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ON THE SET OF α, p-BOUNDED VARIATION OF ORDER h

BRUNO DE MALAFOSSE

Abstract. In this paper we first explicit a subset of the set (lp, lu) for 1 ≤ p < ∞ and

0 < u < ∞. Then we deal with the space bvh
p (α) = lp(α)(∆h) for h > 0 real, generalizing

the well-known set of p-bounded variation bvp = lp(∆), and characterize martix transformations

mapping from bvh
p (α) to bvk

u(β) for 1 ≤ p ≤ ∞ and 0 < u ≤ ∞.

1. Preliminaries, background and notation.

Let A = (anm)n,m≥1 be an infinite matrix and consider the sequence X = (xn)n≥1

as a column vector. Then we will define the product AX = (An(X))n≥1 with An(X) =∑∞

m=1 anmxm whenever the series are convergent for all n ≥ 1. We will denote by s, c0, c
and l∞ the sets of all sequences, the set of sequences that converge to zero, that are
convergent and that are bounded respectively. A Banach space E of complex sequences
with the norm ‖‖E is a BK space if each projection Pn : X → PnX = xn is continuous.
A BK space E is said to have AK if every sequence X = (xn)∞n=1 ∈ E has a unique

representation X =
∑∞

n=1 xnen where en is the sequence with 1 in the n-th position and
0 otherwise.

For any given subsets E, F of s, we shall say that the operator represented by the
infinite matrix A = (anm)n,m≥1 maps E into F , that is A ∈ (E, F ), see [4], if

(i) the series defined by An(X) =
∑∞

m=1 anmxm are convergent for all n ≥ 1 and for
all X ∈ E;

(ii) AX ∈ F for all X ∈ E.
For any subset E of s, we shall write

AE = {Y ∈ s : Y = AX for some X ∈ E}.

If F is a subset of s, we shall denote the so-called matrix domain by

F (A) = FA = {X ∈ s : Y = AX ∈ F}. (1)

In this paper we will consider the well-known set

lp =

{
X = (xn)n≥1 :

∞∑

n=1

|xn|
p < ∞

}
for p > 0 real.

Received June 17, 2005.
2000 Mathematics Subject Classification. 40C05, 40J05, 46A15.
Key words and phrases. Matrix transformations, operator of the first-difference, set of α, p-
bounded variation of order h, BK space.

121



122 BRUNO DE MALAFOSSE

In the case when p, u > 0 are both unequals to 1 except for p = u = 2, (see [2]), there is
no characterization of the set (lp, lu). Denote now

U+ = {X = (xn)n≥1 ∈ s : xn > 0 for all n}

and let lp(α) for α ∈ U+ be the set of all sequences X = (xn)n≥1 such that (xn/αn)n≥1 ∈
lp. The set lp(α) is a Banach space with the norm

‖X‖lp(α) =
∥∥∥D 1

α
X

∥∥∥
lp

=

[ ∞∑

n=1

( |xn|

αn

)p
] 1

p

.

Using Wilansky’s notation, it can easily be seen that lp(α) = (1/α)−1 ∗ lp is a BK space

with AK, see [15, Example 1.13, p.152]. For p = ∞ we will write

l∞(α) = sα =
{
X = (xn)n≥1 : sup

n

|xn|

αn
< ∞

}
.

For given α ∈ U+, we also have, see [6, 8, 9, 10]

s0
α =

{
X = (xn)n≥1 : lim

n→∞

xn

αn
= 0

}
and

s(c)
α =

{
X = (xn)n≥1 : lim

n→∞

xn

αn
= l for some l ∈ C

}
.

Each of the sets sα, s0
α and s

(c)
α is a BK space and s0

α has AK. For α, β = (βn)n≥1 ∈ U+

we will use the set

Sα,β =

{
A = (anm)n,m≥1 : sup

n

{
1

βn

∞∑

m=1

|anm|αm

}
< ∞

}
,

which is a Banach space with the norm ‖A‖Sα,β
= supn{(1/βn)

∑∞

m=1 |anm|αm}, see
[5-12]. If sα = sβ we get the Banach algebra with identity Sα,α = Sα, see [5, 8, 11].

We will use the operator ∆ defined by ∆x1 = x1 and ∆xn = xn − xn−1 for n ≥ 2
and for all X = (xn)n≥1 and define the set of α, p-bounded variation of order 1, by

bvp(α) =

{
X = (xn)n≥1 :

∞∑

n=1

( |xn − xn−1|

αn

)p

< ∞

}
, with x0 = 0.

Recall that for α = e = (1, . . . , 1, . . .), we have bvp(α) = bvp and bvp is the set of p-
bounded variation, and for p = 1 and p = ∞, the space bvp is reduced to the spaces bv
and l∞(∆) respectively. Using the notation (1) we may redefine the space bvp(α) as

bvp(α) = lp(α)(∆).

There are some results on the sets (bvp, Y ) with Y = l∞, c0, c, l1, or bv in [1, Theorem
13.3 and Theorem 13.4, pp.52]. When p is replaced by a sequence p̃ = (pn)n≥1 there are
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other results on (bvep, Y ) where Y is either of the sets l∞, c0, c, l1, see [3, Theorem 3.2,
pp.160]. Here we give conditions for a matrix map to belong to (bvh

p (α), bvk
u(β)) where h,

k > 0, 1 ≤ p ≤ ∞, 0 < u < ∞, and bvh
p (α) = lp(α)(∆h).

2. Subset of (lp, lu) with 1 ≤ p < ∞ and 0 < u < ∞

Let p, u be reals with p ≥ 1 and u > 0. For any given infinite matrix A, put

Np,u(A) =





sup
m≥1

( ∞∑

n=1

|anm|

)
if u = p = 1,

[ ∞∑

n=1

(
sup
m≥1

|anm|

)u] 1

u

if p = 1 and 0 < u < ∞, u 6= 1;

[ ∞∑

n=1

( ∞∑

m=1

|anm|q
)u

q
] 1

u

if 1 < p < ∞, 0 < u < ∞with q = p/(p − 1).

We will write Lp,u for the set of all infinite matrices A with Np,u(A) < ∞. We then
have the following result

Theorem 1. Let p, u be reals with p ≥ 1 and u > 0. Then

Lp,u ⊂ (lp, lu)

and for any given A ∈ Lp,u, ‖AX‖lu ≤ Np,u(A)‖X‖lp for all X ∈ lp.

Proof. Case u = p = 1. We have A ∈ (l1, l1) if and only if all the series
∑∞

m=1 anmxm

are convergent for all n for all X ∈ l1 and AX ∈ l1 for all X ∈ l1. Let A ∈ L1,1 we get

‖AX‖l1 ≤

∞∑

n=1

( ∞∑

m=1

|anmxm|

)

≤

∞∑

m=1

( ∞∑

n=1

|anmxm|

)

≤

( ∞∑

m=1

|xm|

)(
sup
m≥1

∞∑

n=1

|anm|

)
= ‖At‖ ‖X‖l1 for all X ∈ l1.

Case p = 1 and u > 0, u 6= 1. As above, let A ∈ L1,u. For every X ∈ l1 we successively
get

‖AX‖u
lu ≤

∞∑

n=1

( ∞∑

m=1

|anmxm|

)u

≤

∞∑

n=1

[(
sup
m≥1

|anm|
) ∞∑

m=1

|xm|

]u

≤

∞∑

n=1

(
sup
m≥1

|anm|
)u

( ∞∑

m=1

|xm|

)u

.
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We conclude

‖AX‖lu ≤

[ ∞∑

n=1

(
sup
m≥1

|anm|
)u

] 1

u

‖X‖l1 = [N1,u(A)] ‖X‖l1 .

Case p > 1 and u > 0. Let A ∈ Lp,u. For every X ∈ lp, we get

‖AX‖u
lu =

∞∑

n=1

(∣∣∣∣
∞∑

m=1

anmxm

∣∣∣∣
u)

≤

∞∑

n=1

( ∞∑

m=1

|anmxm|

)u

and by the Hölder inequality, where q = p/(p − 1), we have

‖AX‖u
lu ≤

∞∑

n=1

[( ∞∑

m=1

|anm|q
) 1

q
( ∞∑

m=1

|xm|p
) 1

p

]u

≤

∞∑

n=1

[( ∞∑

m=1

|anm|q
) 1

q

‖X‖lp

]u

≤
∞∑

n=1

( ∞∑

m=1

|anm|q
)u

q

‖X‖u
lp ≤ [Np,u(A)]u‖X‖u

lp.

Remark 1. Let us recall the next results due to Stieglitz and Tietz [16], and Maddox
[4], where either p or u is equal to one:

(l1, lu) =

{
A = (anm)n,m≥1 : sup

m≥1

( ∞∑

n=1

|anm|u
)

< ∞

}
for 1 ≤ u < ∞,

and if 1 < p < ∞ and q = p/(p − 1), then

(lp, l1) =

{
A = (anm)n,m≥1 : sup

N⊂N,N finite

( ∞∑

m=1

∣∣∣∣
∑

n∈N

anm

∣∣∣∣
q)

< ∞

}
.

We can also remark that if u = p ≥ 1, then ‖A‖(lp,lp) ≤ Np,p(A) with

Np,p(A) =





‖At‖S1
for p = 1,[ ∞∑

n=1

( ∞∑

m=1

|anm|q
) p

q

] 1

p

for p > 1.

We have the following application.

Example 2. Let θ, u > 0 and p > 1 be reals and consider the triangle

Cθ =




1

· · O
1

nθ · 1
nθ

· · · ·


 .
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Then Cθ ∈ (lp, lu) for θ > 1/u + 1/q with q = p/(p − 1).

Proof. Let f(x)=xθ . Since n/f q(n) is decreasing sequence, writing Cθ ∈(anm)n,m≥1

we have
∞∑

n=1

( ∞∑

m=1

|anm|q
)u

q

=

∞∑

n=1

( n

f q(n)

)u
q

≤

∫ ∞

1

( x

f q(x)

) u
q

dx.

Now (x/f q(x))u/q = 1/x(qθ−1)u/q and
∫ ∞

1
[x/(f q(x))]u/qdx < ∞ for (qθ−1)u/q > 1, that

is θ > 1/u + 1/q.

3. Some properties of the set bvh
p
(α).

First recall some well known properties of the sets bv and bv0 = bv
⋂

c0. In the
following T = (tnm)n,m≥1 is a triangle if tnm = 0 for all m > n and tnn 6= 0 for all n.

Theorem 3.([15, Theorems 3.3, 3.5, pp. 178, 179], [17, Theorems 4.3.12, 4.3.14, pp.
63, 64]).

Let E be a BK space. Then ET is a BK space with ‖X‖T = ‖TX‖E.

If E is a closed subset of F then ET is a closed subspace of FT .

The set bv = l1(∆) is called the set of bounded variation and by Theorem 3 and
[14, Theorem 2.2.10, p.152] if we put bv0 = bv

⋂
c0, then bv0 and bv are BK spaces

with their natural norm ‖X‖bv =
∑∞

n=1 |xn − xn−1|. The set bv0 has AK and every

sequence X = (xn)n≥1 ∈ bv has a unique representation X = le +
∑∞

n=1(xn − l)en where

l = limn→∞ xn.
Here for α ∈ U+ we define the set of α, p-bounded variation of order h, by bvh

p (α) =
lp(α)(∆h) for 0 < p ≤ ∞ and h > 0. We will put bv1

p(α) = bvp(α), bvh(α) = l1(α)(∆h)
and for p = ∞, it can easily be seen that bvh

∞(α) = sα(∆h).
We need to recall some results given in [8]. For this consider the following sets

Ĉ1 =

{
X = (xn)n≥1 ∈ U+ :

1

xn

( n∑

k=1

xk

)
= O(1) (n → ∞)

}
,

Ĉ+
1 =

{
X ∈ U+

⋂
cs :

1

xn

( n∑

k=1

xk

)
= O(1) (n → ∞)

}
,

Γ =

{
X ∈ U+ : lim

n→∞

(xn−1

xn

)
< 1

}
,

Γ̂ =

{
X ∈ U+ : lim

n→∞

(xn−1

xn

)
< 1

}
,

Γ+ =

{
X ∈ U+ : lim

n→∞

(xn+1

xn

)
< 1

}
.

Note that X ∈ Γ+ if and only if 1/X ∈ Γ. We shall see in Lemma 4 that if X ∈ Ĉ1,
then xn → ∞(n → ∞). Furthermore, X ∈ Γ if and only if there is an integer q ≥ 1 such
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that
γq(X) = sup

n≥q+1

(xn−1

xn

)
< 1.

We obtain the following results in which we put

[C(X)X ]n =
1

xn

( n∑

k=1

xk

)
.

Lemma 4. Let α ∈ U+.

(i) If α ∈ Ĉ1 there are K > 0 and γ > 1 such that αn ≥ Kγn for all n.

(ii) The condition α ∈ Γ implies that α ∈ Ĉ1 and there exists a real b > 0 such that

[C(α)α]n ≤
1

1 − γq(α)
+ b[γq(α)]n for n ≥ q + 1.

(iii) The condition α ∈ Γ+ implies α ∈ Ĉ+
1 .

The proof follows from [9, Proposition 2.1, p. 1656-1658].

Remark 2. Note that Γ 6⊆ Ĉ1.

Let us consider now ∆ as an operator from E into itself where E is either of the sets
sα, s0

α, s
(c)
α , or lp(α). Then we obtain conditions for ∆ ∈ (E, E) to be bijective. In this

way we have the following results.

Lemma 5. Let α ∈ U+.

(i) If α ∈ Γ then bvp(α) = lp(α) for 1 ≤ p ≤ ∞;

(ii) sα(∆) = sα if and only if α ∈ Ĉ1;

(iii) s0
α(∆) = s0

α if and only if α ∈ Ĉ1;

(iv) s
(c)
α (∆) = s

(c)
α if and only if α ∈ Γ̂;

(v) ∆α = D 1

α
∆Dα is bijective from c into itself with limX = ∆α − limX, if and only

if
αn−1

αn
→ 0.

Proof. (i) comes from [10]. (ii), (iii) and (v) come from [8, Theorem 2.6, pp. 1789]
and (iv) is a direct consequence of [8, Theorem 2.6, pp. 1789] and [12, Proposition 2, pp.

88].

Remark 3. Note that by Lemma 4(ii) the condition α ∈ Γ implies sα(∆) = sα and
s0

α(∆) = s0
α.

For h ∈ R put now

(
−h + i − 1

i

)
=

{
−h(−h+1)···(−h+i−1)

i! if i > 0,

1 if i = 0,
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and define the operator ∆h = (τnm)n,m≥1 for h ∈ R by

τnm =





(
−h + n − m − 1

n − m

)
if m ≤ n,

0 otherwise.

For h = −1 we get ∆h = Σ with Σnm = 1 if m ≤ n and Σnm = 0 for m > n, see
[5]. Study now the identity bvh

p (α) = lp(α)(∆h) = lp(α) for h > 0 or h ≥ 1 integer and
1 ≤ p < ∞.

We obtain the following

Lemma 6.([10]) Let α ∈ U+.

(i) For any given real h > 0, the condition bvh(α) = l1(α) is equivalent to

αn

( ∞∑

m=n

(
h + m − n − 1

m − n

)
1

αm

)
= O(1)(n → ∞);

(ii) Let h ≥ 1 be an integer and p ≥ 1 a real. If α ∈ Γ then

bvh
p (α) = lp(α).

Remark 4. Note that we also have 1/α ∈ Ĉ+
1 if and only if bv(α) = l1(α). Indeed

the conditions ∆ ∈ (l1(α), l1(α)) and Σ ∈ (l1(α), l1(α)) are equivalent to ∆+ ∈ S1/α and
Σ+ ∈ S1/α, that is

αn

αn−1
= O(1) and αn

( n∑

k=1

1

αk

)
= O(1)(n → ∞).

From the inequality αn/αn−1 ≤ αn

( ∑n
k=1 1/αk

)
for all n, we conclude that 1/α ∈ Ĉ+

1

if and only if bv(α) = l1(α).

4. Matrix map from bvh
p
(α) to bvk

u
(β)

In this section we give necessary conditions for an infinite matrix A to map bvh
p (α) =

lp(α)(∆h) into bvk
u(β) and some characterizations of the sets (bvh(α), bvk

u(β)), (bvh
p (α),

bvk
∞(β)) and (bvh

∞(α), bvk
∞(β)). For this we need additional results.

4.1. Other results

To state the next results we first need to recall the characterizations of (lp, l∞) and
(l∞, lu) and consider the identity A(χX) = (Aχ)X for X ∈ E, where E is either of the
sets lp(α), 1 ≤ p ≤ ∞, sα, or s0

α. In this way we have, (see [15] and [16]).
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Lemma 7.

(i) A ∈ (lp, l∞) if and only if





sup
n,m

|anm| < ∞ for p = 1,

sup
n

∞∑

m=1

|anm|q < ∞ for 1 < p < ∞ and q = p
(p−1) .

(ii) Let 1 ≤ u < ∞. Then A ∈ (l∞, lu) if and only if

sup
N⊂N,N finite

( ∞∑

n=1

∣∣∣∣
∑

m∈N

anm

∣∣∣∣
u)

< ∞.

We also need the following lemmas.

Lemma 8. Let p > 1 be a real and χ = (χnm)n,m≥1 an infinite matrix. The identity

A(χX) = (Aχ)X for all X ∈ E holds in the following cases

(i) When E = l1(α) if

∞∑

m=1

|anm| < ∞ for all n, and sup
n,m

(|χnm|αm) < ∞; (2)

(ii) When E = lp(α) with 1 < p < ∞ if

∞∑

k=1

|ank|

( ∞∑

m=1

|χkm|qαq
m

) 1

q

< ∞ for all n, with q =
p

p − 1
; (3)

(iii) When E ∈
{
sα, s0

α, s
(c)
α

}
if

∞∑

k=1

( ∞∑

m=1

|ankχkm|αm

)
< ∞ for all n. (4)

Proof. First note that for any given integer n, we have

An(χX) =
∞∑

k=1

ank

( ∞∑

m=1

χkmxm

)
for X = (xn)n≥1 ∈ s,

whenever the series in the second member are convergent.

(i) Assume that (2) holds. Then putting

|An|(|χX |) =

∞∑

k=1

∞∑

m=1

|ank| |χkm| |xm| for n ≥ 1
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one gets

|An|(|χX |) ≤

∞∑

k=1

|ank| sup
m,k

(|χkm|αm)

∞∑

m=1

|xm|

αm

≤
∞∑

k=1

|ank| sup
m,k

(|χkm|αm)‖X‖l1(α) < ∞ for all n and all X ∈ l1(α).

So we can invert
∑

k and
∑

m in the expression of yn. This shows A(χX) = (Aχ)X

for all X ∈ l1(α).
(ii) Assume that (3) holds. Then by the Hölder inequality

|An|(|χX |) =

∞∑

k=1

(
|ank|

∞∑

m=1

(
|χkm|αm

|xm|

αm

))

≤

∞∑

k=1

|ank|

( ∞∑

m=1

|χkm|qαq
m

) 1

q
( ∞∑

m=1

( |xm|

αm

)p
) 1

p

≤
∞∑

k=1

|ank|

( ∞∑

m=1

|χkm|qαq
m

) 1

q

‖X‖lp(α) for all n and for all X ∈ lp(α);

and we conclude reasoning as above.
(iii) Comes from the fact that if (4) holds then |An|(|χX |) < ∞ for all n and all X ∈ sα.

We get the same result when sα is replaced by s0
α and by s

(c)
α , since these spaces

are included in sα. This completes the proof.

We also need to recall the following well-known result given in [13, Theorem 1].

Lemma 9. Let T ∈ £. Then for arbitrary subsets E and F of s, the condition

A ∈ (E, F (T )) is equivalent to TA ∈ (E, F ).

4.2. Properties of the set (bvh
p (α), bvk

u(β)) for 1 < p < ∞, 0 < u < ∞, h and
k being reals or integers

First we give necessary conditions to have A ∈ (bvh
p (α), bvk

u(β)), this gives the follow-

ing

Theorem 10. Let α, β ∈ U+ and 1 < p < ∞.

(i) Let 0 < u < ∞.

(a) Let k ∈ R and h ≥ 1 be an integer. If α ∈ Γ, the condition

∞∑

n=1

( ∞∑

m=1

(∣∣∣∣
1

βn

n∑

j=1

(
−k + n − j − 1

n − j

)
ajm

∣∣∣∣αm

)q)u
q

< ∞ with q =
p

p − 1
,

(5)
implies A ∈ (bvh

p (α), bvk
u(β)).
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(b) Let β ∈ Γ, h ∈ R and k ≥ 1 be an integer. Assume

∞∑

m=1

|anm|

( ∞∑

j=m

∣∣∣∣
(

h + j − m − 1
j − m

) ∣∣∣∣
q

αq
m

)
< ∞ for all n (6)

and
∞∑

n=1

1

βu
n

( ∞∑

m=1

∣∣∣∣
∞∑

j=m

anj

(
h + j − m − 1

j − m

)
αm

∣∣∣∣
q) u

q

< ∞, (7)

then A ∈ (bvh
p (α), bvk

u(β)).
(ii) Let 1 ≤ u < ∞ and h, k ≥ 1 integers. If α, β ∈ Γ, then condition

∞∑

n=1

1

βu
n

( ∞∑

m=1

(|anm|αm)q

)u
q

< ∞

implies A ∈ (bvh
p (α), bvk

u(β)).

Proof. First α ∈ Γ implies ∆ is bijective from lp(α) into itself and

bvh
p (α) = lp(α)(∆h) = lp(α).

Then A ∈ (bvh
p (α), bvk

u(β)) if and only if D1/β∆kA ∈ (bvh
p (α), lu) = (lp(α), lu); and

D1/β∆kADα ∈ (lp, lu) if D1/β∆kADα ∈ Lp,u. We have

D 1

β
∆kADα =

(
1

βn

( n∑

j=1

(
−k + n − j − 1

n − j

)
ajm

)
αm

)

n,m≥1

,

and using Lemma 8(ii), we conclude that condition (5) implies A ∈ (bvh
p (α), bvk

u(β)).
(i)(b) Since β ∈ Γ, then ∆ is bijective from lu(β) to itself and it is the same for ∆k.

So
bvk

u(β) = lu(β)(∆k) = lu(β).

We have ∆−h = (τnm)n,m≥1 with

τnm =





(
h + n − m − 1

n − m

)
for m ≤ n,

0 for m > n.

By Lemma 8, condition (6) permits us to write that

A(∆−hX) = (A∆−h)X for all X ∈ lp(α). (8)

Now since A∆−h = (cnm)n,m≥1 with

cnm =
∞∑

j=m

anj

(
h + j − m − 1

j − m

)
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condition (7) means that D1/βA∆−hDα ∈ Lp,u; and since Lp,u ⊂ (lp, lu) then A∆−h ∈
(lp(α), lu(β)). Thus (A∆−h)X ∈ lu(β) for all X ∈ lp(α) and (8) implies that the series
defined by An(∆−hX) are convergent for all n and for all X ∈ lp(α), and A(∆−hX) ∈
lu(β). We conclude that D1/βA∆−hDα ∈ Lp,u implies A ∈ (bvh

p (α), lu(β)) and A ∈
(bvh

p (α), bvk
u(β)).

Statement (ii) The condition α, β ∈ Γ implies bvh
p (α) = lp(α) and bvk

u(β) = lu(β)(∆k)
= lu(β). Then D1/βADα = (anmαm/βn)n,m≥1 ∈ Lp,u implies A ∈ (bvh

p (α), bvk
u(β)).

Until now were given necessary conditions for A to belong to (bvh
p (α), bvu(β)), when

u = 1 and h ∈ R we get the next characterization. In all that follows we will need to use
the convention a0m = 0 for all m.

Proposition 11. Let 1 < p < ∞, h be a real and assume that

∞∑

j=1

|anj − an−1,j|

( ∞∑

m=1

∣∣∣
(

h + j − m − 1

j − m

)
αm

∣∣∣
q
)

< ∞ for all n. (9)

Then A ∈ (bvh
p (α), bv(β)) if and only if

sup
N⊂N,N finite

∞∑

m=1

1

βn

∣∣∣∣
∑

n∈N

∞∑

j=m

(anj − an−1,j)

(
h + j − m − 1

j − m

)
αm

∣∣∣∣
q

< ∞.

Proof. First A ∈ (bvh
p (α), bv(β)) if and only if

∆A(∆−hX) ∈ l1(β) for all X ∈ lp(α).

Now since ∆A = (anm − an−1,m)n,m≥1, from Lemma 8(ii), we see that under condition
(9) ∆A(∆−hX) = (∆A∆−h)X for all X ∈ lp(α). Then A ∈ (bvh

p (α), bv(β)) if and only
if ∆A∆−h ∈ (lp(α), l1(β)) and we conclude using the characterization of (lp, l1).

Remark 5. Note that for h, k ∈ R, we have A ∈ (bvh
p (α), bvk

u(β)) if D1/β∆kA∆−hDα

∈ Lp,u when the identity

∆kA(∆−hX) = (∆kA∆−h)X for all X ∈ lp(α)

is satisfied.

4.3. Properties of the set (bvh(α), bvk
u
(β)) for h > 0 and k real or integer

Now we can state the next results

Theorem 12. Let 1 ≤ u < ∞ and h > 0.
(i) Assume α ∈ Γ and k ∈ R. Then A ∈ (bvh(α), bvk

u(β)) if and only if

sup
m

∞∑

n=1

1

βu
n

(∣∣∣∣
n∑

j=1

ajm

(
−k + n − j − 1

n − j

) ∣∣∣∣αm

)u

< ∞; (10)
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(ii) Let β ∈ Γ and k ≥ 1 be an integer. Under the condition

∞∑

m=1

|anm| < ∞ for all n, and sup
n,m

{∣∣∣
(

h + n − m − 1

n − m

) ∣∣∣αm

}
< ∞, (11)

A ∈ (bvh(α), bvk
u(β)) if and only if

sup
m

∞∑

n=1

1

βu
n

∣∣∣∣
∞∑

j=m

anj

(
h + j − m − 1

j − m

)
αm

∣∣∣∣
u

< ∞.

(iii) Let α, β ∈ Γ and k ≥ 1 be integer. Then A ∈ (bvh(α), bvk
u(β)) if and only if

sup
m

{
αu

m

∞∑

n=1

( |anm|

βn

)u
}

< ∞. (12)

Proof. (i) The condition α ∈ Γ implies bvh(α) = l1(α). So A ∈ (bvh(α), bvk
u(β)) if

and only if ∆kA ∈ (l1(α), lu(β)). From the expression of D1/β∆kADα in the proof
of Theorem 10(i)(a), we conclude that D1/β∆kADα ∈ (l1, lu) if and only if (10)
holds.

(ii) The condition A ∈ (bvh(α), lu(β)) means that the series defined by An(∆−hX) are
convergent for all X ∈ l1(α) and for all n and

A(∆−hX) ∈ lu(β) for all X ∈ l1(α).

Under condition (11), A(∆−hX) = (A∆−h)X for all X ∈ l1(α), so A ∈ (bvh(α),
lu(β)) if and only if D1/βA∆−hDα ∈ (l1, lu), and we conclude since β ∈ Γ implies
bvu(β) = lu(β).

(iii) Here α, β ∈ Γ implies bvh(α) = l1(α)(∆h) = l1(α) and bvk
u(β) = lu(β). So

A ∈ (l1(α), lu(β)) if and only if D1/βADα ∈ (l1, lu) and we conclude using the
characterization of (l1, lu).

Remark 6. We also have the next result. Let k ∈ R, 1 ≤ u < ∞ and α ∈ l∞. Then
under the condition

∞∑

m=1

|anm − an−1,m| < ∞ for all n, (13)

we have A ∈ (bv(α), bvk
u(β)) if and only

sup
m

{ ∞∑

n=1

1

βu
n

∣∣∣∣
∞∑

j=m

(anj − an−1,j)

(
h + j − m − 1

j − m

)
αm

∣∣∣∣
u}

< ∞.

Indeed A ∈ (bv(α), bvk
u(β)) if only if ∆A(∆−hX) ∈ lu(β) for all X ∈ l1(α). Since α ∈ l∞

and (13) holds, by Lemma 8(i) we have ∆A(∆−hX) = (∆A(∆−h)X for all X ∈ l1(α).
We conclude since ∆A∆−h ∈ (l1(α), lu(β)) and

∆A∆−h =
( ∞∑

j=m

(anj − an−1,j)

(
h + j − m − 1

j − m

))
n,m≥1

.
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Remark 7. Note that (ii) in the previous theorem is true for h real.

4.4. The sets (bvp(α), bv∞(β)) and (bv∞(α), bvu(β))

In this part we characterize the set (bvp(α), bv∞(β)) in the cases when 1 ≤ p < ∞,
u = ∞ and p = ∞, 1 ≤ u < ∞. Then we get the following result.

Theorem 13. Let α ∈ U+.

(i) Assume
∞∑

m=1

|anm − an−1,m| < ∞ for all n ≥ 1 and α ∈ l∞. (14)

Then A ∈ (bv(α), bv∞(β)) if and only if

sup
n,m

1

βn

∣∣∣∣
∞∑

j=m

(anj − an−1,j)

∣∣∣∣αm < ∞. (15)

(ii) Let 1 < p < ∞.

(a) Under the condition

∞∑

k=1

|ank − an−1,k|

( ∞∑

m=k

αq
m

) 1

q

< ∞ for all n (with q =
p

p − 1
), (16)

we have A ∈ (bvp(α), bv∞(β)) if and only if

sup
n

1

βq
n

∞∑

m=1

∣∣∣∣αm

∞∑

j=m

(anj − an−1,j)

∣∣∣∣
q

< ∞. (17)

(b) If β ∈ Γ, under the condition

∞∑

k=1

|ank|

( ∞∑

m=k

αq
m

) 1

q

< ∞ for all n (with q =
p

p − 1
), (18)

A ∈ (bvp(α), bv∞(β)) if and only if





sup
n,m

(
1

βn

∞∑

j=m

|anj |αm

)
< ∞ for p = 1,

sup
n

[
1

βq
n

∞∑

m=1

∣∣∣∣
∞∑

j=m

anjαm

∣∣∣∣
q]

< ∞ for 1 < p < ∞.

(iii) Under the condition

∞∑

m=1

αm

∞∑

j=m

|anj | < ∞ for all n, (19)
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A ∈ (bv∞(α), bv∞(β)) if and only if

sup
n

1

βn

∞∑

m=1

αm

∣∣∣∣
∞∑

j=m

(anj − an−1,j)

∣∣∣∣ < ∞. (20)

Proof. Since bv∞(β) = sβ(∆), we have A ∈ (bv(α), bv∞(β)) if and only if ∆A ∈
(bv(α), sβ). Then from the identity bv(α) = l1(α)(∆), we have ∆A ∈ (bv(α), sβ) if and
only if

(∆A)(ΣX) ∈ sβ for all X ∈ l1(α);

and by Lemma 8(i), the conditons given by (14) imply (∆A)(ΣX) = (∆AΣ)X for all X ∈

l1(α). Now we successively get AΣ =
(∑∞

k=m ank

)
n,m≥1

and ∆AΣ =
( ∑∞

k=m(ank −

an−1,k)
)

n,m≥1
and we conclude that A ∈ (bv(α), bv∞(β)) if and only if D1/β∆AΣDα ∈

(l1, l∞), that is condition (15).
(ii)(a) Since bv∞(β) = sβ(∆), we have A ∈ (bvp(α), sβ(∆)) if and only if D1/β∆A ∈

(bvp(α), l∞). Since bvp(α) = Σlp(α), this means

(D 1

β
∆A)(ΣX) ∈ l∞ for all X ∈ lp(α).

By Lemma 8(ii), condition (16) implies (D1/β∆A)(ΣX) = (D1/β∆AΣ)X for all X ∈
lp(α), and A ∈ (bvp(α), sβ(∆)) if and only if D1/β∆AΣ ∈ (lp(α), l∞), which in turn is
(17).

(ii)(b) If β ∈ Γ then by Lemma 5(ii) bv∞(β) = sβ(∆) = sβ. As above under condition
(18) A ∈ (bvp(α), bv∞(β)) if and only if D1/βAΣ ∈ (lp(α), l∞). This gives the conclusion.

(iii) Here bv∞(α) = l∞(α)(∆) = sα(∆) and bv∞(β) = sβ(∆). As above it can easily
be seen that A ∈ (sα(∆), sβ(∆)) if and only if ∆AΣ ∈ Sα,β , under condition (19).

We also have the following results when α ∈ Γ.

Proposition 14.
(i) If α ∈ Γ, then A ∈ (bvp(α), bv∞(β)) if and only if





sup
n,m

(
1

βn
|anm − an−1,m|αm

)
< ∞ for p = 1,

sup
n

[
1

βq
n

∞∑

m=1

(|anm − an−1,m|αm)q

]
< ∞ for 1 < p < ∞.

(ii) If α, β ∈ Γ, then A ∈ (bvp(α), bv∞(β)) if and only if





sup
n,m

(
1

βn
|anm|αm

)
< ∞ for p = 1,

sup
n

[
1

βq
n

∞∑

m=1

(|anm|αm)q

]
< ∞ for 1 < p < ∞.
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Proof. Since α ∈ Γ we have bvp(α) = lp(α) and A ∈ (bvp(α), bv∞(β)) if and only if
∆A ∈ (lp(α), sβ). Now the condition ∆A ∈ (lp(α), sβ) means that D1/β∆ADα ∈ (lp, l∞)
and we conclude by Lemma 7.

(ii) The condition α, β ∈ Γ implies bvp(α) = lp(α) and bv∞(β) = sβ(∆) = sβ . Thus
A ∈ (bvp(α), bv∞(β)) if and only if D1/βADα ∈ (lp, l∞), and we conclude by Lemma 7.

Study now the set (bv∞(α), bvu(β)). We obtain

Proposition 15. Let 1 ≤ u < ∞.

(i) Under the condition

∞∑

m=1

αm

∞∑

j=m

|anj − an−1,j| < ∞ for all n, (21)

A ∈ (bv∞(α), bvu(β)) if and only if

sup
N⊂N,N finite

( ∞∑

n=1

∣∣∣∣
∑

k∈N

1

βn

∞∑

m=k

(anm − an−1,m)αm

∣∣∣∣
u)

< ∞.

(ii) Let α ∈ Γ. Then A ∈ (bv∞(α), bvu(β)) if and only if

sup
N⊂N,N finite

( ∞∑

n=1

∣∣∣∣
1

βn

∑

m∈N

(anm − an−1,m)αm

∣∣∣∣
u)

< ∞; (22)

(iii) If β ∈ Γ, under the condition

∞∑

m=1

αm

∞∑

k=m

|ank| < ∞ for all n, (23)

A ∈ (bv∞(α), bvu(β)) if and only if

sup
N⊂N,N finite

( ∞∑

n=1

∣∣∣∣
1

βn

∑

k∈N

∞∑

m=k

anmαm

∣∣∣∣
u)

< ∞.

(iv) Let α, β ∈ Γ. Then A ∈ (bv∞(α), bvu(β)) if and only if

sup
N⊂N,N finite

( ∞∑

n=1

∣∣∣∣
1

βn

∑

m∈N

anmαm

∣∣∣∣
u)

< ∞.

Proof.
(i) A ∈ (bv∞(α), bvu(β)) if and only if ∆A ∈ (sα(∆), lu(β)). For all X ∈ sα

∆A(ΣX) ∈ lu(β).

Now since (21) holds ∆A(ΣX) = (∆AΣ)X for all X ∈ sα. Then A ∈ (bv∞(α),
bvu(β)) if and only if D1/β∆AΣDα ∈ (l∞, lu), and we conclude applying Lemma 7.



136 BRUNO DE MALAFOSSE

(ii) Since α ∈ Γ we get bv∞(α) = sα(∆) = sα. So A ∈ (bv∞(α), bvu(β)) if and only if

∆A ∈ (sα, lu(β)),

that is D1/β∆ADα ∈ (l∞, lu) and we conclude as above.

(iii) Here bvu(β) = lu(β) and A ∈ (sα(∆), lu(β)) if and only if A(ΣX) ∈ lu(β) for

all X ∈ sα. Since (23) holds we have A(ΣX) = (AΣ)X for all X ∈ sα and

A ∈ (sα(∆), lu(β)) if and only if AΣ ∈ (sα, lu(β)), that is D1/βAΣDα ∈ (l∞, lu).

we conclude applying Lemma 7(ii).

(iv) Now (bv∞(α), bvu(β)) = (sα, lu(β)) and A ∈ (sα, lu(β)) if and only if D1/βADα ∈

(l∞, lu) and we conclude by Lemma 7.

Remark 8. Note that in Proposition 15(ii), for h ≥ 1 integer and α ∈ Γ, we have

A ∈ (bvh
∞(α), bvu(β) if and only if (22) holds.
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