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ON THE SET OF «, p-BOUNDED VARIATION OF ORDER h

BRUNO DE MALAFOSSE

Abstract. In this paper we first explicit a subset of the set (Ip,l,) for 1 < p < oo and
0 < u < co. Then we deal with the space bv;;(a) = I,(a)(A") for h > 0 real, generalizing
the well-known set of p-bounded variation bv, = l,(A), and characterize martix transformations

mapping from bvg’(a) to buF(B) for 1 <p < oo and 0 < u < oo.

1. Preliminaries, background and notation.

Let A = (anm)n,m>1 be an infinite matrix and consider the sequence X = (x,)n>1
as a column vector. Then we will define the product AX = (A, (X))p>1 with A, (X) =
Zfrjﬂ GnmTm Whenever the series are convergent for all n > 1. We will denote by s, co, ¢
and [, the sets of all sequences, the set of sequences that converge to zero, that are
convergent and that are bounded respectively. A Banach space E of complex sequences
with the norm ||||g is @ BK space if each projection P, : X — P, X = x,, is continuous.
A BK space E is said to have AK if every sequence X = (x,)52, € E has a unique
representation X = fo:l Tn,e, where e, is the sequence with 1 in the n-th position and
0 otherwise.

For any given subsets F, I’ of s, we shall say that the operator represented by the
infinite matrix A = (@pm)n,m>1 maps E into F', that is A € (E, F), see M|, if

(i) the series defined by A, (X) = > 0°_, @nm@m are convergent for all n > 1 and for
all X € E;
(ii) AX e Fforall X € E.
For any subset E of s, we shall write

AE ={Y €5s:Y = AX for some X € E}.
If F' is a subset of s, we shall denote the so-called matriz domain by
FA)=Fys={Xes:Y=AX € F}. (1)
In this paper we will consider the well-known set

I, = {X = (Tn)n>1: Z |zn|P < oo} for p > 0 real.

n=1
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122 BRUNO DE MALAFOSSE

In the case when p,u > 0 are both unequals to 1 except for p = u = 2, (see [2]), there is
no characterization of the set (l,,l,). Denote now

Ut ={X = (¥n)n>1 € s : 7, > 0 for all n}

and let [,,(«) for & € U™ be the set of all sequences X = (,),,>1 such that (2, /an)n>1 €
lp. The set l,(a) is a Banach space with the norm

o0
Tn|\P
Xl = |P2], = [ 3 (52)
1Kl = 23], = |32 (5

Using Wilansky’s notation, it can easily be seen that I,(a) = (1/a)~! %1, is a BK space
with AK, see [15, Example 1.13, p.152]. For p = co we will write

1
P

loo(@) = 84 = {X = (Tn)n>1: supM < oo}.

n Qp

For given o € U™, we also have, see [, 8, 9, [1(]

s = {X = (Zp)p>1: lim In 0} and

n—0o0 Uy,

sle) = {X = (Tn)n>1: lim Ln 7 for some [ € (C}.
n—oo Qup,

Each of the sets s,, s and sgf) is a BK space and s% has AK. For o, 8= (Bn)n>1 € UT
we will use the set

1 oo
Sa,p = {A = (anm)n,mzl i sup {ﬁ_ Z |anm|am} < OO};
n n m=1

which is a Banach space with the norm [|Als, , = sup,{(1/8n) > oo _1 |@nm|oum }, see
[5-12]. If s, = sg we get the Banach algebra with identity So.o = Sa, see [, I8, [L1].

We will use the operator A defined by Axy = z; and Az, = x, — x,_1 for n > 2
and for all X = (x,,),>1 and define the set of «, p-bounded variation of order 1, by

> — _ p
b’l)p(Oé) - {X = (xn)nZI : Z (W) < OO}, with zg = 0.
n=1 n

Recall that for « = e = (1,...,1,...), we have bvy(a) = bv, and bv, is the set of p-
bounded variation, and for p = 1 and p = oo, the space bv,, is reduced to the spaces bv
and [oo(A) respectively. Using the notation (1) we may redefine the space bv,(«) as

bup() = lp(a)(A).

There are some results on the sets (bvp,Y) with Y = I, co, ¢, l1, or bv in [1, Theorem
13.3 and Theorem 13.4, pp.52]. When p is replaced by a sequence p = (py,)n>1 there are
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other results on (bvs,Y') where Y is either of the sets I, co, ¢, l1, see [3, Theorem 3.2,
pp.160]. Here we give conditions for a matriz map to belong to (bvl(a), buk(8)) where h,

k>0,1<p<o0,0<u< oo, and buli(a) = lp(a)(A").

2. Subset of (Ip,1l,) with 1 <p <ocoand 0 < u < oo

Let p, u be reals with p > 1 and v > 0. For any given infinite matrix A, put

su Anm fu=p=1,
m;’l(Z' ) »
o 1
Ny u(A) = {Z(sup |anm|> } ifp=1land 0 <u<oo,u#1;
no=ol % %
{Z(Zmnmr]) ] ifl<p<oo,0<u<ocowith ¢g=p/(p—1).
n=1 “m=1

We will write Ly, ,, for the set of all infinite matrices A with N, ,(A) < co. We then
have the following result

Theorem 1. Let p, u be reals with p > 1 and u > 0. Then
Lpu C (Ip,lu)
and for any given A € Ly, ||AX]1, < Npu(A)| X, for all X € 1,,.

Proof. Caseu = p = 1. We have A € (l1,11) if and only if all the series Z 1 GnmTm
are convergent for all n for all X €]y and AX €y forall X €. Let A € Ll,l We get

JAX], < Z < > |anmzm)

<> (Z Ianmzm)

m= n=1

( |xm|) ( sup Z |anm|) = [|AY|| | X |ls, for all X € 1.
1 -

Case p=1and u >0, u # 1. As above, let A € L;,. For every X € l; we successively
get

IN

4x0E < 3 (X fawnenl)
n=1

m=1

<32 (o onet) 35
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We conclude

14X s, < [Z(supmnm)r 1X s = [N (A)] 1 X

Casep>1and v >0. Let A€ Ly,. For every X €l,, we get

(oo} (oo} u oo (oo} u
X1 = 3 (| aumen] ) <30 (3 lannan)
n=1 m=1 n=1 m=1

and by the Holder inequality, where ¢ = p/(p — 1), we have
1, o0 1qu
X[, < Z [( fanl®)" (3 o) ]
m=1
1 u
[OZDNE

Remark 1. Let us recall the next results due to Stieglitz and Tietz [16], and Maddox
M], where either p or u is equal to one:

Mg i
M]3 nMg

<

1 1

Ianmlq) XN < INpu (A1 X -

n

3
I

hE
hE

<

Il
3
I

n

(l1,l,) = {A = (Gpm)n,m>1 : Sup (Z |anm|”) < oo} forl<u< oo,
n=1

m2>1
q
) <o}

We can also remark that if u =p > 1, then [|A|, 1) < Npp(A) with

and if 1 <p < oo and ¢ =p/(p — 1), then

E anm

neN

(zp,zl){A(anm)n,mx: sup (i

NCN,N finite m—1

| At s, forp=1,
Npp(A) = [Z ( Z (] )5] Z for p > 1.

We have the following application.

Example 2. Let 6, u > 0 and p > 1 be reals and consider the triangle
1

cl = 1 . 1

nf nf

)
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Then CY € (I, 1,) for § > 1/u+ 1/q with ¢ = p/(p —

Proof. Let f(z)=xY. Since n/f?(n) is decreasing sequence, writing C? € (anm )n.m>1

we have v . . .
X (o) =2 i) = [ (i)

Now (z/f4(x))*/7 = 1/2(¢" Du/a and [ 2/ (f9(2)] W/ 9dx < oo for (¢°1)u/q > 1, that
isf>1/u+1/q.

3. Some properties of the set bu(cv).

First recall some well known properties of the sets bv and bv® = bv(\)cg. In the
following T' = (tnm)n,m>1 is a triangle if ¢y, = 0 for all m > n and t,, # 0 for all n.

Theorem 3.([15, Theorems 3.3, 3.5, pp. 178, 179], [17, Theorems 4.3.12, 4.3.14, pp.
63, 64]).

Let E be a BK space. Then Erp is a BK space with | X||r = |TX || &.

If E is a closed subset of F' then Er is a closed subspace of Frp.

The set bv = [1(A) is called the set of bounded variation and by Theorem 3 and
[14, Theorem 2.2.10, p.152] if we put bv® = bv(\cop, then bv° and bv are BK spaces
with their natural norm || X ||y = >0 |¥n — Tn—1|- The set bv® has AK and every
sequence X = (Ty)n>1 € bv has a unique representation X =le+Y - (z, —l)e, where
Il =limy, o0 Ty

Here for a € UT we define the set of «, p-bounded variation of order h, by bvg () =
Ip(a)(A") for 0 < p < oo and h > 0. We will put bv}(a) = bu,(a), bv"(a) = I (a)(A")
and for p = oo, it can easily be seen that bv” (a) = s, (A").

We need to recall some results given in [8]. For this consider the following sets

G = {X = (@1 €U xi(kgxk) —001) (1 )}
cj:{XeU+ﬂc Ii(zn:xk) o( n—>oo)},

k=1

F:{XEUJF:E(I" 1;<1}
f{XeU+:n151;O( 1)<1}
)<1}

Note that X € I'" if and only if 1/X € I'. We shall see in Lemma 4 that if X € 6’\1,
then x, — co(n — o0). Furthermore, X € T if and only if there is an integer ¢ > 1 such

F*{XGU*: hm<
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that

~v4(X) = sup (znfl) < 1.

n>q+1 N Tn

We obtain the following results in which we put

[C(X)X], = i <Zn::ck)

k=1

Lemma 4. Leta € UT.
(i) If a € Cy there are K > 0 and v > 1 such that o, > K~™ for all n.
(i) The condition o € T implies that o € Cy and there exists a real b > 0 such that

[Cla)a), < #q(a) +b[yq(a)]®  forn>g+1.

(iii) The condition o € TT implies o € O} .
The proof follows from [9, Proposition 2.1, p. 1656-1658].

Remark 2. Note that I' Ch.

Let us consider now A as an operator from E into itself where E is either of the sets
Sy U, sff), or (). Then we obtain conditions for A € (E, E) to be bijective. In this
way we have the following results.

Lemma 5. Let a € UT.

(1) If a € T then bvp(a) = l(a) for 1 <p < oo;
1) $a(A) =384 if and only if a € Ch;

iii) sO(A) =5 if and only if o € Cy;
) s&c)(A) =59 if and only if a € T';
)

iv
(v) A, = DiAD, is bijective from c into itself with lim X = A, —lim X, if and only
if
Qn-1 .
Qp

Proof. (i) comes from [10]. (ii), (iii) and (v) come from [8, Theorem 2.6, pp. 1789]
and (iv) is a direct consequence of [8, Theorem 2.6, pp. 1789] and [12, Proposition 2, pp.
88].

Remark 3. Note that by Lemma 4(ii) the condition o € T" implies s,(A) = s, and
s9(A) = 0.
For h € R put now

(h i 1) - 7h(7h+1);!~(7h+i71) ifi>0,
i 1 if i =0,
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and define the operator A" = (Tam)n,m>1 for h € R by

o <h+nm1> itm <,

n—m
0 otherwise.

For h = —1 we get A" = ¥ with £,,, = 1 if m < n and £,,,, = 0 for m > n, see
5]. Study now the identity bvl(a) = l,(a)(A") = I,() for b > 0 or h > 1 integer and
1<p<oo.

We obtain the following

Lemma 6.(|10]) Let « € U™.
(i) For any given real h > 0, the condition bv"(a) = l1(a) is equivalent to

w(Z () E) o

m=n

(ii) Let h > 1 be an integer and p > 1 a real. If a € T then

Remark 4. Note that we also have 1/a € C; if and only if bv(a) = I;(c). Indeed
the conditions A € (I1(a), 11 () and ¥ € (I1(a),l1(a)) are equivalent to A* € S/, and
YT € 81/q, that is

n

I _0@1) and an<z i) = 0(1)(n — o).

(677 (6
n—1 k:lk

From the inequality o, /a,—1 < ap ( Sy 1/ak) for all n, we conclude that 1/a € Cf
if and only if bv(a) = I3 ().

: h k
4. Matrix map from bv, () to bv,(3)

In this section we give necessary conditions for an infinite matrix A to map bvg(a) =
Ip(a)(A") into buf(B) and some characterizations of the sets (bv"(a), bvk(5)), (buli(e),
bok (B)) and (bvl («), bvk (3)). For this we need additional results.

4.1. Other results

To state the next results we first need to recall the characterizations of (I,,ls) and
(lsoy L) and consider the identity A(xX) = (Ax)X for X € E, where E is either of the
sets I, (), 1 < p < 00, 84, or s2. In this way we have, (see [L5] and [16]).
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Lemma 7.
(i) A€ (lp,lx) if and only if

SUp |@pm| < 00 forp=1,

n,m

(o]
sup Anm|? < oo for1l<p<ooandq=+2.
wp > ] =y

m=1

(i) Let 1 <u < oo. Then A € (loo,ly) if and only if

g anm

meN

u
><oo.

Lemma 8. Let p > 1 be a real and X = (Xnm )n,m>1 an infinite matriz. The identity
A(xX) = (Ax)X for all X € E holds in the following cases

(i) When E =1i(a) if

00
sup < g
NCN,N finite ne1

We also need the following lemmas.

Z |Gnm| < 00 for all n, and sup(|Xnm|am) < oo; (2)
m=1

n,m

(i) When E = l,(a) with 1 < p < oo if

1

Z || ( Z |ka|qagn> < 00 for all n, with ¢ = %1; (3)
k=1 m=1 p

(iii) When E € {sa, sY, sff)} if

Z ( Z |ankam|am) < 00 for all n. (4)
k=1 m=1

Proof. First note that for any given integer n, we have

=1

o0 o0
An(xX) = Zank< Z ka:cm> for X = (zp)n>1 € 8,
k=1 m

whenever the series in the second member are convergent.
(i) Assume that (2) holds. Then putting

oo o0

[Anl (XD =D D lank] x| || for n > 1

k=1m=1
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one gets
o0 oo
A1) < 3l sup(xiomem) z
k=1 m, m=1

<

NE

|ank] sup(|ka|am)||X||ll(a) < oo for all n and all X € I3 («).

1 mk

el
Il

So we can invert ) 5, and ) in the expression of y,,. This shows A(xX) = (Ax)X
for all X € l1(«).
Assume that (3) holds. Then by the Holder inequality

401D = 3 (lentl 3 (amfan 221 )

k=1 m=1
S o (lml\P)?
<F el hoeres) (5 (52)

Z |ank] ( Z Ik | T, ) | X1, (o) for all n and for all X € I,(a);
k=1

and we conclude reasoning as above.

Comes from the fact that if (4) holds then |A,|(]xX]|) < oo for all n and all X € s,.
We get the same result when s, is replaced by s and by s&c)
are included in s,. This completes the proof.

, since these spaces

We also need to recall the following well-known result given in [13, Theorem 1].

Lemma 9. Let T € £. Then for arbitrary subsets E and F of s, the condition

Ae(E

F(T)) is equivalent to TA € (E, F).

4.2. Properties of the set (bv;‘(a), bvk(B)) for 1 < p < 00, 0 < u < oo, h and
k being reals or integers

First we give necessary conditions to have A € (bv]!(a), bvf(6)), this gives the follow-

ing

Theorem 10. Let o, 3 € UT and 1 < p < co.

(i)

Let 0 < u < o0.
(a) Let k € R and h > 1 be an integer. If a« € T, the condition

(SRS e
n=1 “m=1 ﬁ”j:1 J

S

q u
am> > < oo with g=——,

implies A € (bujy(c), buk (B)).
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(b) Let BT, heR and k > 1 be an integer. Assume

S0

agn> <oo foralln (6)

and

‘1) : < 00, (7)

o0 1 o) %

Z @( Z (|anm|am)q) < 0
implies A € (bv)i(c), bug(83)).

Proof. First a € I" implies A is bijective from I,(«) into itself and

bolh(a) = Ly(a) (A") = I (a).

Then A € (bv}(a),bvf(0)) if and only if Dy/sA*A € (bv)(),lu) = (Ip(),ly); and
Dl/ﬁAkADa € (Ip, 1) if Dl/ﬁAkADa € L, .. We have

1 (&~ —k4+n—j—1
s~ ((E (0 o).
A= (g em)en)

and using Lemma 8(ii), we conclude that condition (5) implies A € (bv(a), buf(8)).
(i)(b) Since 3 € T, then A is bijective from 1, (3) to itself and it is the same for A*.
So

bog (8) = Lu(B)(A") = 1.(B).

We have A™" = (7, )n.m>1 with
<h+nm1> for m < n,
Tom = n—m
0 for m > n.
By Lemma 8, condition (6) permits us to write that
AAT"X) = (AA™M) X for all X € I,(a). (8)

Now since AA™" = (¢m)n,m>1 With
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condition (7) means that Dq/3AA"D, € Ly ,; and since Ly, C (Ip, 1) then AA™" €
(Ip(a), 1u(B)). Thus (AA~™M)X € 1,(3) for all X € I,(a) and (8) implies that the series
defined by A,,(A~"X) are convergent for all n and for all X € [,(a), and A(A™"X) €
1.(3). We conclude that Dy,sAA™"D, € Ly, implies A € (bv}(),l.(8)) and A €
(b (@), bk (3)).

Statement (ii) The condition a, 3 € I" implies bv () = I,,(a) and bvk (3) = 1.(3)(A%)
= 1,(8). Then Dy/3ADo = (anm0m/Bn)nm>1 € Ly implies A € (bvf!(a), bk (5)).

Until now were given necessary conditions for A to belong to (bvl(a), bvy,(8)), when
u =1 and h € R we get the next characterization. In all that follows we will need to use
the convention ag,, = 0 for all m.

Proposition 11. Let 1 < p < 0o, h be a real and assume that
(o) o0
h+j—m-—1 a
Z|anj—an_17j|(2‘ ( i—m )am‘ ) <oo for all n. 9)
Jj=1 m=1
Then A € (bvl(a),bv(B)) if and only if

> > (anj —an-1y) (h+§:$_ 1) m

neN j=m

q

ié < 00.

m=1

sup
NCN,N finite

Proof. First A € (bv))(c), bv(3)) if and only if
AAAT"X) € 1,(B) for all X € I,().

Now since AA = (Gpm — Gn—1,m)n,m>1, from Lemma 8(ii), we see that under condition
(9) AA(A™"X) = (AAA™")X for all X € I,(a). Then A € (bv}!(a),bv(B)) if and only
if AAA™" € (I,(),11(B)) and we conclude using the characterization of (I, 7).

Remark 5. Note that for h, k € R, we have A € (bv;;(a), b (B)) if Dy/gA*AAT"D,,
€ Ly when the identity

AFAATX) = (AFAAM X for all X € l,(a)

is satisfied.

4.3. Properties of the set (bv"(a),bv*(3)) for h > 0 and k real or integer

Now we can state the next results

Theorem 12. Let 1 < u < oo and h > 0.
(i) Assume a €T and k € R. Then A € (bv"(a),bv¥(B)) if and only if

1] —k+n—j—1
s> 2 (| S ()
m n:lﬁ% 1 n J

j=

am)u < o0; (10)
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(ii) Let B €T and k > 1 be an integer. Under the condition

Z |anm| < oo for all n, and sup{‘ <h+n: 1> ‘am} < 00, (11)

n,m n—
m=1 ’
A € (b"(a), bk (B)) if and only if
S h4j—m—1 “
su — An g o < 0.

(iii) Let o, B €T and k > 1 be integer. Then A € (bv" (), bv(B)) if and only if

an{on 2 (520) } < )

Proof. (i) The condition « € T' implies bv"(a) = l1(a). So A € (" (), bvk(B)) if
and only if AFA € (I;(),1,(8)). From the expression of Dy,3A" AD, in the proof
of Theorem 10(i)(a), we conclude that Dy,3A*AD, € (I1,1,) if and only if (10)
holds.
(ii) The condition A € (bv"(a),1,(53)) means that the series defined by A, (A~"X) are
convergent for all X € i1 («) and for all n and

AAT"X) el ,(3)  forall X € 1i(a).
Under condition (11), A(A™"X) = (AA=")X for all X € l;(a), so A € (b"(a),

1,(08)) if and only if Dl/ﬁAA’hDa € (I1,1,), and we conclude since 8 € T implies

buu(B) = Lu(B).
(iii) Here a, 3 € T implies bo"(a) = l1(a)(A") = l1(«) and boF(B) = 1,(B8). So
€ (li(a),l.(8)) if and only if Dy/3ADy € (I1,l,) and we conclude using the
characterization of (I1,1,).

Remark 6. We also have the next result. Let k € R, 1 < u < 0o and « € l. Then

under the condition -

Z [@nm — Qn—1,m| < 00 for all n, (13)
m=1

u
}<oo.

Indeed A € (bv(a), bvk(3)) if only if AA(AT"X) € l,(B) for all X € [3(«). Since o € I
and (13) holds, by Lemma 8(1) we have AA(AT"X) = (AA(A™M)X for all X € [1(a).
We conclude since AAA~" € (I;(a),1,(3)) and

AAA_h: (Z Apj — An—1j5 (h+§:7n7:_1))nm>1.
j=m o

we have A € (bv(a),bvk(3)) if and only

= h+j—m—1
2 ‘—an—l,j)( i —m )Oém
j=m

o0

sup{z ﬂi
n=1"n

m
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Remark 7. Note that (ii) in the previous theorem is true for h real.

4.4. The sets (bvp(a), bvo(B)) and (bvss (), bv,(3))

133

In this part we characterize the set (bvp(a),bvse(83)) in the cases when 1 < p < oo,

u=o00and p=o00, 1 <u < oo. Then we get the following result.

Theorem 13. Leta € UT.
(i) Assume

oo
Z |@nm — Gn—1,m| < 00 foralln>1and a €l

m=1
Then A € (bv(a),bvss (B)) if and only if

oo

Ay, < OQ.

— Gp— 1,]

n,m
=m

(i) Let 1 < p < o0.
(a) Under the condition

o0 (o)

q
Z |ant — an_l,k|< Z agn> < oo for all n (with g = ]%
k=1 m=k

we have A € (bvp(a),bvss(B)) if and only if

oo oo q
sup 7 E Qm, g (anj — an—1,;)| < oo.
m=1 j=m

(b) If B € T, under the condition

0 0
Z|ank|<za?n> < o0 for all n (withq:Ll),

p—
k=1 m=k

€ (bvp(a),bves (B)) if and only if

1 o0
sup(ﬂ— Z am|am) < oo forp=1,

j=m

oo o0

g QO

m=1'j=

)
B

n

q
}<oo for1<p< oo

sup {
(iii) Under the condition

i Qm i lan;| < oo for all n,

m=1 j=m

(14)

(15)

(16)

(17)

(19)
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€ (bvoo (@), buso (B)) if and only if

< o0. (20)

Proof. Since bus(8) = sg(A), we have A € (bv(a),bvs(0)) if and only if AA €
(bu(e), sg). Then from the identity bv(a) = l1(a)(A), we have AA € (bv(a), sg) if and
only if

(AA)(EX) € sp for all X € [;(a);

and by Lemma 8(i), the conditons given by (14) imply (AA)(2X) = (AAY)X forall X €
l1(c). Now we successively get AY = (Z:’;m ank) and AAY = (Z;ozm(ank —

n,m>1

an—1,k )n ot and we conclude that A € (bv(a), bveo(3)) if and only if Dy ,3AAYD,, €

)
(l1,l), that is condition (15).
(ii)(a) Since bvse(B) = sg(A), we have A € (bvp(),s5(A)) if and only if Dy/3AA €
):

(bup (@), lso). Since bvy(a) = Xl,(), this means

(D%AA)(EX) €l for all X € ly(a).

By Lemma 8(ii), condition (16) implies (D;/3AA)(XX) = (D;/gAAY)X for all X €
Ip(ar), and A € (bvy(a),s5(A)) if and only if Dy /s AAY € (I,(),ls), Which in turn is
(17).
(ii)(b) If B € T then by Lemma 5(ii) bvso (5) = sg(A) = sg. As above under condition
(18) A € (bvy(a), buse(8)) if and only if Dy /3 AY € (Ip(a), l). This gives the conclusion.
(ili) Here bvso (@) = loo(@)(A) = s4(A) and bue(8) = sg(A). As above it can easily
be seen that A € (sq(A), sg(A)) if and only if AAY € S, g, under condition (19).

We also have the following results when « € T'.

Proposition 14.
(1) If a« €T, then A € (bvp(a),bvss(B)) if and only if

1
sup(—|anm — an_l,m|am) < 00 forp=1,
n,m ﬂn

oo

1
sup[ﬂ% Z (lanm — an_l,m|am)q} < oo forl<p< oo.
—1

(i) Ifa,B €T, then A € (bvp(a),bvss(B)) if and only if

sup( anm|am) < 00 forp=1,

Bn
1 o0

sup {—q (|anm|cm) q] < oo forl<p<oo.
Bn =
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Proof. Since a € T' we have bv,(a) = [,(a) and A € (bvy(a), bus(8)) if and only if
AA € (Ip(a),ss). Now the condition AA € (I,(c), s5) means that Dy /3AAD, € (I, 1)
and we conclude by Lemma 7.

(i) The condition «, § € T" implies bvp(a) = Ip(a) and bue(f) = s3(A) = sg. Thus
A € (bup(a),bvs (B3)) if and only if Dy/3ADg € (Ip,ls), and we conclude by Lemma 7.

Study now the set (bvso (@), bv,,(5)). We obtain

Proposition 15. Let 1 < u < oo.
(i) Under the condition

(o)
D am

[eS)
m=1 Jj=m

A € (buso (), buy(B)) if and only if

i (anm - an—l,m)am
B 2
m=

keEN

|an; — an-1,;] < o0 for all n, (21)

u
)<oo.

00
sup ( E
NCN,N finite n—1

(ii) Let o € T. Then A € (bvso (@), buy,(8)) if and only if

o0 u
1
sup ( — Z (Gnm — Gn—1,m)0m > < 00; (22)
NCN,N finite n—1 ﬁn meN
(iil) If B € T, under the condition
(o) (o)
Z Qm, Z |ank| < oo for all n, (23)

m=1 k=m
A € (buso (), buy(B)) if and only if
1 oo
Z E Z Z AnmOm

0o
sup (
NCN,N finite n—1 kEN m—k

“) < 00.
(iv) Let o, €T. Then A € (bvso (), bvy(8)) if and only if

(o] 1 u
Z ﬂ_ Z A, Oy, ) < 0.
Proof.

n=1
(i) A € (bvo(a), by (B)) if and only if AA € (s4,(A),1,(8)). For all X € s,

sup (
NCN,N finite

AA(EX) € 1,(B).

Now since (21) holds AA(XX) = (AAX)X for all X € s,. Then A € (buoo(a),
b, (B)) if and only if Dy /sAAXD, € (loo, lu), and we conclude applying Lemma 7.



136

(ii

BRUNO DE MALAFOSSE

) Since @ € T we get bvo (@) = 84(A) = 84. So A € (bvo (), buy,(B)) if and only if
AA € (sa,lu(B)),

that is D1/gAAD, € (I, ls) and we conclude as above.

(iii) Here bv,(8) = 1,(B) and A € (s4(A),1,(B)) if and only if A(XX) € [,(8) for

(iv

all X € s,. Since (23) holds we have A(XX) = (AX)X for all X € s, and
A € (54(A),1.(B)) if and only if AX € (sa,lu(8)), that is Dy/gAY Dy € (loo, lu)-
we conclude applying Lemma 7(ii).

) Now (bveo (), buu(B)) = (8a,lu(3)) and A € (sq4,1.(F)) if and only if Dy /3AD, €
(I, 1) and we conclude by Lemma 7.

Remark 8. Note that in Proposition 15(ii), for A > 1 integer and a € T", we have

A € (bvl (), bv,(B) if and only if (22) holds.
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