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SP-CONVERGENCE IN L-TOPOLOGICAL SPACES

ZHEN-GUO XU AND FU-GUI SHI

Abstract. In this paper, SP-convergence theory of nets, ideals and filters are built by means of

the concept of strongly preclosed L-sets. Their applications are presented.

1. Introduction and preliminaries

The convergence theory has some significant applications not only in topology and

analysis but also in inference and some other aspects.

In [21], Pu and Liu introduced the concepts of the Q-neighborhood and established

a systematic Moore-Smith convergence theory of fuzzy nets. Wang extended this theory

to L-fuzzy set theory in terms of closed remote-neighborhoods of molecules [25]. Later

on, all kinds of convergence theory were presented [3, 4, 5, 10, 11, 12, 14, 18, 16, 17, 23]

etc..

In this paper, we shall establish the SP-convergence theory of nets, ideals and filters

based on the idea of [25].

Throughout this paper (L,∨,∧,′ ) is a completely distributive de Morgan algebra, X

a nonempty set. LX is the set of all L-fuzzy sets (or L-sets for short) on X . The smallest

element and the largest element in LX are denoted by 0
¯

and 1
¯
, respectively.

An element a in L is called prime if a ≥ b∧ c implies a ≥ b or a ≥ c. An element a in

L is called co-prime if a′ is a prime element [15]. The set of nonunit prime elements in L

is denoted by P (L). The set of nonzero co-prime elements in L is denoted by M(L). The

set of nonzero co-prime elements in LX is denoted by M(LX). Each member in M(LX)

is also called a point.

The binary relation ≺ in L is defined as follows : for a, b ∈ L, a ≺ b if and only if

for every subset D ⊆ L, the relation b ≤ sup D always implies the existence of d ∈ D

with a ≤ d [13]. In a completely distributive DeMorgan algebra L, each member b is a

sup of {a ∈ L | a ≺ b}. In the sense of [19, 25], {a ∈ L | a ≺ b} is the greatest minimal

family of b, in symbol β(G). Moreover for b ∈ L, define α(b) = {a ∈ L | a′ ≺ b′} and

α∗(b) = α(b) ∩ P (L).

For an L-set G ∈ LX , β(G) denotes the greatest minimal family of G and β∗(G) =

β(G) ∩ M(LX).
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An L-topological space (or L-space for short) is a pair (X, T ), where T is a subfamily

of LX which contains 0
¯
, 1

¯
and is closed for any suprema and finite infima. T is called

an L-topology on X . Each member of T is called an open L-set and its complement is

called a closed L-set.

Definition 1.1.([1]) Let (X, T ) be an L-space, G ∈ LX . Then G is called semiopen

if G ≤ cl(int(G)); G is called semiclosed if G′ is semiopen.

Definition 1.2.([1]) Let (X, T ) be an L-space and G ∈ LX . We define:

(1) ints(G) =
∨

{C ∈ LX | C ≤ G, C is semiopen};

(2) cls(G) =
∧

{C ∈ LX | C ≥ G, C is semiclosed}.

ints(G) and cls(G) are called semiinterior and semiclosure of G, respectively.

Definition 1.3.([5]) Let (X, T ) be an L-space and G ∈ LX . Then G is called pre-

semiopen if G ≤ ints(cl(G)); G is called pre-semiclosed if G′ is pre-semiopen.

PSO(X) and PSC(X) will always denote the family of pre-semiopen L-sets and the

family of pre-semiclosed L-sets in (X, T ), respectively.

Definition 1.4.([2, 6, 24]) Let (X, T ) be an L-space and G ∈ LX . Then G is called

strongly semiopen (or α-open) if G ≤ int(cl(int(G))); G is called strongly semiclosed if

G′ is strongly semiopen.

SSO(X) and SSC(X) will always denote the family of strongly semiopen L-sets and

the family of strongly semiclosed L-sets in (X, T ), respectively.

In [7] and [8] , the concepts of strongly preopen sets, strongly preclosed sets and SP-

irresolute mapping were introduced in [0,1]-fuzzy set theory by Biljana Krateska. They

can easily be extended to L-sets as follows:

Definition 1.5. Let (X, T ) be an L-space and G ∈ LX . Then G is called strongly

preopen if G ≤ int(clp(G)); G is called strongly preclosed if G′ is strongly preopen.

SPO(X) and SPC(X) will always denote the family of strongly preopen L-sets and

the family of strongly preclosed L-sets in (X, T ), respectively.

Definition 1.6.([8]) Let (X, T1) and (Y, T2) be two L-spaces and f : X → Y be

a mapping. f is called SP-irresolute if f←L (B) is strongly preopen in (X, T1) for each

strongly preopen L-set B in (Y, T2).

Definition 1.7. Let (X, T ) be an L-space and G ∈ LX . We define:

(1) intsp(G) =
∨

{D ∈ LX | D ≤ G, D is strongly preopen};

(2) clsp(G) =
∧

{D ∈ LX | D ≥ G, D is strongly preclosed}.
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intsp(G) and clsp(G) are called strong preinterior and strong preclosure of G, respectively.

Theorem 1.8. Let (X, T ) be an L-space and G ∈ LX . Then

(1) G is strongly preopen if and only if G = intsp(G);
(2) G is strongly preclosed if and only if G = clsp(G).

Definition 1.9.([27]). A family P ⊂ LX is called a filter on X if

(1) P1 ∈ P and P2 ≥ P1 implies P2 ∈ P ;
(2) P1, P2 ∈ P implies that P1 ∧ P2 ∈ P .

A filter P is called a proper filter if P 6= 0
¯
.

For α ∈ M(LX), a filter P is called an α-filter if
∨

x∈X

P (x) ≥ α for every P ∈ P .

2. SP-adherence points and SP-accumulation points

Definition 2.1. Let (X, T ) be an L-space, xλ ∈ M(LX) and P ∈ LX . P is called
a remote set of xλ if xλ 6≤ P . A remot set P of xλ is called a strongly preclosed
(strongly semiclosed, pre-semiclosed) remote set of xλ if P is strongly preclosed (strongly
semiclosed, pre-semiclosed respectively).

The set of all strong preclosed (strongly semiclosed, pre-semiclosed) remote sets of
xλ is denoted by ηsp(xλ) (ηss(xλ), ηps(xλ) respectively).

Remark 2.2. By Definition 2.1, we can see that ηss(xλ) ⊂ ηsp(xλ) ⊂ ηps(xλ), where
xλ ∈ M(LX). But each inverse is not true, these can be seen from the following example.

Example 2.3. Let X = {x1, x2}, L = [0, 1] and A, B, C, D ∈ LX , we define:

A(x1) = 0.2, A(x2) = 0.5, B(x1) = 0.8, B(x2) = 0.6;

C(x1) = 0.8, C(x2) = 0.4, D(x1) = 0.7, D(x2) = 0.6.

Let (X, T ) be an L-space, where τ = {0
¯
, A, B, 1

¯
}. Then C is strongly preclosed, but it is

not strongly semiclosed, also D is pre-semiclosed, but it is not strongly preclosed. We can
take x0.5 and x0.7, where x = x2 ∈ X , then x0.5 and x0.7 are two points and x0.5 6≤ C,
x0.7 6≤ D, thus C ∈ ηsp(x0.5), but C 6∈ ηss(x0.5) and D ∈ ηps(x0.7), but D 6∈ ηsp(x0.7).

Definition 2.4. Let (X, T ) be an L-space, G ∈ LX and xλ, xµ ∈ M(LX). Then xλ

is called an SP-adherence point of G if G 6≤ P for each P ∈ ηsp(xλ).

An SP-adherence point xλ of G is called an SP-accumulation point of G if xλ 6≤ G

or xλ ≤ G implies that for each point xµ satisfying xλ ≤ xµ ≤ G, it follows that
G 6≤ xµ ∨ P . The union of all SP-accumulation points of G is called the SP-derived set
of G and denoted by Gdsp .

Theorem 2.5. Let (X, T ) be an L-space, G ∈ LX and xλ ∈ M(LX). Then
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(1) xλ is an SP -adherence point of G if and only if xλ ≤ clsp(G);
(2) clsp(G) equals the union of all SP -adherence points of G;

(3) clsp(G) = G ∨ Gdsp ;

(4) clsp(G
dsp) ≤ clsp(G).

Proof.

(1) (⇒). Suppose that xλ 6≤ clsp(G), then clsp(G) ∈ ηsp(xλ), by G ≤ clsp(G), we know
that xλ is not an SP-adherence point of G, a contradiction.
(⇐). Suppose that xλ ≤ clsp(G) and xλ is not an SP-adherence point of G, then
there exists a P ∈ ηsp(xλ) such that G ≤ P , this imples that clsp(G) ≤ P since P is
strongly preclosed. Thus xλ 6≤ clsp(G), a contradiction.

(2) We need only consider the case G 6= 0
¯
. Since clsp(G) =

∨

{xλ | xλ ≤ clsp(G)} and
by (1), we have that clsp(G) is the union of all its SP-adherence points.

(3) We need only prove that clsp(G) ≤ G∨Gdsp . In fact, if for some point xλ ≤ clsp(G),
it follows that xλ 6≤ G, then by (1) and Definition 2.4 we know that xλ ≤ Gdsp .

(4) If xλ ≤ clsp(G
dsp), then by (1) and Definition 2.4 we have that Gdsp 6≤ P for each

P ∈ ηsp(xλ). Hence there exists an SP-accumulation point e of G such that e 6≤ P ,
which means P ∈ ηsp(e). But e is an SP-adherence point of G, hence G 6≤ P . Form
above statement, we know that G 6≤ P for each P ∈ ηsp(xλ), so xλ is SP-adherence
point of G. Thus by (1) we have xλ ≤ clsp(G).

Theorem 2.6. Let (X, T ) be an L-space and G ∈ LX. Then G is strongly preclosed

if and only if for each point xλ 6≤ G, there exists P ∈ ηsp(xλ) such that G ≤ P .

Proof. The necessity is obvious. Now we prove the sufficiency. Suppose that for
each point xλ 6≤ G, there exists P ∈ ηsp(xλ) such that G ≤ P , i.e., there exists P ∈
ηsp(xλ) such that clsp(G) ≤ P . Then xλ 6≤ clsp(G). Hence above statement implies that
xλ 6≤ G ⇒ xλ 6≤ clsp(G). Thus G ≥ clsp(G). Therefore G is strongly preclosed.

3. SP-convergence of nets

In this section, we shall discuss SP-convergence of nets.

Definition 3.1. Let (X, T ) be an L-space, xλ ∈ M(LX) and S = {S(n) | n ∈ D} a
net in LX . Then

(1) xλ is said to be an SP-limit point of S, in symbols, S
SP
−→ xλ if for each P ∈ ηsp(xλ),

S(n) 6≤ P is eventually true;

(2) xλ is said to be an SP-cluster point of S, in symbols, S
SP
∝ xλ if for each P ∈ ηsp(xλ),

S(n) 6≤ P is frequently true.

The union of all SP-limit points and the union of all SP-cluster points of S will be
denoted by limsp S and adspS, respectively. Obviously limsp S ≤ adspS.
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Remark 3.2. From Definition 3.1 and Definition 2.1 in [3] and Definition 5.1 in [4]

we easily know that PS-adS ≤ adspS ≤ Q-adS and PS- limS ≤ limsp S ≤ Q- limS.

Theorem 3.3. Let (X, T ) be an L-space, xλ, xµ ∈ M(LX) and S be a net in LX .

Then the following statements are true.

(1) Let T = {T (n) | n ∈ D} be a net with the same domain as S and for each n ∈

D, T (n) ≥ S(n). If S
SP
−→ xλ, then T

SP
−→ xλ;

(2) Let T = {T (n) | n ∈ D} be a net with the same domain as S and for each n ∈

D, T (n) ≥ S(n). If S
SP
∝ xλ, then T

SP
∝ xλ;

(3) If S
SP
−→ xλ and xµ ≤ xλ, then S

SP
−→ xµ;

(4) If S
SP
∝ xλ and xµ ≤ xλ, then S

SP
∝ xµ.

Proof. It is simple and omitted.

Theorem 3.4. Let (X, T ) be an L-space, xλ ∈ M(LX) and S be a net in LX .

Then

(1) S
SP
−→ xλ if and only if xλ ≤ limsp S;

(2) S
SP
∝ xλ if and only if xλ ≤ adspS.

Proof.

(1) The necessity is obvious. We prove the sufficiency.

Suppose that xλ ≤ limsp S and P ∈ ηsp(xλ). Then limsp S 6≤ P . By the definition of

limsp S, there exists an SP-limit point e of S such that e 6≤ P , i.e., P ∈ ηsp(e). By e

is an SP-limit point of S, we know that S is eventually not in P , therefore S
SP
−→ xλ.

(2) This is analogous to proof of (1).

Theorem 3.5. Let (X, T ) be an L-space, xλ ∈ M(LX) and S = {S(n) | n ∈ D} be

a net in LX . If S has a subnet T such that T
SP
−→ xλ, then S

SP
∝ xλ.

Proof. Suppose that T (m) = {T (m) | m ∈ E} is a subnet of S, T
SP
−→ xλ, P ∈

ηsp(xλ) and n0 ∈ D. By the definition of subnet, there exists a mapping N : E → D

and m0 ∈ E such that N(m) ≥ n0(N(m) ∈ D) when m ≥ m0(m ∈ E). Since T SP-

converges to xλ, there is m1 ∈ E such that T (m) 6≤ P when m ≥ m1(m ∈ E). Because

E is a directed set, there exists m2 ∈ E such that m2 ≥ m0 and m2 ≥ m1. Hence

T (m2) 6≤ P and N(m2) ≥ n0. Let n = N(m2). Then S(n) = S(N(m2)) = T (m2) 6≤ P

and n ≥ n0. This implies that S(n) 6≤ P is frequently true. Thus S
SP
∝ xλ.

Theorem 3.6. Let (X, T ) be an L-space and S be a net in LX. Then limsp S and

adspS are strongly preclosed.



144 ZHEN-GUO XU AND FU-GUI SHI

Proof. Let xλ ≤ clsp(limsp S). Then limsp S 6≤ P for each P ∈ ηsp(xλ). Hence there
exists a point e such that e ≤ limsp S and e 6≤ P . Then P ∈ ηsp(e). By Theorem 3.4

S
SP
−→ e. Hence S 6≤ P is eventually true. Thus xλ ≤ limsp S. This implies that limsp S

is strongly preclosed.
Similarly adspS is strongly preclosed.

Theorem 3.7. Let (X, T ) be an L-space, G ∈ LX , xλ ∈ M(LX). If there exists a

net S = {S(n) | n ∈ D} in G such that S
SP
∝ xλ, then xλ ≤ clspG.

Proof. Suppose that S = {S(n) | n ∈ D} is a net in G and S
SP
∝ xλ. Let P ∈ ηsp(xλ),

then S is not frequently in P , hence there is n ∈ D such that S(n) 6≤ P , but S(n) ≤ G,
so G 6≤ P . Thus xλ is an SP-adherence point of G, i.e., xλ ≤ clsp(G).

Now we give characterization of SP-accumulation point of L-set G by means of net.

Let G ∈ LX , x ∈ X , we define G − x1 follow as:

(G − x1)(t) =

{

G(t), if x 6= t,

0, if x = t.
(1)

Then G − x1 = G ∧ x′1 =
{

tG(t) | t ∈ suppG − {x}
}

.

Theorem 3.8. Let (X, T ) be an [0, 1]-space, G ∈ IX and xλ ∈ M(IX) in G. If there

exists a net S in G− x1 such that S
SP
−→ xλ, then xλ is an SP -accumulation point of G.

Proof. Suppose that xλ ≤ G and there exists a net S = {S(n) | n ∈ D} in G − x1

such that S
SP
−→ xλ. Let P ∈ ηsp(xλ) and xµ is a point satisfying xλ ≤ xµ ≤ G. Hence

there exists n ∈ D such that S(n) = yγ 6≤ P and by yγ ≤ G − x1, we know y 6= x, so

yγ 6≤ xµ. Hence yγ 6≤ P ∨ xµ, therefore G 6≤ P ∨ xµ. By Definition 2.4, we have that xλ

is an SP-accumulation point of G.

4. SP-convergence of ideals

Definition 4.1. Let (X, T ) be an L-space, I be an ideal in LX and xλ ∈ M(LX).

Then

(1) xλ is said to be SP-limit point of I, in symbols, I
SP
−→ xλ if ηsp(xλ) ⊂ I;

(2) xλ is said to be SP-cluster point of I, in symbols, I
SP
∝ xλ if for each G ∈ I and each

P ∈ ηsp(xλ), it follows that G ∨ P 6= 1
¯
.

The union of all SP-limit points and union of all SP-cluster points of I are denoted
by limsp I and adspI, respectively. Obviously, limsp I ≤ adspI.

Theorem 4.2. Let both I and J be ideals in LX , I ⊂ J and xλ, xµ ∈ M(LX).
Then
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(1) I
SP
−→ xλ implies J

SP
−→ xλ;

(2) J
SP
∝ xλ implies I

SP
∝ xλ;

(3) If I
SP
−→ xλ and xµ ≤ xλ, then I

SP
−→ xµ;

(4) If I
SP
∝ xλ and xµ ≤ xλ, then I

SP
∝ xµ.

Proof. It is simple and omitted.

Theorem 4.3. Let (X, T ) be an L-space, G ∈ LX and xλ ∈ M(LX). If there exists

an ideal I in LX such that G 6∈ I and I
SP
−→ xλ, then xλ ≤ clsp(G).

Proof. Suppose that I
SP
−→ xλ and G 6∈ I. Let P ∈ ηsp(xλ), then by the fact that

ηsp(xλ) ⊂ I and I is a lower set, we know that G 6≤ P , so xλ is an SP-adherence point
of G, therefore xλ ≤ clsp(G).

Theorem 4.4. Let (X, T ) be a [0, 1]-space, G ∈ LX , xλ ∈ M(LX), and xλ ≤ G.

If there exists an ideal I in LX such that G − x1 6∈ I and I
SP
−→ xλ, then xλ is an

SP-accumulation point of G.

Proof. Suppose that there exists an ideal I in LX such that G−x1 6∈ I and I
SP
−→ xλ.

Let P ∈ ηsp(xλ), then by ηsp(xλ) ⊂ I, we have P ∈ I. Since I is lower set, we know
that G − x1 6≤ P , so G 6≤ P ∨ xG(x). In particular, for each point xµ ∈ M(LX) with
xλ ≤ xµ ≤ G, we have G 6≤ P ∨ xµ. Hence xλ is an SP-accumulation point of G.

Theorem 4.5. Let (X, T ) be an L-space, I be an ideal in LX and xλ ∈ M(LX).
Then

(1) I
SP
−→ xλ if and only if xλ ≤ limsp I;

(2) I
SP
∝ xλ if and only if xλ ≤ adspI.

Proof. We prove only the sufficiency of (1). Suppose that xλ ≤ limsp I, P ∈ ηsp(xλ).
Then xλ 6≤ P , so limsp I 6≤ P . By definition of limsp I, we know that I has an SP-limit
point e such that e 6≤ P , i.e., P ∈ ηsp(e) ⊂ I, thus P ∈ I, therefore ηsp(xλ) ⊂ I. Hence

I
SP
−→ xλ.

Theorem 4.6. Let (X, T ) be an L-space, I be an ideal in LX . Then limsp I and

adspI are strongly preclosed.

Proof. The proof is analogous to the proof of The Theorem 3.6.

5. SP-convergence of filters

In this section, we first introduce the concept of SP-convergence of filters and then
discuss its some properties.
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Definition 5.1. Let (X, T ) be an L-space, xλ ∈ M(LX) and P ∈ LX . P is called a
quasi set of xλ if xλ 6≤ P ′, in this case, we also say that xλ quasi-coincides with P and
it is denote by xλq̂P . A quasi set P of xλ is called a strongly preopen quasi set of xλ if

P is strongly preopen.
The set of all strong preopen quasi sets of xλ is denoted by Qsp(xλ).

Remark 5.2. From the above definition , we can see that if A, B ∈ LX , A ≤ B,
xλ ∈ M(LX) and xλq̂A, then xλq̂B.

Definition 5.3. Let (X, T ) be an L-space, P be a proper filter in LX and e ∈
M(LX).

(1) e is called an SP-cluster point of P , in symbol, P
SP
∝ e if for every U ∈ Qsp(e) and

every A ∈ P , it follows that U∨A 6= 0
¯
, in this case, we also say that P SP-accumulates

to e.
(2) e is called an SP-limit point of P , in symbol, P

SP
−→ e if Qsp(e) ⊂ P .

The union of all SP-cluster points of P is denoted by adspP and the union of all
SP-milit points of P is denoted by limsp P .

Theorem 5.4. Let (X, T ) be an L-space, P be a proper filter and e ∈ M(LX).
Then

(1) If P
SP
−→ e, then P

SP
∝ e;

(2) limsp P ≤ adspP;

(3) If P
SP
∝ e and d ≤ e, then P

SP
∝ d;

(4) If P
SP
−→ e and d ≤ e, then P

SP
−→ d;

(5) P
SP
−→ e if and only if e ≤ limsp P;

(6) P
SP
∝ e if and only if e ≤ adspP.

Proof. It is simple and omitted.

Definition 5.5. Let (X, T ) be an L-space, P ,G be proper filters in LX . Say G is
finer than P , or say P is coarser than G, if P ⊂ G.

Theorem 5.6 Let (X, T ) be an L-space, P,G be proper filters in LX, P be coarser

than G and e ∈ M(LX). Then

(1) adspG ≤ adspP;

(2) limsp P ≤ limsp G;

(3) If G
SP
∝ e, then P

SP
∝ e;

(4) P
SP
−→ e, then G

SP
−→ e.

Proof. It is simple and omitted.
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6. Relations among nets, ideals, filters

In this section, we discuss relations among nets, ideals and filters.

Definition 6.1.([26]) Let (X, T ) be an L-space.

(1) Let I be an ideal in LX and D(I) = {(e, G) | e ∈ M(LX), G ∈ Iand e 6≤ G}.
For every pair of elements (e1, G1) and (e2, G2) in D(I), we define that (e1, G1) ≤
(e2, G2) if and only if G1 ≤ G2. Then (D(I),≤) is a directed set. Clearly, S(I) =
{S(I)(e, G) = e | (e, G) ∈ D(I)} is a net in LX and is called the net induced by I.

(2) Let S be a net in LX . Then I(S) = {G ∈ LX | S in not eventually in G} is an ideal
in LX and is called the ideal induced by S.

Theorem 6.2. Let (X, T ) be an L-space and I be an ideal in LX . Then

(1) limsp I = limsp S(I);
(2) adspI = adspS(I).

Proof. We prove only (1). Let e ≤ limsp I. Then I
SP
−→ e, so P ∈ I for each

P ∈ ηsp(xλ). Hence (e, P ) ∈ D(I). If (a, G) ∈ D(I) and (a, G) ≥ (e, P ), then we
have S(I)(a, G) = a 6≤ G ≥ P . This implies that S(I) is not eventually in P for each

P ∈ ηsp(xλ), i.e., S(I)
SP
−→ xλ.

Conversely, let e ≤ limsp S(I). Then S(I)
SP
−→ e. Therefore for each P ∈ ηsp(e)

there exists (a, G) ∈ D(I) such that S(I)(b, H) = b 6≤ P whenever (b, H) ≥ (a, G) and
(b, H) ∈ D(I). In particular, take H = G, we know that b 6≤ G implies b 6≤ P , or
equivalently b ≤ P implies b ≤ G. Hence P ≤ G follows from Theorem 1.5.29 in [25].
Note that I is a lower set and G ∈ I, so P ∈ I. This shows that ηsp(e) ⊂ I. Hence

I
SP
−→ e. From Theorem 4.5 we have e ≤ limsp I. Thus (1) holds.

Theorem 6.3. Let (X, T ) be an L-space and S be a net in LX . Then

(1) limsp S = limsp I(S);
(2) adspS ≤ adspI(S).

Proof. We prove only (2). In accordance with Theorems 4.5 and 3.4, we need only

prove that S
SP
∝ xλ implies I(S)

SP
∝ xλ. Let S

SP
∝ xλ. Then S is not frequently in P for

each P ∈ ηsp(xλ). On the other hand, S is not eventually in G for each G ∈ I(S). Hence
S is not frequently in P ∨ G for each P ∈ ηsp(xλ) and each G ∈ I(S). This means that

P ∨ G 6= 1
¯
. Thus I(S)

SP
∝ xλ.

Now we give relations between nets and filters.

Definition 6.4. Let (X, T ) be an L-space, P be a filter in LX and S be a net in LX .
For S, define the filter associated with the net S as the family P(S) of all the L-subsets
on X which the net S eventually quasi-coincides with.
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For P , let
D(P) = {(e, A) | e ∈ M(LX), eq̂A ∈ P}

and equip it with a relation ≤ on it as

∀(e, A), (d, B) ∈ D(P), (e, A) ≤ (d, B) ⇔ A ≥ B.

Define the net associated with the filter P as the mapping

S(P) : D(P) → M(LX), S(P)(e, A) = e, ∀(e, A) ∈ D(P).

Then the filter P(S) associated with S is a proper filter in LX , D(P) equipped with
≤ is a directed set and the S(P) associated with P is a net in LX .

Theorem 6.5. Let (X, T ) be an L-space, S a net in LX , P a proper filter in LX

and e ∈ M(LX). Then

(1) S
SP
−→ e if and only if P(S)

SP
−→ e;

(2) P
SP
−→ e if and only if S(P)

SP
−→ e;

(3) P
SP
∝ e if and only if S(P)

SP
∝ e;

(4) S
SP
∝ e implies P(S)

SP
∝ e

Proof.

(1) (⇔) By the relative definitions.

(2) (⇒) Suppose P
SP
−→ e = xa ∈ M(LX), U ∈ ηsp(e), then xa 6≤ U . Take xλ ∈ M(LX)

such that xλ ≤ xa, xλ 6≤ U , so xλq̂U ′. By Theorem 5.4(4) P
SP
−→ xλ ≤ xa, U ′ ∈

Qsp(xλ) ⊂ P . So (xλ, U ′) ∈ D(P). ∀(d, A) ∈ D(P) such that (d, A) ≥ (xλ, U ′), then
dq̂A ≤ U ′. By Remark 5.2 S(P)(d, A) = dq̂U ′, S(P) eventually quasi-coincides with
U ′, i.e., S(P) 6≤ (U ′)′ = U eventually is true. By the arbitrariness of U ∈ ηsp(e),

S(P)
SP
−→ e.

(⇐) Suppose S(P)
SP
−→ e, U ∈ Qsp(e), then U ′ ∈ ηsp(e). So S(P) 6≤ U ′ eventually

is true. ∃(d0, A0) ∈ D(P) such that ∀(d, A) ≥ (d0, A0), d = S(P)(d, A) 6≤ U ′, i.e.,
dq̂U . So ∀d ∈ M(LX) such that dq̂A0, we have (d, A0) ∈ D(P), (d, A0) ≥ (d0, A0)
and hence dq̂U . That is to say ∀d ∈ M(LX), dq̂A0 implies that dq̂U , i.e., d ≤ U ′

implies that d ≤ A0. So U ′ ≤ A′0, U ≥ A0. Since A0 ∈ P , P is a filter, so U ∈ P .

By the arbitrariness of U ∈ Qsp(e), Qsp(e) ⊂ P . P
SP
−→ e.

(3) (⇒) Suppose P
SP
∝ e, U ∈ ηsp(e), i.e., U ′ ∈ Qsp(e), (d0, A0) ∈ D(P). We need

to find a (d, A) ∈ D(P) such that (d, A) ≥ (d0, A0), S(d, A) 6≤ U . Since P
SP
∝ e,

U ′ ∈ Qsp(e) and A0 ∈ P , A0 ∧ U ′ 6= 0
¯
, A′0 ∨ U 6= 1

¯
. So ∃d ∈ M(LX) such

that d 6≤ A′0 ∨ U , so dq̂(A0 ∧ U ′). Therefore dq̂A0, by (d0, A0) ∈ D(P), A0 ∈ P , so
(d, A0) ∈ D(P), (d, A0) ≥ (d0, A0). By dq̂(A0∧U ′) and Remark 5.2, S(d, A0) = dq̂U ′,
i.e., S(d, A0) 6≤ U , this is that we need to prove.
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(⇐) Suppose S(P)
SP
∝ e, A ∈ P , U ∈ Qsp(e)(so U ′ ∈ ηsp(e)), we need to show

A ∧ U 6= 0
¯
. Since A ∈ P and P is a proper filter in LX , A 6= 0

¯
, A′ 6= 1

¯
. So

∃d ∈ M(LX) sucht that d 6≤ A′, i.e., dq̂A, so (d, A) ∈ D(P). Since S(P)
SP
∝ e,

∃(d0, A0) ∈ D(P) such that (d0, A0) ≥ (d, A), d0 = S(d0, A0) 6≤ U ′. So d0 6≤ A′0,

d0 6≤ U ′. By d0 ∈ M(LX), d0 6≤ A′0 ∨ U ′ = (A0 ∧ U)′, (A0 ∧ U)′ 6= 1
¯
, A0 ∧ U 6= 0

¯
.

Since (d0, A0) ≥ (d, A), A0 ≤ A. so A ∧ U 6= 0
¯
.

(4) Suppose S = {S(n), n ∈ D}, A ∈ P(S), U ∈ Qsp(e), going to show A ∧ U 6= 0
¯
.

Since A ∈ P(S), ∃n0 ∈ D such that ∀n ≥ n0, S(n) 6≤ A′. Since U ∈ Qsp(e), i.e.,

U ′ ∈ ηsp(e), S
SP
∝ e, ∃n1 ∈ D, n1 ≥ n0 sucht that S(n1) 6≤ U ′. So S(n1) 6≤ A′, U ′.

But S(n1) ∈ M(LX), so S(n1) 6≤ A′ ∨ U ′ = (A ∧ U)′,(A ∧ U)′ 6= 1
¯
, A ∧ U 6= 0

¯
.

7. Applications of SP-convergence theory of nets

Theorem 7.1. Let (X, T1) and (Y, T2) be two L-spaces. A mapping f : X → Y

is SP -irresolute if and only if clsp(f
←

L (P )) ∈ c(xλ) for each P ∈ ηsp(f
→

L (xλ)), where

xλ ∈ M(LX).

Proof. Suppose that f is SP-irresolute and xλ ∈ M(LX). Then f←L (P ) is strongly

preclosed for each P ∈ ηsp(f
→

L (xλ)). Clearly xλ 6≤ f←L (P ). Hence f←L (P ) = clsp(f
←

L (P ))

∈ ηsp(xλ).

Conversely, let P be strongly preclosed in (Y, T2). We may assume that f←L (P ) 6= 1
¯

and xλ 6≤ f←L (P ). Then f→L (xλ) 6≤ P , i.e., P ∈ ηsp(f
→

L (xλ)). Hence clsp(f
←

L (P )) ∈

ηsp(xλ), i.e., xλ 6≤ f←L (P ) implies that xλ 6≤ clsp(f
←

L (P )). So clsp(f
←

L (P )) ≤ f←L (P ).

Thus f←L (P ) is strongly preclosed in (X, T1). This shows that f is SP-irresolute.

Theorem 7.2. Let (X, T1) and (Y, T2) be two L-spaces, xλ ∈ M(LX) and f : X →

Y is SP -irresolute. If a net S
SP
−→ xλ in LX , then f→L (S)

SP
−→ f→L (xλ) in LY .

Proof. Suppose that f is SP-irresolute and S
SP
−→ xλ. Let P ∈ ηsp(f

→

L (xλ)).

Then f←L (P ) ≤ clsp(f
←

L (P )) ∈ ηsp(xλ) from f is SP-irresolute and so S(n) 6≤ f←L (P )

is eventually true from S
SP
−→ xλ. Therefore f→L (S) 6≤ P is eventually true. Thus

f→L (S)
SP
−→ f→L (xλ).

Corollary 7.3. Let (X, T1) and (Y, T2) be two L-spaces. If a mapping f : X → Y

is SP -irresolute, then

(1) f→L (limsp S) ≤ limsp f→L (S) for each net S in LX;

(2) f←L (limsp T ) ≤ limsp f←L (T ) for each net T in LY .

Proof.

(1) Suppose that S = {S(n) | n ∈ D} is a net in LX and g ∈ f→L (limsp S). Then there

exists e ≤ limsp S with g = f→L (e). We prove that g ≤ limsp f→L (S). In fact, by
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e ≤ limsp S, we know that S
SP
−→ e from Theorem 3.4. Since f is SP-irresolute, we

obtain that f→L (S)
SP
−→ f→L (e) = g from Theorem 7.2. And by Theorem 3.4, we have

that g ≤ limsp f→L (S). Thus

f→L (limspS) ≤ limspf
→

L (S).

(2) Let T = {T (n) | n ∈ D} be a net in LY . Then

f←L (T ) = {f←L (T (n)) | n ∈ D}

is a net in LX . Since f is SP-irresolute, according to (1) we have

f→L (limspf
←

L (T )) ≤ limspf
→

L (f←L (T )) ≤ limspT.

Hence limsp f←L (T ) ≤ f←L (limspT ).
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