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AN INTERIOR INVERSE PROBLEM FOR THE IMPULSIVE
DIRAC OPERATOR

A.S. OZKAN AND R. KH. AMIROV

Abstract. In this study, an inverse problem for Dirac differential operators with disconti-
nuities is studied. It is shown that the potential function can be uniquely determined by
a set of values of eigenfunctions at some internal point and one spectrum.

1. Introduction

Let us consider the system of Dirac differential equations

0[y@)] =By (1) + Q) y(x) = Ay(x), x€l:= (0, g) U (g,n) (L.1)

where B = 01 , Q(x) = Pl q(x) , Y(x) = 1t , p(x) and q(x) are real valued func-
-10 q(x) —p(x) Y2(X)

tions in L, (0, ), A is spectral parameter.

We denote by L the boundary value problem generated by Equation (1.1) with the bound-
ary and discontinuity conditions

U@y :=y0)=0 (1.2)

V):=y(m) =0 (1.3)
T T

Cly := y(E +0) = Ay(E -0) (1.4)

where A =

B
0

ﬁ?l),ﬁeﬂ%*\{l}.

The basic and comprehensive results about Dirac operators were given in [7]. Further-
more, spectral problems for Sturm-Liouville or Dirac operators extensively well studied in [2],
[3] and [4].
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Boundary value problems with discontinuities inside the interval often appear in math-
ematics, mechanics, physics, geophysics and other branches of natural properties. The jump
conditions like (1.4) appear in some important physical problem. [5] is well known work
about discontinious inverse eigenvalue problems. Direct and inverse problems for Dirac op-
erators with discontinuities inside the interval were investigated in [1]. Inverse problems for
interior spectral data of the Sturm-Liouville or Dirac operators were studied in [8], [9] and [10]

In the present paper, we consider a Dirac operator with jump conditions inside interval.
We prove by using the similar methods in [6] and [9], that the potential function g(x) can be
uniquely determined by a set of values of eigenfunctions and sequence of eigenvalues.

2. Preliminaries

Let the functions ¢(-, 1) : I — R? be solution of equation (1.1) satisfy the initial conditions:

0
p0,1) = (_1) 2.1

and the jump conditions (1.4).

It is shown in [1] that, the solution ¢(x, 1) has a representation as follows;

X sinAt
@(x,A) = @o(x,A) + f K(x, 1) dt (2.2)
0 —CcosAt
where @q(x, 1) = ((p01 (x,A), po2(x, A)) T has the form
sin Ax, 0<x<7,

(x,A) = (2.3)

o1 BrcosAx+ B cosA(m—-x), F<x<m,

—cosAx, 0<x<7,
Po2(x,A) = (2.4)

. - . )
BrsinAx—pf7sinA(r-x), F<x<m,

BE=1(B+p1), K(x,0) = (Kij(x, 1); jo1,20 Kij (x,) € Ly(=x, x) for i, j = 1,2 and every fixed x.
The function A(A) which has the form:
AA) = @a(m, A) (2.5)

is the characteristic function of the problem (1.1)-(1.4), i.e. it’s zeros are precisely eigenvalues.

From the equality (2.2)-(2.5) we have:
AA) = B sinAn + o (exptn) (2.6)

where, T = |ImA|. The following lemma can be proved by similar methods in [1].
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Lemma 1. (i) The problem L has countable many eigenvalues, such that all of them are real
and simple.
(ii) The eigenvalues A, are given by the following asymptotic formulae:

Ap=n+ o) 2.7)
n

3. Main result

Together with L, we consider the problem L(Q2) of the same form but with a different
coefficient Q such that

q(x) —p(x)
It is assumed in what follows that if a certain symbol s denotes an object related to L, then
the corresponding symbol §with tilde denote the analogous object related to L. The eigenval-
ues and the corresponding eigenfunctions of the problem L are denoted by 1, and ¢, (x) =
@(x,1,), respectively.
Now we state the main result of this work. Denote Wy, z](x) := y1(x)z2(x) — y2(x) 21 (x)

for y = (y1,y2)" and z = (z1,2) T

Theorem 1. IfA, = A,, and W[p,,$,] (% —0)=0forallneN, then p(x) = p(x), a.e. in[0,7].
Proof. Let us write the equation (1.1) for the solutions ¢ and ¢

B'(x,1) + Q(x)p(x, 1) = Ap(x, 1) (3.1
By (x,A) + Q(x)p(x, 1) = AP(x, ) (3.2)

If we multiply these equalities by ¢(x, 1) and ¢(x, A) respectively and subtract then we get
d _ _ ~ _
r {106, V) P2 (2, 1) — @1 (x, 2 (x, M} = [Q(x) — Q(x) | (x, V)P (x, A) (3.3)

Integrating last equality from 0 to 7 with respect to x, the equality

{016 VF200) =1 Do D} = [ 71000800 e VP )

s

= foi [p(x) _ﬁ(X)]](p(x,;L)@(X,A)dx (3.4)

10
is obtained, where J := ( ) If we denote

F(A) ::fo2 [p(x) = p)] Jo(x, V@ (x,A)dx (3.5)
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then we obtain from the initial condition (2.1) and the assumption W@, ] (% —0) =0in
hypothesis that
F(Ap) = (3.6)

for all n.

Now, define y(A) := % which is entire function from above argument. Since F(1) =
O(exptn) and |A(A)| = Cexp17 for A € G := {A:|A—A,| > €} then ¥(A) is constant from the
Liouville’s theorem. Moreover,

lim ¥(4) =0

A€R
from the equality (2.2)-(2.4) and Riemann-Lebesque lemma. Therefore y(1) = 0 on the whole
A-plane. On the other hand, one can easily obtaine that

X X
Jox,V)p(x,A) = —cosZ/lx+f Ki(x, 1) cosZAtdt+f Ky(x, t)sin2Atdt 3.7
0 0
where Kj(x, 1), i = 1,2, depend only on x, ¢. It follows from (3.5) and (3.7) that
z X X
fz P(x){coszﬂx—f Ki(x, 1) cosZAtdt—f K (x, 1) sin21tdt}dx=0 (3.8)
0 0 0

for all A, where P(x) := [p(x) — p(x)]. This can be rewritten as

.4

f ’ COS2AT
0

s s
+f2 sinsz2 PO)K, (x, dxdt=0 3.9)
0

T

P(T)+/§P(x)K1(x, Hdx|dt

or
z 2
f (P(T)-;fr P(x)Kl(x,t)dx)(Coszm,smmwt:o (3.10)
0 [ PO)K,(x, t)dx

Therefore, it follows from the completeness of the vector functions (cos 2A7,sin2A£)” in L,(0,m)®
L>(0,7) that P(x) =0, i.e. p(x) = p(x) for x € (0, 3).

To show that p(x) = p(x) for x € (£, ) we should repeat arguments for the supplementary
problem
By'(x)+Qm—x)y(x) = Ay(x) x€el
y1(0) =0
Yo(m) =0
(2 -0) = Ay(Z +0)
Vg =AY
Since p(71—x) = p(n—x) for x € (0, %), we obtaine that p(x) = p(x) for x € (£, ). This completes
the proof. a
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