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SOME REMARKS ON RECONSTRUCTION FROM
LOCAL WEIGHTED AVERAGES

P. DEVARAJ

Abstract. We solve the convolution equation of the type f *x u = g, where f x u is the
convolution of f and p defined by (f * ) (x) = [ f(x—y)du(y), g is a given function and
1 is a finite linear combination of translates of an indicator function on an interval.

1. Introduction

We consider the convolution equation of the following type:

frxu=g, (1

where g is a known continuous function, p is a compactly supported measure and f is an un-

known continuous function. Delsarte [3] was interested in solving the particular case of equa-
x+%

1
tion (1) which is of the type — ’ f(®dt = g(x). In the case when f is an integrable func-
T T

tion with compact support van der Pol [15, 16] has obtained reconstruction formula using two
sided Laplace Transform. But such transform methods can not be used for the case of contin-
uous functions on R. The special case of equation (1), namely g = 0, was analyzed by many au-
thors citebag,berl,deva,Ehrl,Ehr2 kah,schwartz,thangavelu,wei,sze on various groups. The
solutions (1) for the particular case when g = 0 are called mean periodic functions. Laurent
Schwartz [18] gave an intrinsic characterization of such solutions. The corresponding non-
homogeneous type equation is analysed in [14]for the special case of when p is the indicator
function on the interval [—a, a]. An explicit construction of a solution is given in [17] for the
same equation on the three dimensional Euclidean space when p is the indicator function
of a ball in R® using plane wave decomposition. When y is finitely supported, the equation
(1) gets reduced to a non-homogeneous constant coefficient difference equation. Edgar and
Rosenblatt [6] have studied the homogeneous equation (ie, when g=0). They have shown that
a complex valued function f has linearly independent translates precisely when f does not
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satisfy a nontrivial homogeneous difference equation. An explicit construction of a solution
is given in [4] on R when p is an arbitrary finitely supported measure and g is a continuous
function.

Malgrange [13], Ehrenpreis [9], John [10], and Hérmander [11] have studied the convolu-
tion equation of the type analogous to equation (1)

PD)u-=f, 2

where P(D) is a constant coefficient partial differential operator and f is a given function.
A criterion was given by Hérmander for the existence of solution u € D.(Q) for an arbitrary
f € D}.(Q) on an open set Q < R".

In general, no necessary and sufficient conditions for the existence of solutions of equa-

tion (1) are known. One can easily see the following:

(i) Equation (1) has no solution in C(R) when g is a non smooth function and p is a com-
pactly supported continuous function.

(ii) If fp is a particular solution of equation (1), then every other solution f can be written as
f=fo+h,where h % u=0.
(iii) If the Fourier-Laplace transform fi(1) = 0 for some A € C and if there exists a solution to

equation (1), then there are infinitely many solutions to equation (1).

The methods of [14] can not be extended to the case when p is a sum of more than one in-
dicator function. In this paper we analyze the case when y is a finite linear combination of
the translates of an indicator function on an interval. A solution f € C"(R) is constructed for
every ge C"" 1 (R).

2. Reconstruction Results

Definition 1 ([4]). We say a compactly supported Borel measure on R is a discrete Borel mea-

sure, if there exists a finite set of distinct real numbers x1, X3, ..., X, and nonzero complex con-
n

stants ¢y, 2, ..., ¢y such that yu(E) = Z ciOy, (E) for every Borel set E. The set of all compactly

i=1
supported discrete Borel measures on R is denoted by M4 (R).

For a, b € R, the indicator function on the interval [a, b] is denoted by x 4,5 and LST (Y (4,))
denotes the linear span of the translates of x|, ;. The set of all compactly supported regular
Borel measures on R is denoted by M.(R). We note that LST (Y (4,p) < Mc(R).

Definition 2. For f € C(R) and u € M,(R), the convolution of f with u is defined as

(f * w)(x) =fRf(x—y)d,u(y).



SOME REMARKS ON RECONSTRUCTION FROM LOCAL WEIGHTED AVERAGES 219

n
When 1= )" ¢iX(a; 5, the convolution becomes
i=1

n b,‘
(f*u)(x)=ZCif flx=yady.
i=1 ai

n
Definition 3. [4] For everyreal or complex valued function f and discrete measure y = Z cily,
i=1
€ M.;4(R), the convolution of f and p is defined by

n

(frwx) =) cifx—xp).

i=1

In [4] the special case r = 0 of the following lemma is proved. We extend the same for

r >0 along the lines of [4].

Lemma 1. Foru,ve M 4(R) and g € C"(R), the following hold:
(@) Ifsupp(u) c (—oo,—a) for some a >0 and supp(g) < (—oo, B) for some B € R, then there
exists f € C"(R) such that f x (6 +p) = g.

(i) Ifsupp(v)c(a,00) for some a >0 and supp(g) < (B,00) for some B € R, then there exists
f € C"(R) such that f % (6o +v) = g.

Proof. (i) We denote by u the convolution of u with itself m-times. As supp(u) < (—oo, —a),

we have supp(u'") c (—oo,—na). Let u* = Zi’:l ¢i6y,. Then

. l .
GV * M) =Y cig?(x-yy).
i=1

Since supp(u™) c (—oo,—na), y; < —na and hence x — y; > x + na > f for sufficiently large n.
Therefore for every x, (g x ") (x) = 0 for n sufficiently large and for0 < j < r.
We define
(]
f0) =g+ ) (~D"(g*u™)(x).

n=1
Let us consider the following partial sums:
Sk k
sp(x) = gx) + Y (=1 (g * u)(x).
k=1

Then

sﬁf)(x) _ g(j)(x) n Z (_Dk(g(j) *uk)(x).
k=1
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We show that the above sequence converges uniformly on every compact set for0 < j < r.
For, let K be a compact subset of R. Then K < [a, b] for some real numbers a and b. Choose N
suchthata+na>pfand b+na>p,forn=N.Forx=a, x—y; =a+na> . Now

sP-sPw=Y kP *phw =o,

k=m+1

forn=m=N.
This implies that the sequence of functions {sﬁcj )0} is uniformly cauchy on every compact set
and hence converges uniformly on every compact set for0 < j <r.

Therefore we get s;Cj) (x) converges uniformly to f @ (x) on every compact set and
. . o8} .
f(])(x) = g(])(x) + Z (_l)n(g(]) *Hn)(x)
n=1

for 0 < j < r. Hence f is continuous and hence f”) € C”(R). It is very easy to check that
fx©Go+w=g.

(i) Since supp(v) c (a,00), we have supp(v"*) c (na,o0). Suppose the representation of
v is of the form: v = Zg:l d;i6,. Then (g(f) * v (x) = 25:1 dig(j) (x - z;). Since supp(v"") c
(na,00), z; > na and hence x — z; < x — na < f for sufficiently large n. Therefore for every x,

[e 0]

(g xv™)(x) = 0 for n sufficiently large. Hence g/ (x)+ Y. (=1)™(g" x v"")(x) is a finite sum

m=1
for every x.
We define o
fx):=gx)+ Z (D" (g *v"™(x). (3)
m=1
To show

f(r)(x) = g(r)(x)+ Z (_1)M(g(r) *Vm)(X),

m=1
it is sufficient if we show that the partial sums of the series (3) and their derivatives converge
uniformly on compact sets. For, let K be a compact subset of R. Then K < [a, b] for some real
numbers a and b. Choose N such that b —na < f, for n = N. Let us take the partial sums of
the series as .
te(x) = g(x) + 3 (=D (g*v") ().
m=1
Forx<b, x—z; <x—na < b- na. Choose N such that b— na <  for n = N. Then
(V- w=Y ¥ «vhH =0,
k=m+1

for n=m = N and 0 < j < r. This implies that the sequence {tﬁlj ) (x)} is uniformly cauchy and
hence converges uniformly on every compact set. Hence we get tﬁ,] )(x) - f () (x). Therefore
f € C"(R). One easily verifies f x (6p+Vv) = g. a
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Lemma2. Foru= Y45 andg e C" 1 (R), the following hold: If supp(g) < (oo, B) orsupp(g) <
(B,00) for some B € R, then there exists f € C"(R) such that f xu=g.

Proof. Case(i): Suppose that supp(g) < (—oo, ).

We can write
f*Xiap = Xab bay*Oas.

2

Define

[e 0]

i ==-3 (g'*52£1)(x).

n=0
We show that the above series converges uniformly on compact sets. For, let K be a compact
subset of R. Then K < [c, d] for some c,d € R. Let us take

sp(x) = — Z(g *52,/“;1)(@.
k=0

Then

n .
(])(x) Z (g(]+1) *531) (x).
k=0 2
Now

62k+1 (x)

b-a
x+(2k+1)(T))

Choose N such that ¢ + 2k +1)(%%) > g for k = N. Then g(j”)&za’f;l(x) =0 for k> N for all

x € K. Therefore s(]) (x) — (]) 7 (x) =0 for all n,m = N, for all x € K and for 0 < j < r. Hence
(] ) (x) — (] ) (x) uniformly on K.
Therefore f1 () =-X2, 8" %621 (x) and f; € C" (R). Now

2

o0

— 2n+1
fir it == X (8t 03 00

b—a
o) 2 b—
—Zf g ent DY - pdy
=0 % 2

I
e -

b—a)
2

b—-a b-a b—a
g x+(2n+1)(T)——)—g x+(2n+1)(T)+

2

0
(x).

S
Il

Define f(x) = fi x6_ as,. One easily verifies f * (4,1 = &-
2

Case(ii): Suppose that supp(g) < (f,00). Now f * Y(gp = f*X[%b’%] *6«T+b. Define
Hx) =X, 8 * 62&” (x). We show that the above series converges uniformly on compact
sets. For, let K be 2a compact subset of R. Then K c [¢,d] for some c,d € R. Let s,(x) =
Y .8 *52k+1(x) Then sy’ (x) = ¥_, g/*V *52k+1(x)
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We can write
g*aiéjl(x) = glx— 2k + 1)(%)).
Choose N such that ¢c— 2k + 1)(%) < B for k= N. Then g(j“)ézbgrl(x) =0 for k = N for all
x € K. Therefore s (x) j) m (x) =0 for all n,m = N, for all x € K2 and for 0 < j < r. Hence
(] )(x) — fl(] '(x) uniformly on K.
Therefore flj(x) =y, gt *62”+1(x) and f; € C"(R).

Now

8

_ ! 2n+1
fl*)([ ab boaj == E g *X[azb’b; ]*5ba (x)
n=0
b-a
2
(

b_
-y [ gx—(2n+1)(Ta)—y)dy

a—
n=0 2

& b-a
g(x—(2n+1)(T)—

8

b—a
2

b—a)
2

b-a
)—g(x—(2n+1)(T)+

n=0

= g(x).

Define f(x) = fi x§_ asp,. It is easy to check that f x y(4,5 = §- g
2

Lemma3. Letpu=3Y" , CiX|a, b, beafinitelinear combination of indicator functions on inter-
vals. If there exists r € R such that @ € Z, then the following hold:
(i) Thereexists g € LST (X(q4,p) Such that u = g almost everywhere for some a, b € R.

(i) Thereexitsu e M.q(R), suchthatp= xiap*Vvaeand f*p= fxyap*xV forall f € CR).

Proof. (i) Let 2 “’ =m;. Then x4, p) = Z;":"l Xla;+(j-Dra;+jr] @.€. As the indicator functions
Xlai+(j-Dra;+jr] are translates of the indicator function on [0, 7], we have (4, +(j-1)ra+jr €

LST(x0,r)-Hence g; = Z] 1?([61 +(j-Drai+jr) € LST(x(0,r). Therefore g = Zl 1€i8i € LST (x10,r)

and hence u=3Y" | ciX(a;p;) = & a.€.

(ii) In the above proof,

mi
8i = Z Xlai+(j-Dra;+jr]
j=1

mi
=Y X0, *8a+(-1r
j=1

m
= X101 * (D Sa+(j-1)r)
j=1

= X[0,r] X Vi,
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where v; = Z;.":"l Oai+(j-1)r € Mcq(R). But g = Zl’.’zl c;gi a.e. Therefore

X[0,r] X CiVi

n
8= Z Cigi
i=1
n
= L
i=1

n
= X0 * () civi)
i=1

= X *xV,
where v = Zl’.’zl c;vi € Mcq(R). Since u = g a.e, we have u =y, *v a.e.
Also we have

m; ra+jr

b;
f*X[a,-,b,-](x):/ fx—-ydy=)_ . fx—ydy=(f x g .
a; j_l ai+(j—1r

Therefore fxu=fxg=f*x0,r *V. O

The first part of the following theorem is an extension of [4] and the second part is a

simple extension of [14].

Theorem 2.1. (i) Forevery g e C"(R) and everyv € M 4(R) withv # 0 there exists f € C"(R)
suchthat fxv=g.

(i) Foreveryge C™1(R), there exists fe€C"(R) such that f * X(ap = §-

€
Proof. For € > 0, choose ¢, € C" 1 (R) such that supp(¢,) c (—€,€) and | ¢pe(x)dx=1.
—€
Define 1,12 € C(R) by

0 ifx<s-k
mx):={ Lkif k<x<k

1 ifx=k

1 ifx<s-k
m2(x):={ EXif —k<x<k.

0 ifx=k

It is simple to check that 17; (x) + 2(x) = 1 for all x € R. Convolving both sides with ¢,, we get
(N1 * e) (x) + (M2 * ) (x) = 1 for all x € R. Define

g1(x) = g(x)(n1 * Pe)(x) and g2 (x) = g(x) (N2 * ) (x).

Then g1,g € C""(R) and supp(g1) < [-k — 2¢€,00) and supp(gz) < (oo, k + 2¢]. Also we have
81+8=8.
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(i) We show that f; x = g1 and f,> x i = g» have solutions f; and f;, respectively in C" (R).

These fi and f are then used to construct a solution of the equation fx u=g.
n
Letpu= Z ciby,;, Xiy = Min{xy, xz,...,x,} and Xjy = Max{xy, x2,..., Xn}.
i=1
We can write

1% i6xi

iéxi *5_xi0 *5)%

n
Y ¢
i=1
n
Y ¢
i=1

n
5xi0 * Z c,-6xi_xl.o
i=1

n

Ci
= Cioéx,'o *(50+ Z _laxi—x,-o)
i=1,i#i Cio
n Ci
=¢;,0x, *(0o+Vv), wherev= Z — Oy —x; -
lo X = . C' 1 lo
i=1,i#iy “lo
Also we can write y as
p=y ciby,
j=1
n
= Z Cj8x; %O, * O,
j=1
n
= 5x]0 * Z Cj 6x1 Xjo
j=1
= Cidxjy ¥ G0+ D, i)
J=1j#jo “Jo
= Cj,0x;, * Go+w), wherey = . Z . C—.éxj_xjo.
Jj=1j#jo “Jo

Define a = %min{xi -xj,/1<i<n,i#ip}and f= %rnin{xj0 —xj/l1<j<n,j# jol
Then x; — x;, > a, xj — xj, < —f. Hence supp(v) < (a,00) and supp(y) < (—oo, - ).

Using lemma 1, we get hy, hy € C"(R) such that
hy*(6o+v) = &1 4)

and
hy = (6, +1//) = 8. 5)

Convolving both sides of the equation (4) with ¢;,0, and the equation (5) with ¢;,6; , we get
hy*(0p+V)* ci06xi0 =Cj,81 % 5,% and hy * (0, + W) * Cjo5xj0 =Cj,82 *5ij . Thatis

hy % g = ciy81 % b, (6)
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and

hZ*H:Cjog2*6Xj0- (7)

Equations (6) and (7) imply (2, * 8y, ) * =g and (% hyx 8y ) % 1= g
L] 0
Define f = L hy %6_,, +-hy *6_, . Then f € C"(R). Now
io o C]O Jo

1 1
fru=(—h*x6_x)*pu+(—ha*x6_y ) *p
Ci, Cn
=&t

:g_

(i) Using Lemma 2, we get fi, f» € C" (R) such that fi * y(4.5 = §1 and fo* x(4,p = §2- Then
f=f+freCT R will satisfy f * y(q,5 = & -

Theorem 2.2. For g € C""\(R), the following hold:

(i) Foreveryue LST(x(q4,p) Withp#0 a.e., thereexists f € C"(R) suchthat f xu=g.

(ii) If there exists r € R such that @ €Zand p = 2?21 CiXa; by # 0 a.e., then there exists
feC'(R) suchthat f*xu=g.

Proof. (i) By lemma 3, there exists v € M4 (R) such that = )4 5 * v. Applying Theorem 2.1,
we geta h e C"*1(R) and f € C"(R) such that h xv = g and f x ¥4, = h. It is simple to verify

that fxu=g.

(i) Using Lemma 3, we can write g = y[4,p * v a.e for some v € M4(R). As in previous
part we obtain f € C"(R) such that f x u=g. O

Remark 1. The operator T, defined by T,,(f) = f * u is 1-1 if we restrict the domain of T},
to the space of integrable functions L; (R). This can be seen as follows:Suppose f x u =0 and
f € Li(R). Since f is integrable and p is compactly supported, the Fourier transforms of both
f and p namely f and i are holomorphic on C. Hence the corresponding zero sets z( f ) and

z(f1) are of measure zero. Therefore we get f =0 a.e.

Remark 2. When 1€ LST (Y (4,1)) or pt = g a.e for some g € LST ()|4,5)), the kernel of the oper-
ator Ty, is a nontrivial subspace of C(R). For, since u can be written as p = y|o,;] * v for some
v € M.4(R). This implies that A = 2% € z(f1) for n € Z. Therefore eMe K er(T,). Hence there
are infinitely many solutions to the convolution equation fx u=g.

Remark 3. Theorem 2.2 is possible even if g € L; (R) with g(1) # 0 and the Fourier-Laplace

transform fi(1) = 0 for some A € C.
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