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SP-CONVERGENCE IN L-TOPOLOGICAL SPACES

ZHEN-GUO XU AND FU-GUI SHI

Abstract. In this paper, SP-convergence theory of nets, ideals and filters are built by means of

the concept of strongly preclosed L-sets. Their applications are presented.

1. Introduction and preliminaries

The convergence theory has some significant applications not only in topology and
analysis but also in inference and some other aspects.

In [21], Pu and Liu introduced the concepts of the Q-neighborhood and established
a systematic Moore-Smith convergence theory of fuzzy nets. Wang extended this theory
to L-fuzzy set theory in terms of closed remote-neighborhoods of molecules [25]. Later
on, all kinds of convergence theory were presented [3, 4, 5, 10, 11, 12, 14, 18, 16, 17, 23]
ete..

In this paper, we shall establish the SP-convergence theory of nets, ideals and filters
based on the idea of [25].

Throughout this paper (L, V,A,”) is a completely distributive de Morgan algebra, X
a nonempty set. LX is the set of all L-fuzzy sets (or L-sets for short) on X. The smallest
element and the largest element in L¥ are denoted by 0 and 1, respectively.

An element a in L is called prime if ¢ > b A ¢ implies a > b or a > ¢. An element a in
L is called co-prime if a’ is a prime element [15]. The set of nonunit prime elements in L
is denoted by P(L). The set of nonzero co-prime elements in L is denoted by M (L). The
set of nonzero co-prime elements in LX is denoted by M (LX). Each member in M (LX)
is also called a point.

The binary relation < in L is defined as follows : for a,b € L, a < b if and only if
for every subset D C L, the relation b < sup D always implies the existence of d € D
with @ < d [13]. In a completely distributive DeMorgan algebra L, each member b is a
sup of {a € L | a < b}. In the sense of [19, 25], {a € L | a < b} is the greatest minimal
family of b, in symbol B(G). Moreover for b € L, define a(b) = {a € L | o/ < b’} and
a*(b) = a(b) N P(L).

For an L-set G € LX, 3(G) denotes the greatest minimal family of G' and 3*(G) =
B(G) N M(LX).
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An L-topological space (or L-space for short) is a pair (X, 7 ), where 7 is a subfamily
of LX which contains 0, 1 and is closed for any suprema and finite infima. 7 is called
an L-topology on X. Each member of 7 is called an open L-set and its complement is
called a closed L-set.

Definition 1.1.(|1]) Let (X,7) be an L-space, G € L*. Then G is called semiopen
it G < cl(int(G)); G is called semiclosed if G’ is semiopen.

Definition 1.2.(|1]) Let (X,7) be an L-space and G € LX. We define:

(1) ints(G) = \V{C € L* | C < G, C is semiopen};
(2) cls(G) = N\{C € LX | C > G,C is semiclosed}.

ints(G) and cl4(G) are called semiinterior and semiclosure of G, respectively.

Definition 1.3.(]]) Let (X,7) be an L-space and G € LX. Then G is called pre-
semiopen if G < ints(cl(G)); G is called pre-semiclosed if G’ is pre-semiopen.

PSO(X) and PSC(X) will always denote the family of pre-semiopen L-sets and the
family of pre-semiclosed L-sets in (X, 7 ), respectively.

Definition 1.4.(|2, 16, 24]) Let (X,7) be an L-space and G € LX. Then G is called
strongly semiopen (or a-open) if G < int(cl(int(G))); G is called strongly semiclosed if
G’ is strongly semiopen.

SSO(X) and SSC(X) will always denote the family of strongly semiopen L-sets and
the family of strongly semiclosed L-sets in (X, 7T ), respectively.

In [7] and []] , the concepts of strongly preopen sets, strongly preclosed sets and SP-
irresolute mapping were introduced in [0,1]-fuzzy set theory by Biljana Krateska. They
can easily be extended to L-sets as follows:

Definition 1.5. Let (X,7) be an L-space and G € LX. Then G is called strongly
preopen if G < int(cl,(G)); G is called strongly preclosed if G’ is strongly preopen.

SPO(X) and SPC(X) will always denote the family of strongly preopen L-sets and
the family of strongly preclosed L-sets in (X, 7), respectively.

Definition 1.6.(|8]) Let (X,7;) and (Y,73) be two L-spaces and f : X — Y be
a mapping. f is called SP-irresolute if f; (B) is strongly preopen in (X,77) for each
strongly preopen L-set B in (Y, 7).

Definition 1.7. Let (X,7) be an L-space and G € LX. We define:

1) ints,(G) = \V{D € LX | D < G, D is strongly preopen};

( i gly

2) clgp(G) = N{D € LX | D > G, D is strongly preclosed}.
P
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intsp(G) and clsp, (G) are called strong preinterior and strong preclosure of G, respectively.

Theorem 1.8. Let (X,T) be an L-space and G € L. Then

(1) G is strongly preopen if and only if G = inte,(G);
(2) G is strongly preclosed if and only if G = clsp(G).

Definition 1.9.(]21)). A family P C L¥ is called a filter on X if

(1) P, € P and P> > P; implies P, € P;
(2) P, P, € P implies that Py A P, € P.
A filter P is called a proper filter if P # Q.

For a € M(LX), a filter P is called an a-filter if \/ P(z) > a for every P € P.
zeX

2. SP-adherence points and SP-accumulation points

Definition 2.1. Let (X,7) be an L-space, zy € M(L¥) and P € LX. P is called
a remote set of x) if xx £ P. A remot set P of x) is called a strongly preclosed
(strongly semiclosed, pre-semiclosed) remote set of z if P is strongly preclosed (strongly
semiclosed, pre-semiclosed respectively).

The set of all strong preclosed (strongly semiclosed, pre-semiclosed) remote sets of
x is denoted by nsp () (Mss(xr), Mps(z2) respectively).

Remark 2.2. By Definition 2.1, we can see that 7ss(xx) C Nsp(zx) C nps(xr), where
x)x € M(LX). But each inverse is not true, these can be seen from the following example.

Example 2.3. Let X = {x1,22}, L =[0,1] and A, B, C, D € LX, we define:
A(z1) = 0.2, A(z2) = 0.5, B(z1) = 0.8, B(zz2) = 0.6;

C(z1) =0.8, C(x2) = 0.4, D(z1) = 0.7, D(x2) = 0.6.

Let (X,7) be an L-space, where 7 = {0, A, B, 1}. Then C is strongly preclosed, but it is
not strongly semiclosed, also D is pre-semiclosed, but it is not strongly preclosed. We can
take z¢5 and xg 7, where x = z9 € X, then x¢ 5 and z( 7 are two points and zg5 £ C,
zo.7 £ D, thus C € nsp(z0.5), but C & nss(zo.5) and D € nps(xo.7), but D & ngp(xo.7).

Definition 2.4. Let (X,7) be an L-space, G € LX and x,x, € M(LY). Then )
is called an SP-adherence point of G if G £ P for each P € n,(z)).

An SP-adherence point x) of G is called an SP-accumulation point of G if z) £ G
or zx < G implies that for each point z, satisfying zx < z, < G, it follows that
G £ x, V P. The union of all SP-accumulation points of G is called the SP-derived set
of G and denoted by G4,

Theorem 2.5. Let (X,T) be an L-space, G € L and xx € M(LX). Then
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(1) = is an SP-adherence point of G if and only if zx < clsp(G);
(2) clsp(G) equals the union of all SP-adherence points of G;

(3) clsp(G) = GV Ghr;

(4) €lop(Gr) < el (G).

Proof.

(1) (=). Suppose that zx £ clsp(G), then clop(G) € nsp(zr), by G < clsp(G), we know
that x is not an SP-adherence point of G, a contradiction.

(«<). Suppose that zx < clsp(G) and zy is not an SP-adherence point of G, then
there exists a P € n,,(xx) such that G < P, this imples that cl,,(G) < P since P is
strongly preclosed. Thus zx £ clsp(G), a contradiction.

(2) We need only consider the case G # 0. Since clsp(G) = V{zx | zx < clsp(G)} and
by (1), we have that cls,(G) is the union of all its SP-adherence points.

(3) We need only prove that cls,(G) < GV G%r. In fact, if for some point x < cls,(G),
it follows that zy £ G, then by (1) and Definition 2.4 we know that x) < G9».

(4) If 2\ < clsp(G%r), then by (1) and Definition 2.4 we have that G4» £ P for each
P € nsp(zy). Hence there exists an SP-accumulation point e of G such that e £ P,
which means P € n,,(e). But e is an SP-adherence point of G, hence G £ P. Form
above statement, we know that G £ P for each P € n,p(xy), so xy is SP-adherence
point of G. Thus by (1) we have z) < clgp(G).

Theorem 2.6. Let (X,T) be an L-space and G € LX. Then G is strongly preclosed
if and only if for each point xx £ G, there exists P € ngy(xx) such that G < P.

Proof. The necessity is obvious. Now we prove the sufficiency. Suppose that for
each point xy £ G, there exists P € nsp(zy) such that G < P, i.e., there exists P €
Nsp(xx) such that clsp(G) < P. Then xy € clsp(G). Hence above statement implies that
zx £ G = ) £ clsp(G). Thus G > clsp(G). Therefore G is strongly preclosed.

3. SP-convergence of nets
In this section, we shall discuss SP-convergence of nets.

Definition 3.1. Let (X,7) be an L-space, x5 € M (LX) and S = {S(n) |n € D} a
net in LX. Then

(1) xy is said to be an SP-limit point of S, in symbols, S 5P, x if for each P € ngp(xy),
S(n) £ P is eventually true;
x) is said to be an SP-cluster point of .S, in symbols, ol<D xy if for each P € ng,(xy),
2 d to be an SP-cl £ bols, S 2 Map

S(n) £ P is frequently true.

The union of all SP-limit points and the union of all SP-cluster points of S will be
denoted by lim,, S and ads,S, respectively. Obviously lim,, S < ad,,S.
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Remark 3.2. From Definition 3.1 and Definition 2.1 in [3] and Definition 5.1 in [4]
we easily know that PS-adS < ad,pS < Q-adS and PS-1im S < lim,, S < Q-1lim S.

Theorem 3.3. Let (X,7T) be an L-space, xx,x, € M(LX) and S be a net in LX.
Then the following statements are true.

(1) Let T = {T(n) | n € D} be a net with the same domain as S and for each n €
D, T(n) > S(n). If S 5P, Xy, then T SP, T;

(2) Let T = {T'(n) | n € D} be a net with the same domain as S and for each n €
D, T(n) > S(n). If S X Zx, then T X Tx;

(3) IfS 5P, zx and x, < xy, then S 5P, Ty

4) Ifs %1(3 xzx and x, < xy, then S %1(3 Ty

Proof. It is simple and omitted.

Theorem 3.4. Let (X,7T) be an L-space, xx € M(LX) and S be a net in LX.
Then

(1) S LA xx if and only if zx <limg, S;
(2) S %ch xx if and only if zx < adypS.

Proof.

(1) The necessity is obvious. We prove the sufficiency.
Suppose that z) < limg, S and P € np(xy). Then lim,, S £ P. By the definition of
limg, S, there exists an SP-limit point e of S such that e £ P, i.e., P € ng(e). By e

is an SP-limit point of S, we know that S is eventually not in P, therefore S 5Py A
(2) This is analogous to proof of (1).

Theorem 3.5. Let (X,T) be an L-space, x5 € M(LX) and S = {S(n) | n € D} be

a net in LX. If S has a subnet T such that T SP, Ty, then S Solg T.

Proof. Suppose that T'(m) = {T'(m) | m € E} is a subnet of S,T LEiN xx, P €
Nsp(xx) and ng € D. By the definition of subnet, there exists a mapping N : E — D
and mo € FE such that N(m) > no(N(m) € D) when m > mo(m € E). Since T SP-
converges to xy, there is my € E such that T(m) £ P when m > mj(m € E). Because
FE is a directed set, there exists my € E such that mo > mg and ms > m;. Hence
T(mg) £ P and N(mga) > ng. Let n = N(mg). Then S(n) = S(N(m2)) = T(mz) £ P

and n > ng. This implies that S(n) £ P is frequently true. Thus S £ .

Theorem 3.6. Let (X,T) be an L-space and S be a net in LX. Then limg, S and
adsp S are strongly preclosed.
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Proof. Let x) < clgp(limgy S). Then limg, S £ P for each P € ng,(xx). Hence there
exists a point e such that e < lim,, S and e £ P. Then P € n,p,(e). By Theorem 3.4

s 2P ¢ Hence S £ P is eventually true. Thus z) < limg, S. This implies that limg, S
is strongly preclosed.
Similarly ads,S is strongly preclosed.

Theorem 3.7. Let (X,T) be an L-space, G € LX, x) € M(LX). If there exists a
net S ={S(n) | n € D} in G such that S X z, then zx < cls)pG.

Proof. Suppose that S = {S(n) | n € D} isanetin G and S % xx. Let P € ngp(zy),
then S is not frequently in P, hence there is n € D such that S(n) £ P, but S(n) <G,
so G £ P. Thus z, is an SP-adherence point of G, i.e., zx < clgp(G).

Now we give characterization of SP-accumulation point of L-set G by means of net.
Let G € LY, z € X, we define G — 1 follow as:

o= {0 E12¢

Then G —x1 = GAz) = {tG(t) | t € suppG — {:L'}}

Theorem 3.8. Let (X,T) be an [0,1]-space, G € I and xy € M(IX) in G. If there

exists a net S in G —x1 such that S SP, Tz, then xy is an SP-accumulation point of G.

Proof. Suppose that 2y < G and there exists a net S = {S(n) |n € D} in G —

such that § 25 xx. Let P € ng(xy) and z,, is a point satisfying zx < z, < G. Hence
there exists n € D such that S(n) =y, £ P and by y, < G — z1, we know y # z, so
Yy £ x,. Hence y, £ PV x,, therefore G £ PV z,,. By Definition 2.4, we have that z
is an SP-accumulation point of G.

4. SP-convergence of ideals

Definition 4.1. Let (X,7) be an L-space, I be an ideal in L*X and z) € M(LY).
Then
(1) xy is said to be SP-limit point of I, in symbols, T SP, xx i nsp(z) C I
(2) xy is said to be SP-cluster point of I, in symbols, I %ch x) if for each G € I and each
P € ngp(xy), it follows that GV P # 1.

The union of all SP-limit points and union of all SP-cluster points of I are denoted
by lim,, I and ads,/, respectively. Obviously, limg, I < adg,[.

Theorem 4.2. Let both I and J be ideals in LX, I C J and zx,z, € M(LX).
Then
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(1) 1 SP, ) implies J SE, Tx;

(2) J % xx tmplies I £ Ts

(3) If I 2P 2\ and x, <z, then I SE, Zy;
(4)

4 Ifl%?ab\ and x, < Ty, then]%lgac“.

Proof. It is simple and omitted.

Theorem 4.3. Let (X,7) be an L-space, G € LX and xx € M(LX). If there exists
an ideal I in LX such that G & I and I SP, xx, then xx < clgp(G).

Proof. Suppose that I S, xzx and G ¢ I. Let P € ngp(x), then by the fact that
Nsp(xx) C I and I is a lower set, we know that G £ P, so x is an SP-adherence point
of G, therefore x) < clsp(G).

Theorem 4.4. Let (X,7) be a [0,1]-space, G € LX, xx € M(LX), and z\ < G.
If there exists an ideal I in LX such that G — x1 g I and I LA Ty, then x) is an
SP-accumulation point of G.

Proof. Suppose that there exists an ideal I in L~ such that G—2; & I and I 5P, Ty.
Let P € nsp(zy), then by ng,(xx) C I, we have P € I. Since I is lower set, we know
that G — 21 £ P, so G £ PV xg(,). In particular, for each point z, € M (LX) with
zx < zy < G, we have G £ PV z,,. Hence x) is an SP-accumulation point of G.

Theorem 4.5. Let (X,7) be an L-space, I be an ideal in L and z) € M(LX).
Then
(1) 1 S, xx if and only if xx <limg, I;
(2) I %1(3 xx if and only if xx < adgpl.

Proof. We prove only the sufficiency of (1). Suppose that zy < limg, I, P € ng,(x).
Then z) £ P, so limg, I £ P. By definition of lim,, I, we know that I has an SP-limit
point e such that e £ P, i.e., P € nsp(e) C I, thus P € I, therefore nsp(xy) C I. Hence
I 2 TX-

Theorem 4.6. Let (X,T) be an L-space, I be an ideal in L. Then limgs, I and
adspl are strongly preclosed.

Proof. The proof is analogous to the proof of The Theorem 3.6.

5. SP-convergence of filters

In this section, we first introduce the concept of SP-convergence of filters and then
discuss its some properties.
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Definition 5.1. Let (X,7) be an L-space, )y € M (LX) and P € L. P is called a
quasi set of x if ) £ P’, in this case, we also say that ) quasi-coincides with P and
it is denote by z GP. A quasi set P of x) is called a strongly preopen quasi set of z if
P is strongly preopen.

The set of all strong preopen quasi sets of z is denoted by Qqp(xx).

Remark 5.2. From the above definition , we can see that if A,B € LX, A < B,
xx € M(LX) and x)GA, then x)§B.

Definition 5.3. Let (X,7) be an L-space, P be a proper filter in LX and e €
M (LX).

(1) e is called an SP-cluster point of P, in symbol, P % e if for every U € Q,p(e) and
every A € P, it follows that UV A # 0, in this case, we also say that P SP-accumulates
to e.

(2) e is called an SP-limit point of P, in symbol, P P e if Qqple) CP.

The union of all SP-cluster points of P is denoted by ad,,P and the union of all
SP-milit points of P is denoted by lims, P.

Theorem 5.4. Let (X,T) be an L-space, P be a proper filter and e € M(LX).
Then

(L) Ifp 5P, e, then P % e;

(2) lim,, P < ad,,P;

(3) If’P%Ige and d < e, then’/)%lcjd;
(4) prﬁe and d < e, then P ﬁd;
(5) P 5P e if and only if e < limg, P;
6) P % e if and only if e < adspP.

Proof. It is simple and omitted.

Definition 5.5. Let (X,7) be an L-space, P,G be proper filters in LX. Say G is
finer than P, or say P is coarser than G, if P C G.

Theorem 5.6 Let (X,7T) be an L-space, P,G be proper filters in L, P be coarser
than G and e € M(LX). Then

(1) adspG < adspP;

(2) limg, P < limg, G;

(3) Ifg ¥ e, then P X e;
4) P 2B e then G 2 e

Proof. It is simple and omitted.
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6. Relations among nets, ideals, filters
In this section, we discuss relations among nets, ideals and filters.

Definition 6.1.([2€]) Let (X,7) be an L-space.

(1) Let I be an ideal in L*X and D(I) = {(e,G) | e € M(L¥X),G € Iand e £ G}.
For every pair of elements (e;, G1) and (e2,G2) in D(I), we define that (e;,Gy) <
(e2,Ge) if and only if G; < G2. Then (D(I),<) is a directed set. Clearly, S(I) =
{S(I)(e,G) =¢| (e,G) € D(I)} is a net in LX and is called the net induced by I.

(2) Let S be a net in LX. Then I(S) = {G € L* | S in not eventually in G} is an ideal
in LX and is called the ideal induced by S.

Theorem 6.2. Let (X,T) be an L-space and I be an ideal in L. Then

(1) limg, I = lim,y, S(I);
(2) adspl = adspS(I).

Proof. We prove only (1). Let e < limg,I. Then [ 5P e, so P € I for each
P € nsp(xy). Hence (e,P) € D(I). If (a,G) € D(I) and (a,G) > (e, P), then we

have S(I)(a,G) = a £ G > P. This implies that S(I) is not eventually in P for each

P € ny(xy), ie., S(I) 25 z,.
SP

Conversely, let e < lim,, S(I). Then S(I) — e. Therefore for each P € nsp(e)
there exists (a,G) € D(I) such that S(I)(b,H) = b £ P whenever (b,H) > (a,G) and
(by,H) € D(I). In particular, take H = G, we know that b £ G implies b € P, or
equivalently b < P implies b < G. Hence P < G follows from Theorem 1.5.29 in [25].
Note that I is a lower set and G € I, so P € I. This shows that 7s,(e) C I. Hence

1 22 ¢. From Theorem 4.5 we have e < limgy I. Thus (1) holds.

Theorem 6.3. Let (X,7) be an L-space and S be a net in LX. Then

(1) limg, S = limg, I(S);
(2) adepS < adgpI(S).

Proof. We prove only (2). In accordance with Theorems 4.5 and 3.4, we need only

prove that S %ch x implies I(S) Solg Ty Let S Solcg ). Then S is not frequently in P for
each P € ngp(xy). On the other hand, S is not eventually in G for each G € I(S). Hence
S is not frequently in PV G for each P € ns,(zy) and each G € I(S). This means that

PV G #1. Thus I(S) X 2.
Now we give relations between nets and filters.

Definition 6.4. Let (X,7) be an L-space, P be a filter in L* and S be a net in LX.
For S, define the filter associated with the net S as the family P(S) of all the L-subsets
on X which the net S eventually quasi-coincides with.
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For P, let
D(P) ={(e,A) | e € M(L¥),eGA € P}

and equip it with a relation < on it as
V(e, A),(d,B) € D(P),(e,A) < (d,B) & A > B.
Define the net associated with the filter P as the mapping
S(P): D(P) — M(LY),S(P)(e, A) = e,V(e, A) € D(P).

Then the filter P(S) associated with S is a proper filter in LX, D(P) equipped with
< is a directed set and the S(P) associated with P is a net in L.

Theorem 6.5. Let (X,T) be an L-space, S a net in LX, P a proper filter in LX
and e € M(LX). Then

(1) S 5P e if and only if P(S)
(2) P 5P e if and only if S(P)
(3)
(4)

|z 1%

e;
e;
3) PX e if and only if S(P) % e;

1) K e implies P(S) % e

Proof.

(1) (<) By the relative definitions.

(2) (=) Suppose P = M(LX),U € nsp(e), then x, £ U. Take z) € M (LX)
such that z) < z4,2x € U, so 2)GU’. By Theorem 5.4(4) P SP, zy < g, U €
Qsp(zr) CP. So (zx,U’) € D(P). V(d, A) € D(P) such that (d, A) > (zx,U’), then
dGA < U’. By Remark 5.2 S(P)(d, A) = dGgU’, S(P) eventually quasi-coincides with

U, ie., S(P) £ (U') = U eventually is true. By the arbitrariness of U € ng(e),

S(P) 25 e.

(<) Suppose S(P) =P, e, U € Qsp(e), then U’ € nsp(e). So S(P) £ U’ eventually
is true. 3(do, Ag) € D(P) such that V(d, A) > (do, Ag), d = S(P)(d,A) £ U, i.e.,
dqU. So ¥d € M (LX) such that d§A,, we have (d, Ag) € D(P), (d,Ag) > (do, Ao)
and hence dgU. That is to say Vd € M(LX), djAo implies that dqU, i.e., d < U’
implies that d < Ag. So U’ < Af, U > Ay. Since Ay € P, P is a filter, so U € P.
By the arbitrariness of U € Qgp(e), Qsple) C P. P B e

(3) (=) Suppose P % e, U € nsple), ie., U € Qgle), (do,Ag) € D(P). We need
to find a (d, A) € D(P) such that (d, A) > (do, Ao), S(d,A) £ U. Since P % e,
U € Qyle) and A4y € P, Ag ANU" # 0, Ay VU # 1. So 3d € M(L¥) such
that d € A\ V U, so d§(Ag A U’). Therefore djAy, by (do, Ao) € D(P), Ag € P, so
(d, Ao) S D(P), (d, Ao) > (do, Ao) By d(j(Ao/\U/) and Remark 5.2, S(d, Ao) = d(fU/,
i.e., S(d, Ag) £ U, this is that we need to prove.
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(<) Suppose S(P) % e, A e P, U € Qgle)(so U € nyle)), we need to show
AANU # 0. Since A € P and P is a proper filter in LX, A # 0, A’ # 1. So
dd € M(LX) sucht that d £ A', i.e., d4A, so (d,A) € D(P). Since S(P) % e,
I(do, Ag) € D(P) such that (do, Ag) > (d, A), dy = S(do, Ao) £ U’. So do £ Ab,
dy £ U'. By dy € M(LX), dy £ AE)\/U/ = (Ao/\U)/, (Ao/\U)/ #1, Ag AU # 0.
Since (do, Ag) > (d, A), Ag < A. s0o ANU #0.

(4) Suppose S = {S(n),n € D}, A € P(S), U € Qqp(e), going to show AAU # 0.
Since A € P(S), Ing € D such that Vn > ng, S(n) £ A’. Since U € Qgy(e), ie.,
U’ € ngple), S Solcg e, In1 € D, ny > ng sucht that S(ny) £ U’. So S(ny) £ A, U’.
But S(n1) € M(LX),s0 S(n1) £ A'VU = (ANU)(ANUY #1, ANU #0.

7. Applications of SP-convergence theory of nets

Theorem 7.1. Let (X,7;) and (Y,72) be two L-spaces. A mapping f : X — Y
is SP-irresolute if and only if clsp(f; (P)) € c(zy) for each P € nsp(fr (z2)), where
Ty € M(LX).

Proof. Suppose that f is SP-irresolute and ) € M(LX). Then f; (P) is strongly
preclosed for each P € ng,(f;”(xy)). Clearly zx £ fi (P). Hence f; (P) = clop(f; (P))

S nsp(x,\).
Conversely, let P be strongly preclosed in (Y, 7). We may assume that f; (P) # 1

and zx £ f; (P). Then f;’(zx) £ P, ie, P € ns(fr (x2)). Hence clgp(ff (P)) €
Nsp(xr), Le., xx £ fi (P) implies that xx £ clsp(f5 (P)). So clop(fi (P)) < f1 (P).
Thus f;(P) is strongly preclosed in (X, 77). This shows that f is SP-irresolute.

Theorem 7.2. Let (X,T;) and (Y, T2) be two L-spaces, xx € M(LX) and f : X —
Y is SP-irresolute. If a net S 5P, 2x in LX, then fi(S) SE, i (zy) in LY.

Proof. Suppose that f is SP-irresolute and S 5P s Let P e Nsp(f17 (22))-
Then f; (P) < clsp(fi (P)) € nsp(xa) from f is SP-irresolute and so S(n) £ f; (P)
is eventually true from S SP, xy. Therefore f;7(S) € P is eventually true. Thus

— SP —
fr(8) == [ ().
Corollary 7.3. Let (X,T7) and (Y,72) be two L-spaces. If a mapping f : X =Y

is SP-irresolute, then

(1) fr(limg, S) < limgy, f77(S) for each net S in LX;
(2) f; (limg, T) < limg, f5(T) for each net T in LY.

Proof.

(1) Suppose that S = {S(n) | n € D} is a net in LX and g € f;"(limg, S). Then there
exists e < limg, S with g = f;’(e). We prove that g < lim,, f;7(S). In fact, by
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e < lim,, S, we know that S 5P, ¢ from Theorem 3.4. Since f is SP-irresolute, we

obtain that f;”(5) LA fi~(e) = g from Theorem 7.2. And by Theorem 3.4, we have
that g < lim,, f7°(S). Thus

fr (limg, S) < limgy, f77(5).
Let T = {T(n) | n € D} be a net in LY. Then

fr () ={f (T(n)) [n € D}
is a net in LX. Since f is SP-irresolute, according to (1) we have

fo(Qimgy f77(T)) <Timgy, f7 (7 (T)) < Timg, T

Hence limg, f; (T) < f; (lim,,T).
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