φǫ, we get

(η1 ⋆φǫ)(x)+ (η2 ⋆φǫ)(x) = 1 for all x ∈R. Define

g1(x) = g (x)(η1 ⋆φǫ)(x) and g2(x) = g (x)(η2 ⋆φǫ)(x).

Then g1, g2 ∈C r+1(R) and supp(g1) ⊂ [−k −2ǫ,∞) and supp(g2) ⊂ (−∞,k +2ǫ]. Also we have

g1 + g2 = g .
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(i) We show that f1⋆µ= g1 and f2⋆µ= g2 have solutions f1 and f2 respectively in C r (R).

These f1 and f2 are then used to construct a solution of the equation f ⋆µ= g .

Let µ=

n
∑

i=1

ciδxi
, xi0

= Mi n{x1, x2, . . . , xn} and x j0
= M ax{x1, x2, . . . , xn}.

We can write

µ =

n
∑

i=1

ciδxi

=

n
∑

i=1

ciδxi
⋆δ−xi0

⋆δxi0

= δxi0
⋆

n
∑

i=1

ciδxi−xi0

= ci0
δxi0

⋆ (δ0 +

n
∑

i=1,i 6=i0

ci

ci0

δxi−xi0
)

= ci0
δxi0

⋆ (δ0 +ν), where ν=

n
∑

i=1,i 6=i0

ci

ci0

δxi−xi0
.

Also we can write µ as

µ =

n
∑

j=1

c jδx j

=

n
∑

j=1

c jδx j
⋆δ−x j0

⋆δx j0

= δx j0
⋆

n
∑

j=1

c jδx j −x j0

= c j0
δx j0

⋆ (δ0 +

n
∑

j=1, j 6= j0

c j

c j0

δx j −x j0
)

= c j0
δx j0

⋆ (δ0 +ψ), where ψ=

n
∑

j=1, j 6= j0

c j

c j0

δx j −x j0
.

Define α=
1
2

min{xi −xi0
/1 ≤ i ≤ n, i 6= i0} and β=

1
2

min{x j0
−x j /1 ≤ j ≤ n, j 6= j0}.

Then xi −xi0
>α, x j −x j0

<−β. Hence supp(ν)⊂ (α,∞) and supp(ψ)⊂ (−∞,−β).

Using lemma 1, we get h1,h2 ∈C r (R) such that

h1 ∗ (δo +ν) = g1 (4)

and

h2 ∗ (δo +ψ) = g2. (5)

Convolving both sides of the equation (4) with ci0
δxi0

and the equation (5) with c j0
δx j0

, we get

h1 ∗ (δo +ν)⋆ci0
δxi0

= ci0
g1 ⋆δxi0

and h2 ∗ (δo +ψ)⋆c j0
δx j0

= c j0
g2 ⋆δx j0

. That is

h1 ∗µ = ci0
g1 ⋆δxi0

(6)
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and

h2 ∗µ = c j0
g2 ⋆δx j0

. (7)

Equations (6) and (7) imply ( 1
ci0

h1 ⋆δ−xi0
)⋆µ= g1 and ( 1

c j0
h2 ⋆δ−x j0

)⋆µ= g2.

Define f =
1

ci0
h1 ⋆δ−xi0

+
1

c j0
h2 ⋆δ−x j0

. Then f ∈C r (R). Now

f ⋆µ = (
1

ci0

h1 ⋆δ−xi0
)⋆µ+ (

1

cn
h2 ⋆δ−x j0

)⋆µ

= g1 + g2

= g .

(ii) Using Lemma 2, we get f1, f2 ∈C r (R) such that f1⋆χ[a,b] = g1 and f2⋆χ[a,b] = g2. Then

f = f1 + f2 ∈C r (R) will satisfy f ⋆χ[a,b] = g . ���

Theorem 2.2. For g ∈C r+1(R), the following hold:

(i) For every µ ∈ LST (χ[a,b]) with µ 6= 0 a.e., there exists f ∈C r (R) such that f ⋆µ= g .

(ii) If there exists r ∈ R such that
bi−ai

r ∈ Z and µ =
∑n

i=1 ciχ[ai ,bi ] 6= 0 a.e., then there exists

f ∈C r (R) such that f ⋆µ= g .

Proof. (i) By lemma 3, there exists ν ∈ Mcd (R) such that µ= χ[a,b] ⋆ν. Applying Theorem 2.1,

we get a h ∈C r+1(R) and f ∈C r (R) such that h ⋆ν= g and f ⋆χ[a,b] = h. It is simple to verify

that f ⋆µ= g .

(ii) Using Lemma 3, we can write µ = χ[a,b] ⋆ν a.e for some ν ∈ Mcd (R). As in previous

part we obtain f ∈C r (R) such that f ⋆µ= g . ���

Remark 1. The operator Tµ defined by Tµ( f ) = f ⋆µ is 1-1 if we restrict the domain of Tµ

to the space of integrable functions L1(R). This can be seen as follows:Suppose f ⋆µ= 0 and

f ∈ L1(R). Since f is integrable and µ is compactly supported, the Fourier transforms of both

f and µ namely f̂ and µ̂ are holomorphic on C. Hence the corresponding zero sets z( f̂ ) and

z(µ̂) are of measure zero. Therefore we get f = 0 a.e.

Remark 2. When µ ∈ LST (χ[a,b]) or µ= g a.e for some g ∈ LST (χ[a,b]), the kernel of the oper-

ator Tµ is a nontrivial subspace of C (R). For, since µ can be written as µ = χ[0,r ] ⋆ν for some

ν ∈ Mcd (R). This implies that λ=
2nπ

r
∈ z(µ̂) for n ∈Z. Therefore e iλx ∈ K er (Tµ). Hence there

are infinitely many solutions to the convolution equation f ⋆µ= g .

Remark 3. Theorem 2.2 is possible even if g ∈ L1(R) with ĝ (λ) 6= 0 and the Fourier-Laplace

transform µ̂(λ) = 0 for some λ ∈C.
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