TAMKANG JOURNAL OF MATHEMATICS Volume 38, Number 2, 139-151, Summer 2007

SP-CONVERGENCE IN L-TOPOLOGICAL SPACES

ZHEN-GUO XU AND FU-GUI SHI

Abstract. In this paper, SP-convergence theory of nets, ideals and filters are built by means of the concept of strongly preclosed L-sets. Their applications are presented.

1. Introduction and preliminaries

The convergence theory has some significant applications not only in topology and analysis but also in inference and some other aspects.

In [21], Pu and Liu introduced the concepts of the Q-neighborhood and established a systematic Moore-Smith convergence theory of fuzzy nets. Wang extended this theory to L-fuzzy set theory in terms of closed remote-neighborhoods of molecules [25]. Later on, all kinds of convergence theory were presented [3, 4, 5, 10, 11, 12, 14, 18, 16, 17, 23] etc..

In this paper, we shall establish the SP-convergence theory of nets, ideals and filters based on the idea of [25].

Throughout this paper $(L, \lor, \land, ')$ is a completely distributive de Morgan algebra, X a nonempty set. L^X is the set of all *L*-fuzzy sets (or *L*-sets for short) on X. The smallest element and the largest element in L^X are denoted by $\underline{0}$ and $\underline{1}$, respectively.

An element a in L is called prime if $a \ge b \land c$ implies $a \ge b$ or $a \ge c$. An element a in L is called co-prime if a' is a prime element [15]. The set of nonunit prime elements in L is denoted by P(L). The set of nonzero co-prime elements in L is denoted by M(L). The set of nonzero co-prime elements in L^X is denoted by $M(L^X)$. Each member in $M(L^X)$ is also called a point.

The binary relation \prec in L is defined as follows : for $a, b \in L$, $a \prec b$ if and only if for every subset $D \subseteq L$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$ [13]. In a completely distributive DeMorgan algebra L, each member b is a sup of $\{a \in L \mid a \prec b\}$. In the sense of [19, 25], $\{a \in L \mid a \prec b\}$ is the greatest minimal family of b, in symbol $\beta(G)$. Moreover for $b \in L$, define $\alpha(b) = \{a \in L \mid a' \prec b'\}$ and $\alpha^*(b) = \alpha(b) \cap P(L)$.

For an L-set $G \in L^X$, $\beta(G)$ denotes the greatest minimal family of G and $\beta^*(G) = \beta(G) \cap M(L^X)$.

Received August 16, 2005.

2000 Mathematics Subject Classification. 54A40.

Key words and phrases. L-topological space, strongly preclosed remote sets, SP-convergence.

An *L*-topological space (or *L*-space for short) is a pair (X, \mathcal{T}) , where \mathcal{T} is a subfamily of L^X which contains 0, 1 and is closed for any suprema and finite infima. \mathcal{T} is called an *L*-topology on *X*. Each member of \mathcal{T} is called an open *L*-set and its complement is called a closed *L*-set.

Definition 1.1.([1]) Let (X, \mathcal{T}) be an *L*-space, $G \in L^X$. Then *G* is called semiopen if $G \leq cl(int(G))$; *G* is called semiclosed if *G'* is semiopen.

Definition 1.2.([1]) Let (X, \mathcal{T}) be an *L*-space and $G \in L^X$. We define:

(1) $int_s(G) = \bigvee \{ C \in L^X \mid C \leq G, C \text{ is semiopen} \};$ (2) $cl_s(G) = \bigwedge \{ C \in L^X \mid C \geq G, C \text{ is semiclosed} \}.$

 $int_s(G)$ and $cl_s(G)$ are called semiinterior and semiclosure of G, respectively.

Definition 1.3.([5]) Let (X, \mathcal{T}) be an *L*-space and $G \in L^X$. Then *G* is called presemiopen if $G \leq int_s(cl(G))$; *G* is called pre-semiclosed if *G'* is pre-semiopen.

 $\mathbf{PSO}(X)$ and $\mathbf{PSC}(X)$ will always denote the family of pre-semiopen *L*-sets and the family of pre-semiclosed *L*-sets in (X, \mathcal{T}) , respectively.

Definition 1.4.([2, 6, 24]) Let (X, \mathcal{T}) be an *L*-space and $G \in L^X$. Then *G* is called strongly semiopen (or α -open) if $G \leq int(cl(int(G)))$; *G* is called strongly semiclosed if *G'* is strongly semiopen.

SSO(X) and SSC(X) will always denote the family of strongly semiopen L-sets and the family of strongly semiclosed L-sets in (X, \mathcal{T}) , respectively.

In [7] and [8], the concepts of strongly preopen sets, strongly preclosed sets and SPirresolute mapping were introduced in [0,1]-fuzzy set theory by Biljana Krateska. They can easily be extended to *L*-sets as follows:

Definition 1.5. Let (X, \mathcal{T}) be an *L*-space and $G \in L^X$. Then *G* is called strongly preopen if $G \leq int(cl_p(G))$; *G* is called strongly preclosed if *G'* is strongly preopen.

 $\mathbf{SPO}(X)$ and $\mathbf{SPC}(X)$ will always denote the family of strongly preopen L-sets and the family of strongly preclosed L-sets in (X, \mathcal{T}) , respectively.

Definition 1.6.([8]) Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two *L*-spaces and $f : X \to Y$ be a mapping. f is called SP-irresolute if $f_L^{\leftarrow}(B)$ is strongly preopen in (X, \mathcal{T}_1) for each strongly preopen *L*-set *B* in (Y, \mathcal{T}_2) .

Definition 1.7. Let (X, \mathcal{T}) be an *L*-space and $G \in L^X$. We define:

(1) $int_{sp}(G) = \bigvee \{ D \in L^X \mid D \le G, D \text{ is strongly preopen} \};$

(2) $cl_{sp}(G) = \bigwedge \{ D \in L^X \mid D \ge G, D \text{ is strongly preclosed} \}.$

 $int_{sp}(G)$ and $cl_{sp}(G)$ are called strong preinterior and strong preclosure of G, respectively.

Theorem 1.8. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then

(1) G is strongly preopen if and only if $G = int_{sp}(G)$;

(2) G is strongly preclosed if and only if $G = cl_{sp}(G)$.

Definition 1.9.([27]). A family $\mathcal{P} \subset L^X$ is called a filter on X if

(1) $P_1 \in \mathcal{P}$ and $P_2 \ge P_1$ implies $P_2 \in \mathcal{P}$;

(2) $P_1, P_2 \in \mathcal{P}$ implies that $P_1 \wedge P_2 \in \mathcal{P}$.

A filter \mathcal{P} is called a proper filter if $P \neq \underline{0}$. For $\alpha \in M(L^X)$, a filter \mathcal{P} is called an α -filter if $\bigvee_{x \in X} P(x) \geq \alpha$ for every $P \in \mathcal{P}$.

2. SP-adherence points and SP-accumulation points

Definition 2.1. Let (X, \mathcal{T}) be an *L*-space, $x_{\lambda} \in M(L^X)$ and $P \in L^X$. *P* is called a remote set of x_{λ} if $x_{\lambda} \not\leq P$. A remot set *P* of x_{λ} is called a strongly preclosed (strongly semiclosed, pre-semiclosed) remote set of x_{λ} if *P* is strongly preclosed (strongly semiclosed, pre-semiclosed respectively).

The set of all strong preclosed (strongly semiclosed, pre-semiclosed) remote sets of x_{λ} is denoted by $\eta_{sp}(x_{\lambda})$ ($\eta_{ss}(x_{\lambda})$, $\eta_{ps}(x_{\lambda})$ respectively).

Remark 2.2. By Definition 2.1, we can see that $\eta_{ss}(x_{\lambda}) \subset \eta_{sp}(x_{\lambda}) \subset \eta_{ps}(x_{\lambda})$, where $x_{\lambda} \in M(L^X)$. But each inverse is not true, these can be seen from the following example.

Example 2.3. Let $X = \{x_1, x_2\}, L = [0, 1]$ and $A, B, C, D \in L^X$, we define:

$$A(x_1) = 0.2, A(x_2) = 0.5, B(x_1) = 0.8, B(x_2) = 0.6;$$

 $C(x_1) = 0.8, C(x_2) = 0.4, D(x_1) = 0.7, D(x_2) = 0.6.$

Let (X, \mathcal{T}) be an *L*-space, where $\tau = \{\underline{0}, A, B, \underline{1}\}$. Then *C* is strongly preclosed, but it is not strongly semiclosed, also *D* is pre-semiclosed, but it is not strongly preclosed. We can take $x_{0.5}$ and $x_{0.7}$, where $x = x_2 \in X$, then $x_{0.5}$ and $x_{0.7}$ are two points and $x_{0.5} \not\leq C$, $x_{0.7} \not\leq D$, thus $C \in \eta_{sp}(x_{0.5})$, but $C \notin \eta_{ss}(x_{0.5})$ and $D \in \eta_{ps}(x_{0.7})$, but $D \notin \eta_{sp}(x_{0.7})$.

Definition 2.4. Let (X, \mathcal{T}) be an *L*-space, $G \in L^X$ and $x_\lambda, x_\mu \in M(L^X)$. Then x_λ is called an SP-adherence point of *G* if $G \not\leq P$ for each $P \in \eta_{sp}(x_\lambda)$.

An SP-adherence point x_{λ} of G is called an SP-accumulation point of G if $x_{\lambda} \leq G$ or $x_{\lambda} \leq G$ implies that for each point x_{μ} satisfying $x_{\lambda} \leq x_{\mu} \leq G$, it follows that $G \leq x_{\mu} \vee P$. The union of all SP-accumulation points of G is called the SP-derived set of G and denoted by $G^{d_{sp}}$.

Theorem 2.5. Let (X, \mathcal{T}) be an L-space, $G \in L^X$ and $x_{\lambda} \in M(L^X)$. Then

- (1) x_{λ} is an SP-adherence point of G if and only if $x_{\lambda} \leq cl_{sp}(G)$;
- (2) $cl_{sp}(G)$ equals the union of all SP-adherence points of G;
- (3) $cl_{sp}(G) = G \vee G^{d_{sp}};$
- (4) $cl_{sp}(G^{d_{sp}}) \le cl_{sp}(G).$

Proof.

- (1) (\Rightarrow). Suppose that $x_{\lambda} \not\leq cl_{sp}(G)$, then $cl_{sp}(G) \in \eta_{sp}(x_{\lambda})$, by $G \leq cl_{sp}(G)$, we know that x_{λ} is not an SP-adherence point of G, a contradiction. (\Leftarrow). Suppose that $x_{\lambda} \leq cl_{sp}(G)$ and x_{λ} is not an SP-adherence point of G, then there exists a $P \in \eta_{sp}(x_{\lambda})$ such that $G \leq P$, this imples that $cl_{sp}(G) \leq P$ since P is strongly preclosed. Thus $x_{\lambda} \not\leq cl_{sp}(G)$, a contradiction.
- (2) We need only consider the case $G \neq 0$. Since $cl_{sp}(G) = \bigvee \{x_{\lambda} \mid x_{\lambda} \leq cl_{sp}(G)\}$ and by (1), we have that $cl_{sp}(G)$ is the union of all its SP-adherence points.
- (3) We need only prove that $cl_{sp}(G) \leq G \vee G^{d_{sp}}$. In fact, if for some point $x_{\lambda} \leq cl_{sp}(G)$, it follows that $x_{\lambda} \leq G$, then by (1) and Definition 2.4 we know that $x_{\lambda} \leq G^{d_{sp}}$.
- (4) If $x_{\lambda} \leq cl_{sp}(G^{d_{sp}})$, then by (1) and Definition 2.4 we have that $G^{d_{sp}} \not\leq P$ for each $P \in \eta_{sp}(x_{\lambda})$. Hence there exists an SP-accumulation point e of G such that $e \not\leq P$, which means $P \in \eta_{sp}(e)$. But e is an SP-adherence point of G, hence $G \not\leq P$. Form above statement, we know that $G \not\leq P$ for each $P \in \eta_{sp}(x_{\lambda})$, so x_{λ} is SP-adherence point of G. Thus by (1) we have $x_{\lambda} \leq cl_{sp}(G)$.

Theorem 2.6. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then G is strongly preclosed if and only if for each point $x_{\lambda} \not\leq G$, there exists $P \in \eta_{sp}(x_{\lambda})$ such that $G \leq P$.

Proof. The necessity is obvious. Now we prove the sufficiency. Suppose that for each point $x_{\lambda} \not\leq G$, there exists $P \in \eta_{sp}(x_{\lambda})$ such that $G \leq P$, i.e., there exists $P \in \eta_{sp}(x_{\lambda})$ such that $cl_{sp}(G) \leq P$. Then $x_{\lambda} \not\leq cl_{sp}(G)$. Hence above statement implies that $x_{\lambda} \not\leq G \Rightarrow x_{\lambda} \not\leq cl_{sp}(G)$. Thus $G \geq cl_{sp}(G)$. Therefore G is strongly preclosed.

3. SP-convergence of nets

In this section, we shall discuss SP-convergence of nets.

Definition 3.1. Let (X, \mathcal{T}) be an *L*-space, $x_{\lambda} \in M(L^X)$ and $S = \{S(n) \mid n \in D\}$ a net in L^X . Then

- (1) x_{λ} is said to be an SP-limit point of S, in symbols, $S \xrightarrow{SP} x_{\lambda}$ if for each $P \in \eta_{sp}(x_{\lambda})$, $S(n) \not\leq P$ is eventually true;
- (2) x_{λ} is said to be an SP-cluster point of S, in symbols, $S \overset{SP}{\propto} x_{\lambda}$ if for each $P \in \eta_{sp}(x_{\lambda})$, $S(n) \not\leq P$ is frequently true.

The union of all SP-limit points and the union of all SP-cluster points of S will be denoted by $\lim_{s_p} S$ and $\operatorname{ad}_{s_p} S$, respectively. Obviously $\lim_{s_p} S \leq \operatorname{ad}_{s_p} S$.

Remark 3.2. From Definition 3.1 and Definition 2.1 in [3] and Definition 5.1 in [4] we easily know that PS-ad $S \leq ad_{sp}S \leq Q$ -adS and PS- $\lim S \leq \lim_{sp} S \leq Q$ - $\lim S$.

Theorem 3.3. Let (X, \mathcal{T}) be an L-space, $x_{\lambda}, x_{\mu} \in M(L^X)$ and S be a net in L^X . Then the following statements are true.

- (1) Let $T = \{T(n) \mid n \in D\}$ be a net with the same domain as S and for each $n \in D, T(n) \geq S(n)$. If $S \xrightarrow{SP} x_{\lambda}$, then $T \xrightarrow{SP} x_{\lambda}$;
- (2) Let $T = \{T(n) \mid n \in D\}$ be a net with the same domain as S and for each $n \in D, T(n) \ge S(n)$. If $S \stackrel{SP}{\propto} x_{\lambda}$, then $T \stackrel{SP}{\propto} x_{\lambda}$;
- (3) If $S \xrightarrow{SP} x_{\lambda}$ and $x_{\mu} \leq x_{\lambda}$, then $S \xrightarrow{SP} x_{\mu}$;
- (4) If $S \stackrel{SP}{\propto} x_{\lambda}$ and $x_{\mu} \leq x_{\lambda}$, then $S \stackrel{SP}{\propto} x_{\mu}$.

Proof. It is simple and omitted.

Theorem 3.4. Let (X, \mathcal{T}) be an L-space, $x_{\lambda} \in M(L^X)$ and S be a net in L^X . Then

- (1) $S \xrightarrow{SP} x_{\lambda}$ if and only if $x_{\lambda} \leq \lim_{sp} S$;
- (2) $S \stackrel{SP}{\propto} x_{\lambda}$ if and only if $x_{\lambda} \leq \mathrm{ad}_{sp}S$.

Proof.

- (2) This is analogous to proof of (1).

Theorem 3.5. Let (X, \mathcal{T}) be an L-space, $x_{\lambda} \in M(L^X)$ and $S = \{S(n) \mid n \in D\}$ be a net in L^X . If S has a subnet T such that $T \xrightarrow{SP} x_{\lambda}$, then $S \xrightarrow{SP} x_{\lambda}$.

Proof. Suppose that $T(m) = \{T(m) \mid m \in E\}$ is a subnet of $S, T \xrightarrow{SP} x_{\lambda}, P \in \eta_{sp}(x_{\lambda})$ and $n_0 \in D$. By the definition of subnet, there exists a mapping $N : E \to D$ and $m_0 \in E$ such that $N(m) \ge n_0(N(m) \in D)$ when $m \ge m_0(m \in E)$. Since T SP-converges to x_{λ} , there is $m_1 \in E$ such that $T(m) \not\leq P$ when $m \ge m_1(m \in E)$. Because E is a directed set, there exists $m_2 \in E$ such that $m_2 \ge m_0$ and $m_2 \ge m_1$. Hence $T(m_2) \not\leq P$ and $N(m_2) \ge n_0$. Let $n = N(m_2)$. Then $S(n) = S(N(m_2)) = T(m_2) \not\leq P$ and $n \ge n_0$. This implies that $S(n) \not\leq P$ is frequently true. Thus $S \xrightarrow{SP}{\propto} x_{\lambda}$.

Theorem 3.6. Let (X, \mathcal{T}) be an L-space and S be a net in L^X . Then $\lim_{sp} S$ and $ad_{sp}S$ are strongly preclosed.

Proof. Let $x_{\lambda} \leq cl_{sp}(\lim_{sp} S)$. Then $\lim_{sp} S \not\leq P$ for each $P \in \eta_{sp}(x_{\lambda})$. Hence there exists a point e such that $e \leq \lim_{sp} S$ and $e \not\leq P$. Then $P \in \eta_{sp}(e)$. By Theorem 3.4 $S \xrightarrow{SP} e$. Hence $S \not\leq P$ is eventually true. Thus $x_{\lambda} \leq \lim_{sp} S$. This implies that $\lim_{sp} S$ is strongly preclosed.

Similarly $\operatorname{ad}_{sp} S$ is strongly preclosed.

Theorem 3.7. Let (X, \mathcal{T}) be an L-space, $G \in L^X$, $x_{\lambda} \in M(L^X)$. If there exists a net $S = \{S(n) \mid n \in D\}$ in G such that $S \stackrel{SP}{\propto} x_{\lambda}$, then $x_{\lambda} \leq cl_{sp}G$.

Proof. Suppose that $S = \{S(n) \mid n \in D\}$ is a net in G and $S \overset{SP}{\propto} x_{\lambda}$. Let $P \in \eta_{sp}(x_{\lambda})$, then S is not frequently in P, hence there is $n \in D$ such that $S(n) \not\leq P$, but $S(n) \leq G$, so $G \not\leq P$. Thus x_{λ} is an SP-adherence point of G, i.e., $x_{\lambda} \leq cl_{sp}(G)$.

Now we give characterization of SP-accumulation point of L-set G by means of net. Let $G \in L^X$, $x \in X$, we define $G - x_1$ follow as:

$$(G - x_1)(t) = \begin{cases} G(t), & \text{if } x \neq t, \\ 0, & \text{if } x = t. \end{cases}$$
(1)

Then $G - x_1 = G \wedge x'_1 = \Big\{ t_{G(t)} \mid t \in \text{supp}G - \{x\} \Big\}.$

Theorem 3.8. Let (X, \mathcal{T}) be an [0, 1]-space, $G \in I^X$ and $x_\lambda \in M(I^X)$ in G. If there exists a net S in $G - x_1$ such that $S \xrightarrow{SP} x_\lambda$, then x_λ is an SP-accumulation point of G.

Proof. Suppose that $x_{\lambda} \leq G$ and there exists a net $S = \{S(n) \mid n \in D\}$ in $G - x_1$ such that $S \xrightarrow{SP} x_{\lambda}$. Let $P \in \eta_{sp}(x_{\lambda})$ and x_{μ} is a point satisfying $x_{\lambda} \leq x_{\mu} \leq G$. Hence there exists $n \in D$ such that $S(n) = y_{\gamma} \leq P$ and by $y_{\gamma} \leq G - x_1$, we know $y \neq x$, so $y_{\gamma} \leq x_{\mu}$. Hence $y_{\gamma} \leq P \lor x_{\mu}$, therefore $G \leq P \lor x_{\mu}$. By Definition 2.4, we have that x_{λ} is an SP-accumulation point of G.

4. SP-convergence of ideals

Definition 4.1. Let (X, \mathcal{T}) be an *L*-space, *I* be an ideal in L^X and $x_{\lambda} \in M(L^X)$. Then

- (1) x_{λ} is said to be SP-limit point of *I*, in symbols, $I \xrightarrow{SP} x_{\lambda}$ if $\eta_{sp}(x_{\lambda}) \subset I$;
- (2) x_{λ} is said to be SP-cluster point of I, in symbols, $I \stackrel{SP}{\propto} x_{\lambda}$ if for each $G \in I$ and each $P \in \eta_{sp}(x_{\lambda})$, it follows that $G \vee P \neq \underline{1}$.

The union of all SP-limit points and union of all SP-cluster points of I are denoted by $\lim_{sp} I$ and $\operatorname{ad}_{sp} I$, respectively. Obviously, $\lim_{sp} I \leq \operatorname{ad}_{sp} I$.

Theorem 4.2. Let both I and J be ideals in L^X , $I \subset J$ and $x_{\lambda}, x_{\mu} \in M(L^X)$. Then

(1) $I \xrightarrow{SP} x_{\lambda}$ implies $J \xrightarrow{SP} x_{\lambda}$; (2) $J \xrightarrow{SP} x_{\lambda}$ implies $I \xrightarrow{SP} x_{\lambda}$; (3) If $I \xrightarrow{SP} x_{\lambda}$ and $x_{\mu} \leq x_{\lambda}$, then $I \xrightarrow{SP} x_{\mu}$; (4) If $I \xrightarrow{SP} x_{\lambda}$ and $x_{\mu} \leq x_{\lambda}$, then $I \xrightarrow{SP} x_{\mu}$.

Proof. It is simple and omitted.

Theorem 4.3. Let (X, \mathcal{T}) be an L-space, $G \in L^X$ and $x_\lambda \in M(L^X)$. If there exists an ideal I in L^X such that $G \notin I$ and $I \xrightarrow{SP} x_\lambda$, then $x_\lambda \leq cl_{sp}(G)$.

Proof. Suppose that $I \xrightarrow{SP} x_{\lambda}$ and $G \notin I$. Let $P \in \eta_{sp}(x_{\lambda})$, then by the fact that $\eta_{sp}(x_{\lambda}) \subset I$ and I is a lower set, we know that $G \nleq P$, so x_{λ} is an SP-adherence point of G, therefore $x_{\lambda} \leq cl_{sp}(G)$.

Theorem 4.4. Let (X, \mathcal{T}) be a [0, 1]-space, $G \in L^X$, $x_\lambda \in M(L^X)$, and $x_\lambda \leq G$. If there exists an ideal I in L^X such that $G - x_1 \notin I$ and $I \xrightarrow{SP} x_\lambda$, then x_λ is an SP-accumulation point of G.

Proof. Suppose that there exists an ideal I in L^X such that $G - x_1 \notin I$ and $I \xrightarrow{SP} x_\lambda$. Let $P \in \eta_{sp}(x_\lambda)$, then by $\eta_{sp}(x_\lambda) \subset I$, we have $P \in I$. Since I is lower set, we know that $G - x_1 \notin P$, so $G \notin P \lor x_{G(x)}$. In particular, for each point $x_\mu \in M(L^X)$ with $x_\lambda \leq x_\mu \leq G$, we have $G \notin P \lor x_\mu$. Hence x_λ is an SP-accumulation point of G.

Theorem 4.5. Let (X, \mathcal{T}) be an L-space, I be an ideal in L^X and $x_{\lambda} \in M(L^X)$. Then

(1) $I \xrightarrow{SP} x_{\lambda}$ if and only if $x_{\lambda} \leq \lim_{sp} I$;

(2) $I \stackrel{SP}{\propto} x_{\lambda}$ if and only if $x_{\lambda} \leq \operatorname{ad}_{sp} I$.

Proof. We prove only the sufficiency of (1). Suppose that $x_{\lambda} \leq \lim_{sp} I$, $P \in \eta_{sp}(x_{\lambda})$. Then $x_{\lambda} \not\leq P$, so $\lim_{sp} I \not\leq P$. By definition of $\lim_{sp} I$, we know that I has an SP-limit point e such that $e \not\leq P$, i.e., $P \in \eta_{sp}(e) \subset I$, thus $P \in I$, therefore $\eta_{sp}(x_{\lambda}) \subset I$. Hence $I \xrightarrow{SP} x_{\lambda}$.

Theorem 4.6. Let (X, \mathcal{T}) be an L-space, I be an ideal in L^X . Then $\lim_{sp} I$ and $\operatorname{ad}_{sp} I$ are strongly preclosed.

Proof. The proof is analogous to the proof of The Theorem 3.6.

5. SP-convergence of filters

In this section, we first introduce the concept of SP-convergence of filters and then discuss its some properties.

Definition 5.1. Let (X, \mathcal{T}) be an *L*-space, $x_{\lambda} \in M(L^X)$ and $P \in L^X$. *P* is called a quasi set of x_{λ} if $x_{\lambda} \not\leq P'$, in this case, we also say that x_{λ} quasi-coincides with *P* and it is denote by $x_{\lambda}\hat{q}P$. A quasi set *P* of x_{λ} is called a strongly preopen quasi set of x_{λ} if *P* is strongly preopen.

The set of all strong preopen quasi sets of x_{λ} is denoted by $\mathcal{Q}_{sp}(x_{\lambda})$.

Remark 5.2. From the above definition, we can see that if $A, B \in L^X$, $A \leq B$, $x_{\lambda} \in M(L^X)$ and $x_{\lambda}\hat{q}A$, then $x_{\lambda}\hat{q}B$.

Definition 5.3. Let (X, \mathcal{T}) be an *L*-space, \mathcal{P} be a proper filter in L^X and $e \in M(L^X)$.

- (1) e is called an SP-cluster point of \mathcal{P} , in symbol, $\mathcal{P} \propto^{SP} e$ if for every $U \in \mathcal{Q}_{sp}(e)$ and every $A \in \mathcal{P}$, it follows that $U \lor A \neq \underline{0}$, in this case, we also say that \mathcal{P} SP-accumulates to e.
- (2) e is called an SP-limit point of \mathcal{P} , in symbol, $\mathcal{P} \xrightarrow{SP} e$ if $\mathcal{Q}_{sp}(e) \subset \mathcal{P}$.

The union of all SP-cluster points of \mathcal{P} is denoted by $\mathrm{ad}_{sp}\mathcal{P}$ and the union of all SP-milit points of \mathcal{P} is denoted by $\lim_{sp} \mathcal{P}$.

Theorem 5.4. Let (X, \mathcal{T}) be an L-space, \mathcal{P} be a proper filter and $e \in M(L^X)$. Then

- (1) If $\mathcal{P} \xrightarrow{SP} e$, then $\mathcal{P} \propto^{SP} e$; (2) $\lim_{sp} \mathcal{P} \leq \operatorname{ad}_{sp} \mathcal{P}$; (3) If $\mathcal{P} \propto^{SP} e$ and $d \leq e$, then $\mathcal{P} \propto^{SP} d$; (4) If $\mathcal{P} \xrightarrow{SP} e$ and $d \leq e$, then $\mathcal{P} \xrightarrow{SP} d$;
- (5) $\mathcal{P} \xrightarrow{SP} e \text{ if and only if } e \leq \lim_{sp} \mathcal{P};$
- (6) $\mathcal{P} \stackrel{SP}{\propto} e$ if and only if $e \leq \mathrm{ad}_{sp}\mathcal{P}$.

Proof. It is simple and omitted.

Definition 5.5. Let (X, \mathcal{T}) be an *L*-space, \mathcal{P}, \mathcal{G} be proper filters in L^X . Say \mathcal{G} is finer than \mathcal{P} , or say \mathcal{P} is coarser than \mathcal{G} , if $\mathcal{P} \subset \mathcal{G}$.

Theorem 5.6 Let (X, \mathcal{T}) be an L-space, \mathcal{P}, \mathcal{G} be proper filters in L^X , \mathcal{P} be coarser than \mathcal{G} and $e \in M(L^X)$. Then

(1) $\operatorname{ad}_{sp} \mathcal{G} \leq \operatorname{ad}_{sp} \mathcal{P};$ (2) $\lim_{sp} \mathcal{P} \leq \lim_{sp} \mathcal{G};$ (3) If $\mathcal{G} \overset{SP}{\propto} e, \text{ then } \mathcal{P} \overset{SP}{\propto} e;$ (4) $\mathcal{P} \overset{SP}{\longrightarrow} e, \text{ then } \mathcal{G} \overset{SP}{\longrightarrow} e.$

Proof. It is simple and omitted.

6. Relations among nets, ideals, filters

In this section, we discuss relations among nets, ideals and filters.

Definition 6.1.([26]) Let (X, \mathcal{T}) be an *L*-space.

- (1) Let I be an ideal in L^X and $D(I) = \{(e,G) \mid e \in M(L^X), G \in I \text{ and } e \leq G\}.$ For every pair of elements (e_1, G_1) and (e_2, G_2) in D(I), we define that $(e_1, G_1) \leq C$ (e_2, G_2) if and only if $G_1 \leq G_2$. Then $(D(I), \leq)$ is a directed set. Clearly, $S(I) = \{S(I)(e, G) = e \mid (e, G) \in D(I)\}$ is a net in L^X and is called the net induced by I. (2) Let S be a net in L^X . Then $I(S) = \{G \in L^X \mid S \text{ in not eventually in } G\}$ is an ideal
- in L^X and is called the ideal induced by S.

Theorem 6.2. Let (X, \mathcal{T}) be an L-space and I be an ideal in L^X . Then

- (1) $\lim_{sp} I = \lim_{sp} S(I);$
- (2) $\operatorname{ad}_{sp}I = \operatorname{ad}_{sp}S(I).$

Proof. We prove only (1). Let $e \leq \lim_{sp} I$. Then $I \xrightarrow{SP} e$, so $P \in I$ for each $P \in \eta_{sp}(x_{\lambda})$. Hence $(e, P) \in D(I)$. If $(a, G) \in D(I)$ and $(a, G) \geq (e, P)$, then we have $S(I)(a,G) = a \leq G \geq P$. This implies that S(I) is not eventually in P for each $P \in \eta_{sp}(x_{\lambda})$, i.e., $S(I) \xrightarrow{SP} x_{\lambda}$.

Conversely, let $e \leq \lim_{sp} S(I)$. Then $S(I) \xrightarrow{SP} e$. Therefore for each $P \in \eta_{sp}(e)$ there exists $(a,G) \in D(I)$ such that $S(I)(b,H) = b \leq P$ whenever $(b,H) \geq (a,G)$ and $(b,H) \in D(I)$. In particular, take H = G, we know that $b \not\leq G$ implies $b \not\leq P$, or equivalently $b \leq P$ implies $b \leq G$. Hence $P \leq G$ follows from Theorem 1.5.29 in [25]. Note that I is a lower set and $G \in I$, so $P \in I$. This shows that $\eta_{sp}(e) \subset I$. Hence $I \xrightarrow{SP} e$. From Theorem 4.5 we have $e \leq \lim_{sp} I$. Thus (1) holds.

Theorem 6.3. Let (X, \mathcal{T}) be an L-space and S be a net in L^X . Then

(1) $\lim_{sp} S = \lim_{sp} I(S);$

(2) $\operatorname{ad}_{sp} S \leq \operatorname{ad}_{sp} I(S).$

Proof. We prove only (2). In accordance with Theorems 4.5 and 3.4, we need only prove that $S \propto^{SP} x_{\lambda}$ implies $I(S) \propto^{SP} x_{\lambda}$. Let $S \propto^{SP} x_{\lambda}$. Then S is not frequently in P for each $P \in \eta_{sp}(x_{\lambda})$. On the other hand, S is not eventually in G for each $G \in I(S)$. Hence S is not frequently in $P \vee G$ for each $P \in \eta_{sp}(x_{\lambda})$ and each $G \in I(S)$. This means that $P \lor G \neq \underline{1}$. Thus $I(S) \stackrel{SP}{\propto} x_{\lambda}$.

Now we give relations between nets and filters.

Definition 6.4. Let (X, \mathcal{T}) be an *L*-space, \mathcal{P} be a filter in L^X and *S* be a net in L^X . For S, define the filter associated with the net S as the family $\mathcal{P}(S)$ of all the L-subsets on X which the net S eventually quasi-coincides with.

For \mathcal{P} , let

$$D(\mathcal{P}) = \{ (e, A) \mid e \in M(L^X), e\hat{q}A \in \mathcal{P} \}$$

and equip it with a relation \leq on it as

$$\forall (e, A), (d, B) \in D(\mathcal{P}), (e, A) \le (d, B) \Leftrightarrow A \ge B.$$

Define the net associated with the filter \mathcal{P} as the mapping

$$S(\mathcal{P}): D(\mathcal{P}) \to M(L^X), S(\mathcal{P})(e, A) = e, \forall (e, A) \in D(\mathcal{P}).$$

Then the filter $\mathcal{P}(S)$ associated with S is a proper filter in L^X , $D(\mathcal{P})$ equipped with < is a directed set and the $S(\mathcal{P})$ associated with \mathcal{P} is a net in L^X .

Theorem 6.5. Let (X, \mathcal{T}) be an L-space, S a net in L^X , \mathcal{P} a proper filter in L^X and $e \in M(L^X)$. Then

- (1) $S \xrightarrow{SP} e \text{ if and only if } \mathcal{P}(S) \xrightarrow{SP} e;$ (2) $\mathcal{P} \xrightarrow{SP} e \text{ if and only if } S(\mathcal{P}) \xrightarrow{SP} e;$
- (3) $\mathcal{P} \stackrel{SP}{\propto} e$ if and only if $S(\mathcal{P}) \stackrel{SP}{\propto} e$;
- (4) $S \stackrel{SP}{\propto} e$ implies $\mathcal{P}(S) \stackrel{SP}{\propto} e$

Proof.

- (1) (\Leftrightarrow) By the relative definitions.
- (2) (\Rightarrow) Suppose $\mathcal{P} \xrightarrow{SP} e = x_a \in M(L^X), U \in \eta_{sp}(e)$, then $x_a \not\leq U$. Take $x_\lambda \in M(L^X)$ such that $x_{\lambda} \leq x_a, x_{\lambda} \not\leq U$, so $x_{\lambda}\hat{q}U'$. By Theorem 5.4(4) $\mathcal{P} \xrightarrow{SP} x_{\lambda} \leq x_a, U' \in$ $\mathcal{Q}_{sp}(x_{\lambda}) \subset \mathcal{P}$. So $(x_{\lambda}, U') \in D(\mathcal{P})$. $\forall (d, A) \in D(\mathcal{P})$ such that $(d, A) \geq (x_{\lambda}, U')$, then $d\hat{q}A \leq U'$. By Remark 5.2 $S(\mathcal{P})(d, A) = d\hat{q}U', S(\mathcal{P})$ eventually quasi-coincides with U', i.e., $S(\mathcal{P}) \leq (U')' = U$ eventually is true. By the arbitrariness of $U \in \eta_{sp}(e)$, $S(\mathcal{P}) \xrightarrow{SP} e.$

 (\Leftarrow) Suppose $S(\mathcal{P}) \xrightarrow{SP} e, U \in \mathcal{Q}_{sp}(e)$, then $U' \in \eta_{sp}(e)$. So $S(\mathcal{P}) \not\leq U'$ eventually is true. $\exists (d_0, A_0) \in D(\mathcal{P})$ such that $\forall (d, A) \geq (d_0, A_0), d = S(\mathcal{P})(d, A) \not\leq U'$, i.e., $d\hat{q}U$. So $\forall d \in M(L^X)$ such that $d\hat{q}A_0$, we have $(d, A_0) \in D(\mathcal{P}), (d, A_0) \geq (d_0, A_0)$ and hence $d\hat{q}U$. That is to say $\forall d \in M(L^X), d\hat{q}A_0$ implies that $d\hat{q}U$, i.e., $d \leq U'$ implies that $d \leq A_0$. So $U' \leq A'_0$, $U \geq A_0$. Since $A_0 \in \mathcal{P}$, \mathcal{P} is a filter, so $U \in \mathcal{P}$. By the arbitrariness of $U \in \mathcal{Q}_{sp}(e), \mathcal{Q}_{sp}(e) \subset P. \mathcal{P} \xrightarrow{SP} e.$

(3) (\Rightarrow) Suppose $\mathcal{P} \propto^{SP} \alpha$ $e, U \in \eta_{sp}(e)$, i.e., $U' \in \mathcal{Q}_{sp}(e), (d_0, A_0) \in D(\mathcal{P})$. We need to find a $(d, A) \in D(\mathcal{P})$ such that $(d, A) \geq (d_0, A_0), S(d, A) \not\leq U$. Since $\mathcal{P} \overset{SP}{\propto} e$, $U' \in \mathcal{Q}_{sp}(e)$ and $A_0 \in \mathcal{P}, A_0 \wedge U' \neq \underline{0}, A'_0 \vee U \neq \underline{1}$. So $\exists d \in M(L^X)$ such that $d \not\leq A'_0 \lor U$, so $d\hat{q}(A_0 \land U')$. Therefore $d\hat{q}A_0$, by $(d_0, A_0) \in D(\mathcal{P}), A_0 \in \mathcal{P}$, so $(d, A_0) \in D(\mathcal{P}), (d, A_0) \geq (d_0, A_0).$ By $d\hat{q}(A_0 \wedge U')$ and Remark 5.2, $S(d, A_0) = d\hat{q}U'$, i.e., $S(d, A_0) \not\leq U$, this is that we need to prove.

 $(\Leftarrow) \text{ Suppose } S(\mathcal{P}) \stackrel{SP}{\propto} e, A \in \mathcal{P}, U \in \mathcal{Q}_{sp}(e) (\text{so } U' \in \eta_{sp}(e)), \text{ we need to show } A \wedge U \neq \underline{0}. \text{ Since } A \in \mathcal{P} \text{ and } \mathcal{P} \text{ is a proper filter in } L^X, A \neq \underline{0}, A' \neq \underline{1}. \text{ So } \exists d \in M(L^X) \text{ such that } d \not\leq A', \text{ i.e., } d\hat{q}A, \text{ so } (d, A) \in D(\mathcal{P}). \text{ Since } S(\mathcal{P}) \stackrel{SP}{\propto} e, \exists (d_0, A_0) \in D(\mathcal{P}) \text{ such that } (d_0, A_0) \geq (d, A), d_0 = S(d_0, A_0) \not\leq U'. \text{ So } d_0 \not\leq A'_0, d_0 \not\leq U'. \text{ By } d_0 \in M(L^X), d_0 \not\leq A'_0 \vee U' = (A_0 \wedge U)', (A_0 \wedge U)' \neq \underline{1}, A_0 \wedge U \neq \underline{0}.$ Since $(d_0, A_0) \geq (d, A), A_0 \leq A. \text{ so } A \wedge U \neq \underline{0}.$

(4) Suppose $S = \{S(n), n \in D\}$, $A \in \mathcal{P}(S)$, $U \in \mathcal{Q}_{sp}(e)$, going to show $A \wedge U \neq \underline{0}$. Since $A \in \mathcal{P}(S)$, $\exists n_0 \in D$ such that $\forall n \geq n_0$, $S(n) \not\leq A'$. Since $U \in \mathcal{Q}_{sp}(e)$, i.e., $U' \in \eta_{sp}(e)$, $S \overset{SP}{\propto} e$, $\exists n_1 \in D$, $n_1 \geq n_0$ such that $S(n_1) \not\leq U'$. So $S(n_1) \not\leq A', U'$. But $S(n_1) \in M(L^X)$, so $S(n_1) \not\leq A' \vee U' = (A \wedge U)', (A \wedge U)' \neq \underline{1}, A \wedge U \neq \underline{0}$.

7. Applications of SP-convergence theory of nets

Theorem 7.1. Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two L-spaces. A mapping $f : X \to Y$ is SP-irresolute if and only if $cl_{sp}(f_L^{\leftarrow}(P)) \in c(x_{\lambda})$ for each $P \in \eta_{sp}(f_L^{\rightarrow}(x_{\lambda}))$, where $x_{\lambda} \in M(L^X)$.

Proof. Suppose that f is SP-irresolute and $x_{\lambda} \in M(L^X)$. Then $f_L^{\leftarrow}(P)$ is strongly preclosed for each $P \in \eta_{sp}(f_L^{\rightarrow}(x_{\lambda}))$. Clearly $x_{\lambda} \not\leq f_L^{\leftarrow}(P)$. Hence $f_L^{\leftarrow}(P) = cl_{sp}(f_L^{\leftarrow}(P)) \in \eta_{sp}(x_{\lambda})$.

Conversely, let P be strongly preclosed in (Y, \mathcal{T}_2) . We may assume that $f_L^{\leftarrow}(P) \neq \underline{1}$ and $x_\lambda \not\leq f_L^{\leftarrow}(P)$. Then $f_L^{\rightarrow}(x_\lambda) \not\leq P$, i.e., $P \in \eta_{sp}(f_L^{\rightarrow}(x_\lambda))$. Hence $d_{sp}(f_L^{\leftarrow}(P)) \in \eta_{sp}(x_\lambda)$, i.e., $x_\lambda \not\leq f_L^{\leftarrow}(P)$ implies that $x_\lambda \not\leq d_{sp}(f_L^{\leftarrow}(P))$. So $d_{sp}(f_L^{\leftarrow}(P)) \leq f_L^{\leftarrow}(P)$. Thus $f_L^{\leftarrow}(P)$ is strongly preclosed in (X, \mathcal{T}_1) . This shows that f is SP-irresolute.

Theorem 7.2. Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two L-spaces, $x_{\lambda} \in M(L^X)$ and $f : X \to Y$ is SP-irresolute. If a net $S \xrightarrow{SP} x_{\lambda}$ in L^X , then $f_L^{\rightarrow}(S) \xrightarrow{SP} f_L^{\rightarrow}(x_{\lambda})$ in L^Y .

Proof. Suppose that f is SP-irresolute and $S \xrightarrow{SP} x_{\lambda}$. Let $P \in \eta_{sp}(f_L^{\rightarrow}(x_{\lambda}))$. Then $f_L^{\leftarrow}(P) \leq cl_{sp}(f_L^{\leftarrow}(P)) \in \eta_{sp}(x_{\lambda})$ from f is SP-irresolute and so $S(n) \not\leq f_L^{\leftarrow}(P)$ is eventually true from $S \xrightarrow{SP} x_{\lambda}$. Therefore $f_L^{\rightarrow}(S) \not\leq P$ is eventually true. Thus $f_L^{\rightarrow}(S) \xrightarrow{SP} f_L^{\rightarrow}(x_{\lambda})$.

Corollary 7.3. Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two L-spaces. If a mapping $f : X \to Y$ is SP-irresolute, then

(1) $f_L^{\rightarrow}(\lim_{sp} S) \leq \lim_{sp} f_L^{\rightarrow}(S)$ for each net S in L^X ;

(2) $f_L^{\leftarrow}(\lim_{sp} T) \leq \lim_{sp} f_L^{\leftarrow}(T)$ for each net T in L^Y .

Proof.

(1) Suppose that $S = \{S(n) \mid n \in D\}$ is a net in L^X and $g \in f_L^{\rightarrow}(\lim_{sp} S)$. Then there exists $e \leq \lim_{sp} S$ with $g = f_L^{\rightarrow}(e)$. We prove that $g \leq \lim_{sp} f_L^{\rightarrow}(S)$. In fact, by

 $e \leq \lim_{sp} S$, we know that $S \xrightarrow{SP} e$ from Theorem 3.4. Since f is SP-irresolute, we obtain that $f_L^{\rightarrow}(S) \xrightarrow{SP} f_L^{\rightarrow}(e) = g$ from Theorem 7.2. And by Theorem 3.4, we have that $g \leq \lim_{sp} f_L^{\rightarrow}(S)$. Thus

 $f_L^{\rightarrow}(\lim_{sp} S) \le \lim_{sp} f_L^{\rightarrow}(S).$

(2) Let $T = \{T(n) \mid n \in D\}$ be a net in L^Y . Then

$$f_L^{\leftarrow}(T) = \{ f_L^{\leftarrow}(T(n)) \mid n \in D \}$$

is a net in L^X . Since f is SP-irresolute, according to (1) we have

$$f_L^{\rightarrow}(\lim_{sp} f_L^{\leftarrow}(T)) \leq \lim_{sp} f_L^{\rightarrow}(f_L^{\leftarrow}(T)) \leq \lim_{sp} T.$$

Hence $\lim_{sp} f_L^{\leftarrow}(T) \leq f_L^{\leftarrow}(\lim_{sp} T)$.

References

- K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. and Appl. 82(1981), 14–32.
- [2] S.-Z. Bai, Fuzzy strongly semiopen sets and fuzzy strong semicontinuity, Fuzzy Sets and Systems 52(1992), 345–351.
- S.-Z. Bai, Q-convergence of fuzzy nets and weak separation axioms in fuzzy lattices, Fuzzy Sets and Systems 88(1997), 379–386.
- [4] S.-Z. Bai, Pre-semiclosed sets and PS-convergence in L-fuzzy topological space, J. Fuzzy Math. 2(2001), 497–509.
- [5] S.-Z. Bai, *PS-convergence theory of fuzzy nets and its applications*, Information Sciences 153(2003), 237–346.
- [6] A. S. Bin Shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44(1991), 303–308.
- [7] B. Krateska, Fuzzy strongly preopen L-sets and fuzzy strong precontinuity, Math. Vesn. 50(1998), 111-123.
- [8] B. Krateska, Fuzzy strongly preopen L-sets and fuzzy strong precontinuity, Math. Vesn. 51(1999), 39-51.
- [9] C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. **24**(1968), 182–190.
- [10] S.-L. Chen and J. S. Cheng, θ-convergence of nets of L-fuzzy sets and its applications, Fuzzy Sets and Systems 86(1997), 235–240.
- [11] S.-L. Chen and J. R. Wu, SR-convergence theory in fuzzy lattices, Information Sciences 125(2000), 233–247.
- [12] S.-L. Chen and S. T. Chen and X. G. Wang, σ-convergence theory and its applications in fuzzy lattices, Information Sciences 165(2004), 45–58.
- [13] P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice, I, Nederl. Akad. Wetensch. indag. Math. 44(1982), 403–414.
- [14] W. Gähler, Convergence, Fuzzy Set and Systems 73(1995), 97–129.

- [15] G. Gierz, et al., A Compendium of Continuous Lattices, Springer Verlag, Berlin, 1980.
- [16] D. N. Georgiou and B. K. Papadopoulos, On fuzzy θ-convergences, Fuzzy Sets and Systems 116(2000), 385–399.
- [17] A. K. Katsaras, Convergence in fuzzy topological spaces, Fuzzy Math. 3(1984), 35–44.
- [18] Y.-J. Lee, Generalized fuzzy filter and limit structure, Fuzzy Sets and Systems 104(1999), 415–422.
- [19] Y.-M. Liu and M. K. Luo, Fuzzy Topology, World Scientific, Singapore, 1997.
- [20] R. Lowen, Convergence in fuzzy topology, Topology Appl. 10(1979), 147–160.
- [21] B.-M. Pu and Y. M. Liu, Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76(1980), 571–599.
- [22] Sarma and N. Ajmal, Fuzzy nets and their applications, Fuzzy Sets and Systems 51(1992), 41–52.
- [23] F.-G. Shi and C.-Y. Zheng, O-convergence of fuzzy nets and its applications, Fuzzy Sets and Systems 140(2003), 499–507.
- [24] M. K. Singal, Fuzzy alpha-sets and alpha-continuous maps, Fuzzy Sets and Systems 48(1992), 383–390.
- [25] G.-J. Wang, Theory of L-Fuzzy Topological Spaces, Shaanxi Normal University Press, Xi'an, 1988 (in Chinese).
- [26] Z.-Q. Yang, Ideals in topological molecular lattices, Acta Math. Sinica 29(1986), 276–279.
- [27] D.-S. Zhao, The N-compactness in L-fuzzy topological spaces, J. Math. Anal. Appl. 128(1987), 64–79.

Department of Mathematics, Beijing Institute of Technology, Beijing 100081, P. R. China. E-mail: zhenguoxu@eyou.com

E-mail: fuguishi@bit.edu.cn