UNIQUENESS AND VALUE SHARING OF MEROMORPHIC FUNCTIONS WITH REGARD TO MULTIPLICITY

SUBHAS S. BHOOSNURMATH AND SMITA R. KABBUR

Abstract

In this paper, we study the uniqueness theorems of meromorphic functions, concerning differential polynomials and obtain theorems, from which we obtain as a very special case the results of Lin and Yi [4], Xiao Yu Zhang, Jun-Fan Chen, Wei-Chuan lin [8], and Renukadevi S. Dyavanal [9]. We also obtain several new interesting results.

1. Introduction And Main Results

In this paper the term meromorphic will always mean meromorphic in the complex plane. Let f and g be non-constant meromorphic functions and a be a complex number. We say f and g share the value a CM, if $f-a$ and $g-a$ have the same zeros with the same multiplicities. It is assumed that reader is familiar with notations of Nevanlinna theory of meromorphic functions, for instance, $T(r, f), m(r, f), N(r, f), \bar{N}(r, f)$, etc (see [1, 3]). We denote by $S(r, f)$ any function satisfying $S(r, f)=o\{T(r, f)\}$. as $r \rightarrow+\infty$, possibly outside a set of finite measure.

In 2004, Lin and Yi [4] proved the following theorems.
Theorem A. Let f and g be two non-constant meromorphic functions, $n \geq 12$ be a positive integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share the value 1 CM, then $g=(n+2)\left(1-h^{n+1}\right) /(n+$ 1) $\left(1-h^{n+2}\right), f=(n+2) h\left(1-h^{n+1}\right) /(n+1)\left(1-h^{n+2}\right)$, where h is a non-constant meromorphic function.

Theorem B. Let f and g be non-constant meromorphic functions, $n \geq 13$ be a positive integer. If $f^{n}(f-1)^{2} f^{\prime}$ and $g^{n}(g-1)^{2} g^{\prime}$ share the value $1 C M$, then $f(z) \equiv g(z)$.

In 2008, Xiao-Yu Zhang, Jun-Fan Chen, Wei-Chuan Lin [8] extended Theorems A and B and proved the following theorem.

Theorem C. Let f and g be two nonconstant meromrophic functions, let n and m be two positive integers with $n>\max \{m+10,3 m+3\}$ and $\operatorname{let} P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{0}$, where $a_{0} \neq$
$0, a_{1}, a_{2}, \ldots, a_{m-1}, a_{m} \neq 0$ are complex constants. If $f^{n} P(f) f^{\prime}$ and $g^{n} P(g) g^{\prime}$ share $1 C M$, then either $f \equiv$ tg, for a constant t such that $t^{d}=1$, where $d=\{n+m+1, \ldots, n+m+1-i, \ldots, n+1\}$, $a_{m-i} \neq 0$ for some $i=0,1, \ldots, m$ or f and g satisfy algebraic equation $R(f, g)=0$, where

$$
\begin{aligned}
R\left(\omega_{1}, \omega_{2}\right)= & \omega_{1}^{n+1}\left(\frac{a_{m} \omega_{1}^{m}}{n+m+1}+\frac{a_{m-1} \omega_{1}^{m-1}}{n+m}+\cdots+\frac{a_{0}}{n+1}\right) \\
& -\omega_{2}^{n+1}\left(\frac{a_{m} \omega_{2}^{m}}{n+m+1}+\frac{a_{m-1} \omega_{2}^{m-1}}{n+m}+\cdots+\frac{a_{0}}{n+1}\right) .
\end{aligned}
$$

In 2004, Wei-Chuan Lin and Hong Xun Yi [7], extended Theorems A and B by replacing the value 1 with the function z and obtained the following results.

Theorem D. Let f and g be two transcendental meromorphic functions, $n \geq 12$ an integer. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share $z C M$, then either $f(z) \equiv g(z)$ or $g=(n+2)\left(1-h^{n+1}\right) /(n+$ 1) $\left(1-h^{n+2}\right), f=(n+2) h\left(1-h^{n+1}\right) /(n+1)\left(1-h^{n+2}\right)$, where h is a non-constant meromorphic function.

Theorem E. Let f and g be transcendental meromorphic functions, $n \geq 13$ is an integer. If $f^{n}(f-1)^{2} f^{\prime}$ and $g^{n}(g-1)^{2} g^{\prime}$ share $z C M$, then $f(z) \equiv g(z)$.

In 2009, Hong Yan Xu and Ting Bin Cao [6], obtained the following result.
Theorem F. Let f and g be two transcendental meromorphic functions and let n and m be two positive integers with $n>m+10$, and let $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{0}$, where $a_{0} \neq 0$, $a_{1}, a_{2}, \ldots, a_{m-1}, a_{m} \neq 0$ are complex constants. If $f^{n} P(f) f^{\prime}$ and $g^{n} P(g) g^{\prime}$ share $z C M$, then conclusion of Theorem C still holds.

In 2011, Renukadevi S. Dyavanal [9] proved the following results.
Theorem G. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let n be an integer satisfying ($n-2$) $s \geq$ 10. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share the value 1 CM, then $g=(n+2)\left(1-h^{n+1}\right) /(n+1)(1-$ $\left.h^{n+2}\right), f=(n+2) h\left(1-h^{n+1}\right) /(n+1)\left(1-h^{n+2}\right)$, where h is a non-constant meromorphic function.

Theorem H. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let n be an integer satisfying $(n-3) s \geq$ 10. If $f^{n}(f-1)^{2} f^{\prime}$ and $g^{n}(g-1)^{2} g^{\prime}$ share the value $1 C M$, then $f \equiv g$.

In this paper, using notion of multiplicity, we prove the following two theorems. As a consequence of these theorems, we improve the above mentioned theorems and in addition, we also obtain some new interesting results.

Theorem 1.1. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let n, m be positive integers with $(n-m-1) s \geq \max \{10,2 m+3\}$ and let $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{0}$, where $a_{0} \neq 0, a_{1}, a_{2}, \ldots, a_{m-1}, a_{m} \neq 0$ are complex constants. If $f^{n} P(f) f^{\prime}$ and $g^{n} P(g) g^{\prime}$ share $1 C M$, then one of the following two cases holds:
(1) $f=t g$ for a constant t such that $t^{d}=1$, where $d=\{n+m+1, \ldots, n+m+1-i, \ldots, n+1\}$, $a_{m-i} \neq 0$ for some $i=0,1, \ldots, m$;
(2) f and g satisfy algebraic equation $R(f, g) \equiv 0$, where

$$
\begin{aligned}
R\left(\omega_{1}, \omega_{2}\right)= & \omega_{1}^{n+1}\left(\frac{a_{m} \omega_{1}^{m}}{n+m+1}+\frac{a_{m-1} \omega_{1}^{m-1}}{n+m}+\cdots+\frac{a_{0}}{n+1}\right) \\
& -\omega_{2}^{n+1}\left(\frac{a_{m} \omega_{2}^{m}}{n+m+1}+\frac{a_{m-1} \omega_{2}^{m-1}}{n+m}+\cdots+\frac{a_{0}}{n+1}\right) .
\end{aligned}
$$

Remark 1.1. We set $P(z)=(z-1)^{m}$. Then with $a_{m}=1, a_{0}=-1$ and under the condition (2) of Theorem 1.1, Theorem 1.1 reduces to
(i) Theorem G, if $m=1$,
(ii) Theorem A, if $m=1$ and $s=1$,
(iii) Theorem H, if $m=2$,
(iv) Theorem B, if $m=2$ and $s=1$,
(v) Theorem C, if $s=1$.

Theorem 1.2. Let f and g be two transcendental meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let n, m be positive integers with $(n-m-1) s \geq \max \{10,2 m+3\}$. Let $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{0}$, where $a_{0} \neq$ $0, a_{1}, a_{2}, \ldots, a_{m-1}, a_{m} \neq 0$ are complex constants. Let $f^{n} P(f) f^{\prime}$ and $g^{n} P(g) g^{\prime}$ share $z C M$, then conclusion of Theorem 1.1 still holds.

Remark 1.2. We set $P(z)=(z-1)^{m}$. Then with $a_{m}=1, a_{0}=-1$ and under the condition (2) of Theorem 1.2, Theorem 1.2 reduces to
(i) Theorem D, if $m=1, s=1$,
(ii) Theorem E, if $m=2, s=1$,
(iii) Theorem F, if $s=1$.

Some interesting new results in this vein are indicated in Section 4.

2. Some Lemmas

Lemma 1 ([2]). Let f be non-constant meromorphic function and let $a_{n}(\neq 0), a_{n-1}, \ldots, a_{0}$ be small functions with respect to f. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\cdots+a_{1} f+a_{0}\right)=n T(r, f)+S(r, f)
$$

Lemma 2 ([5]). Let f and g be two non-constant meromorphic functions. If f and g share 1 CM, one of the following three cases holds:
(i) $T(r, f) \leq N_{2}(r, f)+N_{2}(r, g)+N_{2}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{g}\right)+S(r, f)+S(r, g)$ the same inequality holding for $T(r, g)$;
(ii) $f \equiv g$;
(iii) $f g \equiv 1$.

Lemma 3 ([10]). Let $Q(\omega)=(n-1)^{2}\left(\omega^{n}-1\right)\left(\omega^{n-2}-1\right)-n(n-2)\left(\omega^{n-1}-1\right)^{2}$, then

$$
Q(\omega)=(\omega-1)^{4}\left(\omega-\beta_{1}\right)\left(\omega-\beta_{2}\right) \cdots\left(\omega-\beta_{2 n-6}\right),
$$

where $\beta_{j} \in \mathbb{C} \backslash\{0,1\},(j=1,2, \ldots, 2 n-6)$, which are distinct respectively.
Lemma 4 ([2]). Suppose $f(z)$ is a nonconstant meromorphic function in the complex plane and k is a positive integer.Then

$$
N\left(r, \frac{1}{f^{(k)}}\right) \leq N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

3. Proof of Theorems 1.1 and 1.2

3.1. Proof of Theorem 1.1.

Let

$$
\begin{equation*}
F=f^{n} P(f) f^{\prime}, \quad G=g^{n} P(g) g^{\prime} \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
& F^{*}=\frac{a_{m} f^{m+n+1}}{m+n+1}+\frac{a_{m-1} f^{m+n}}{m+n}+\cdots+\frac{a_{0} f^{n+1}}{n+1} \tag{2}\\
& G^{*}=\frac{a_{m} g^{m+n+1}}{m+n+1}+\frac{a_{m-1} g^{m+n}}{m+n}+\cdots+\frac{a_{0} g^{n+1}}{n+1}
\end{align*}
$$

By hypothesis F and G share 1 CM . By Lemma 1, we have

$$
\begin{align*}
& T\left(r, F^{*}\right)=(n+m+1) T(r, f)+S(r, f) \tag{3}\\
& T\left(r, G^{*}\right)=(n+m+1) T(r, g)+S(r, f)
\end{align*}
$$

Since $\left(F^{*}\right)^{\prime}=F$, we deduce,

$$
m\left(r, \frac{1}{F^{*}}\right) \leq m\left(r, \frac{1}{F}\right)+S(r, f),
$$

and by the first fundamental Theorem,

$$
\begin{align*}
T\left(r, F^{*}\right) \leq & T(r, F)+N\left(r, \frac{1}{F^{*}}\right)-N\left(r, \frac{1}{F}\right)+S(r, f) \\
\leq & T(r, F)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f-b_{1}}\right)+\cdots+N\left(r, \frac{1}{f-b_{m}}\right) \\
& -N\left(r, \frac{1}{f-c_{1}}\right)-\cdots-N\left(r, \frac{1}{f-c_{m}}\right)-N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \tag{4}
\end{align*}
$$

where $b_{1}, b_{2}, \ldots, b_{m}$ are roots of algebraic equation $\frac{a_{m} z^{m}}{m+n+1}+\frac{a_{m-1} z^{m-1}}{m+n}+\cdots+\frac{a_{0}}{n+1}=0$ and c_{1}, c_{2}, \ldots, c_{m} are roots of the algebraic equation $a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{0}=0$.

By Lemma 2, one of the following three cases holds:
Case 1:

$$
\begin{equation*}
T(r, F) \leq N_{2}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, G)+N_{2}\left(r, \frac{1}{G}\right)+S(r, f)+S(r, g) \tag{5}
\end{equation*}
$$

the same inequality holding for $T(r, G)$.
On the other hand, we have

$$
\begin{align*}
& N_{2}(r, F)+N_{2}\left(r, \frac{1}{F}\right) \leq 2 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f-c_{1}}\right)+\cdots+N\left(r, \frac{1}{f-c_{m}}\right)+N\left(r, \frac{1}{f^{\prime}}\right) \tag{6}\\
& N_{2}(r, G)+N_{2}\left(r, \frac{1}{G}\right) \leq 2 \bar{N}(r, g)+2 \bar{N}\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{g-c_{1}}\right)+\cdots+N\left(r, \frac{1}{g-c_{m}}\right)+N\left(r, \frac{1}{g^{\prime}}\right) \tag{7}
\end{align*}
$$

From (3)-(7), we obtain

$$
\begin{aligned}
T\left(r, F^{*}\right) \leq & 2 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{f}\right)+2 \bar{N}(r, g)+2 \bar{N}\left(r, \frac{1}{g}\right) \\
& +N\left(r, \frac{1}{g-c_{1}}\right)+\cdots+N\left(r, \frac{1}{g-c_{m}}\right) \\
& +N\left(r, \frac{1}{g^{\prime}}\right)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f-b_{1}}\right)+\cdots+N\left(r, \frac{1}{f-b_{m}}\right)+S(r, f)+S(r, g) .
\end{aligned}
$$

By lemma 4, $\quad N\left(r, \frac{1}{g^{\prime}}\right) \leq N\left(r, \frac{1}{g}\right)+\bar{N}(r, g)+S(r, g)$ and by our assumption, zeros and poles of f and g are of multiplicities atleast s, we have

$$
\begin{equation*}
\bar{N}(r, g) \leq \frac{1}{s} N(r, g) \leq \frac{1}{s} T(r, g) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{g}\right) \leq \frac{1}{s} N\left(r, \frac{1}{g}\right) \leq \frac{1}{s} T(r, g), \tag{9}
\end{equation*}
$$

we deduce above inequality as,

$$
\begin{align*}
T\left(r, F^{*}\right) & \leq\left(\frac{4}{s}+m+1\right) T(r, f)+\left(\frac{5}{s}+m+1\right) T(r, g)+S(r, f)+S(r, g) \\
(n+m+1) T(r, f) & \leq\left(\frac{4}{s}+m+1\right) T(r, f)+\left(\frac{5}{s}+m+1\right) T(r, g)+S(r, f)+S(r, g) \\
\left(n-\frac{4}{s}\right) T(r, f) & \leq\left(\frac{5}{s}+m+1\right) T(r, g)+S(r, f)+S(r, g) \tag{10}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\left(n-\frac{4}{s}\right) T(r, g) \leq\left(\frac{5}{s}+m+1\right) T(r, f)+S(r, f)+S(r, g) . \tag{11}
\end{equation*}
$$

From (10) and (11), we deduce that $(n-m-1) s \leq 9$, which contradicts $(n-m-1) s \geq 10$.
Case 2: Suppose that $F G \equiv 1$, that is

$$
\begin{equation*}
f^{n} P(f) f^{\prime} g^{n} P(g) g^{\prime} \equiv 1 \tag{12}
\end{equation*}
$$

Now we rewrite $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{1} z+a_{0}$ as

$$
P(z)=a_{m}\left(z-d_{1}\right)^{l_{1}}\left(z-d_{2}\right)^{l_{2}} \cdots\left(z-d_{i}\right)^{l_{i}} \cdots\left(z-d_{k}\right)^{l_{k}}
$$

where $l_{1}+l_{2}+\cdots+l_{k}=m, 1 \leq k \leq m ; d_{i} \neq d_{j}, i \neq j, i, j \leq k ; d_{1}, d_{2}, \cdots, d_{k}$ are non-zero constants and $l_{1}, l_{2}, \ldots, l_{k}$ are positive integers.

Let z_{0} be a zero of f of order p. Then from (12) we know that z_{0} is a pole of g. Suppose z_{0} is a pole of g of order q. Again by (12), we obtain

$$
n p+p-1=n q+m q+q+1
$$

that is

$$
(n+1)(p-q)=m q+2 .
$$

which implies $p \geq q+1$ and $m q+2 \geq n+1$. Hence

$$
\begin{equation*}
p \geq \frac{n+m-1}{m} \tag{13}
\end{equation*}
$$

Let z_{1} be a zero of $P(f)$ of order p_{1} and a zero of $f-d_{i}$ of order q_{i} for $i=1,2, \ldots, k$. Then $p_{1}=l_{i} q_{i}$ for $i=1,2, \ldots, k$. Suppose that z_{1} is a pole of g of order t_{1}. Again by (12), we obtain $q_{i} l_{i}+q_{i}-1=n t_{1}+m t_{1}+t_{1}+1$. That is,

$$
\begin{align*}
& q_{i}=\frac{n t_{1}+m t_{1}+t_{1}+2}{\left(l_{i}+1\right)} \\
& q_{i} \geq \frac{n s+m s+s+2}{l_{i}+1}, \quad \text { for } \quad i=1,2, \ldots, k \tag{14}
\end{align*}
$$

Let z_{2} be a zero of f^{\prime} of order p_{2}, that is not a zero of $f P(f)$. Similarly, we get $p_{2}=n t_{2}+m t_{2}+$ $t_{2}+1$. That is,

$$
\begin{equation*}
p_{2} \geq n s+m s+s+1 \tag{15}
\end{equation*}
$$

In the same manner as above, we have similar results for the zeros of $g^{n} P(g) g^{\prime}$.
From (12), we can write,

$$
\begin{aligned}
\bar{N}\left(r, f^{n} P(f) f^{\prime}\right) & =\bar{N}\left(r, \frac{1}{g^{n} P(g) g^{\prime}}\right) \\
\bar{N}(r, f) & =\bar{N}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{P(g)}\right)+\bar{N}\left(r, \frac{1}{g^{\prime}}\right) \\
\bar{N}(r, f) & \leq \bar{N}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{g-d_{1}}\right)+\cdots+\bar{N}\left(r, \frac{1}{g-d_{k}}\right)+\overline{N_{0}}\left(r, \frac{1}{g^{\prime}}\right)
\end{aligned}
$$

From (13)-(15), we obtain

$$
\begin{equation*}
\bar{N}(r, f) \leq\left(\frac{m}{n+m-1}+\frac{m+k}{n s+m s+s+2}\right) T(r, g)+N_{0}\left(r, \frac{1}{g^{\prime}}\right)+S(r, g) \tag{16}
\end{equation*}
$$

where $N_{0}\left(r, \frac{1}{g^{\prime}}\right)$ denotes the counting function corresponding to the zeros of g^{\prime} that are not the zeros of $g P(g)$ and $N_{0}\left(r, \frac{1}{f^{\prime}}\right)$ denotes the analogous quantity, $\left(\overline{N_{0}}\left(r, \frac{1}{g^{\prime}}\right)\right)$ denotes the reduced counting function.
Similarly, as above we can obtain,

$$
\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-d_{1}}\right)+\cdots+\bar{N}\left(r, \frac{1}{f-d_{k}}\right) \leq\left(\frac{m}{n+m-1}+\frac{m+k}{n s+m s+s+2}\right) T(r, f) .
$$

By the second fundamental theorem and from (16), we have

$$
\begin{align*}
k T(r, f) \leq & \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-d_{1}}\right)+\cdots+\bar{N}\left(r, \frac{1}{f-d_{k}}\right)+\bar{N}(r, f)-N_{0}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \\
\leq & \left(\frac{m}{n+m-1}+\frac{m+k}{n s+m s+s+2}\right) T(r, f)+\left(\frac{m}{n+m-1}+\frac{m+k}{n s+m s+s+2}\right) T(r, g) \\
& +N_{0}\left(r, \frac{1}{g^{\prime}}\right)-N_{0}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) . \tag{17}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
k T(r, g) \leq & \left(\frac{m}{n+m-1}+\frac{m+k}{n s+m s+s+2}\right) T(r, g)+\left(\frac{m}{n+m-1}+\frac{m+k}{n s+m s+s+2}\right) T(r, f) \\
& +N_{0}\left(r, \frac{1}{f^{\prime}}\right)-N_{0}\left(r, \frac{1}{g^{\prime}}\right)+S(r, g) . \tag{18}
\end{align*}
$$

From (17) and (18), we have

$$
k(T(r, f)+T(r, g)) \leq\left(\frac{2 m}{n+m-1}+\frac{2 m+2 k}{n s+m s+s+2}\right)(T(r, f)+T(r, g))+S(r, f)+S(r, g)
$$

which contradicts $(n-m-1) s \geq 2 m+3$.
Case 3: If $F \equiv G$, that is

$$
\begin{equation*}
F^{*}=G^{*}+c \tag{19}
\end{equation*}
$$

where c is a constant, then it follows that

$$
\begin{equation*}
T(r, f)=T(r, g)+S(r, f) \tag{20}
\end{equation*}
$$

Suppose that $c \neq 0$, by (2), (3), (8), (9), (20), the second fundamental theorem, and lemma 1 , we have

$$
\begin{align*}
T\left(r, G^{*}\right) \leq & \bar{N}\left(r, \frac{1}{G^{*}}\right)+\bar{N}\left(r, \frac{1}{G^{*}+c}\right)+\bar{N}\left(r, G^{*}\right)+S(r, g) \\
(n+m+1) T(r, g) \leq & \bar{N}\left(r, \frac{1}{G^{*}}\right)+\bar{N}\left(r, \frac{1}{F^{*}}\right)+\bar{N}\left(r, G^{*}\right)+S(r, g) \\
\leq & \bar{N}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{g^{m}+\cdots+\frac{m+n+1}{n+1} \frac{a_{0}}{a_{m}}}\right)+\bar{N}\left(r, \frac{1}{f}\right) \\
& +\bar{N}\left(r, \frac{1}{f^{m}+\cdots+\frac{m+n+1}{n+1} \frac{a_{0}}{a_{m}}}\right)+\bar{N}(r, g)+S(r, g) \\
\leq & \left(\frac{3}{s}+2 m\right) T(r, f)+S(r, f)+S(r, g) \tag{21}
\end{align*}
$$

which contradicts our assumption $(n-m-1) s \geq 10$. Therefore $F^{*}=G^{*}$ that is,

$$
\begin{equation*}
f^{n+1}\left(\frac{a_{m} f^{m}}{m+n+1}+\frac{a_{m-1} f^{m-1}}{m+n}+\cdots+\frac{a_{0}}{n+1}\right)=g^{n+1}\left(\frac{a_{m} g^{m}}{m+n+1}+\frac{a_{m-1} g^{m-1}}{m+n}+\cdots+\frac{a_{0}}{n+1}\right) . \tag{22}
\end{equation*}
$$

Let $h=\frac{f}{g}$. If h is a constant, then substituting $f=g h$ into (22) we deduce,

$$
\begin{equation*}
\frac{a_{m} g^{m+n+1}\left(h^{m+n+1}-1\right)}{m+n+1}+\frac{a_{m-1} g^{n+m}\left(h^{m+n}-1\right)}{m+n}+\cdots+\frac{a_{0} g^{n+1}\left(h^{n+1}-1\right)}{n+1}=0 \tag{23}
\end{equation*}
$$

which implies $h^{d}=1$, where $d=(n+m+1, n+m, \ldots, n+m+1-i, \ldots, n+1), a_{m-i} \neq 0$, for some $i=0,1,2, \ldots, m$.

Thus $f=\operatorname{tg}$ for a constant t, such that $t^{d}=1$, where $d=(n+m+1, n+m, \ldots, n+m+1-$ $i, \ldots, n+1), a_{m-i} \neq 0$, for some $i=0,1, \ldots, m$.

If h is not a constant, then by (23) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
\begin{aligned}
R\left(\omega_{1}, \omega_{2}\right)= & \omega_{1}^{n+1}\left(\frac{a_{m} \omega_{1}^{m}}{n+m+1}+\frac{a_{m-1} \omega_{1}^{m-1}}{n+m}+\cdots+\frac{a_{0}}{n+1}\right) \\
& -\omega_{2}^{n+1}\left(\frac{a_{m} \omega_{2}^{m}}{n+m+1}+\frac{a_{m-1} \omega_{2}^{m-1}}{n+m}+\cdots+\frac{a_{0}}{n+1}\right)
\end{aligned}
$$

This completes the proof of Theorem 1.1.

3.2. Proof of Theorem 1.2.

Let

$$
\begin{equation*}
F=\frac{f^{n} P(f) f^{\prime}}{z}, \quad G=\frac{g^{n} P(g) g^{\prime}}{z} \tag{24}
\end{equation*}
$$

and

$$
\begin{align*}
& F^{*}=\frac{a_{m} f^{m+n+1}}{m+n+1}+\frac{a_{m-1} f^{m+n}}{m+n}+\cdots+\frac{a_{0} f^{n+1}}{n+1} \tag{25}\\
& G^{*}=\frac{a_{m} g^{m+n+1}}{m+n+1}+\frac{a_{m-1} g^{m+n}}{m+n}+\cdots+\frac{a_{0} g^{n+1}}{n+1}
\end{align*}
$$

Thus we obtain that F and G share 1 CM .
Since $\left(F^{*}\right)^{\prime}=F z$, we deduce

$$
\begin{equation*}
m\left(r, \frac{1}{\left(F^{*}\right)^{\prime}}\right) \leq m\left(r, \frac{1}{z F}\right)+S(r, f) \leq m\left(r, \frac{1}{F}\right)+\log r+S(r, f) \tag{26}
\end{equation*}
$$

and by the first fundamental Theorem,

$$
\begin{align*}
T\left(r, F^{*}\right) \leq & T(r, F)+N\left(r, \frac{1}{F^{*}}\right)-N\left(r, \frac{1}{F}\right)+S(r, f) \\
\leq & T(r, F)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f-b_{1}}\right)+\cdots+N\left(r, \frac{1}{f-b_{m}}\right) \\
& -N\left(r, \frac{1}{f-c_{1}}\right)-\cdots-N\left(r, \frac{1}{f-c_{m}}\right)-N\left(r, \frac{1}{f^{\prime}}\right)+\log r+S(r, f) \tag{27}
\end{align*}
$$

where $b_{1}, b_{2}, \ldots, b_{m}$ are roots of the algebraic equation,

$$
\frac{a_{m} z^{m}}{m+n+1}+\frac{a_{m-1} z^{m-1}}{m+n}+\cdots+\frac{a_{0}}{n+1}=0
$$

and $c_{1}, c_{2}, \ldots, c_{m}$ are roots of the algebraic equation,

$$
a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{0}=0 .
$$

By Lemma 2, one of the following three cases holds.

Case 1:

$$
\begin{equation*}
T(r, F) \leq N_{2}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, G)+N_{2}\left(r, \frac{1}{G}\right)+S(r, f)+S(r, g) . \tag{28}
\end{equation*}
$$

On the other hand, we have
$N_{2}(r, F)+N_{2}\left(r, \frac{1}{F}\right) \leq 2 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f-c_{1}}\right)+\cdots+N\left(r, \frac{1}{f-c_{m}}\right)+N\left(r, \frac{1}{f^{\prime}}\right)+2 \log r$
$N_{2}(r, G)+N_{2}\left(r, \frac{1}{G}\right) \leq 2 \bar{N}(r, g)+2 \bar{N}\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{g-c_{1}}\right)+\cdots+N\left(r, \frac{1}{g-c_{m}}\right)+N\left(r, \frac{1}{g^{\prime}}\right)+2 \log r$
From (27) - (30), we obtain

$$
\begin{gather*}
T\left(r, F^{*}\right) \leq\left(\frac{4}{s}+m+1\right) T(r, f)+\left(\frac{5}{s}+m+1\right) T(r, g)+4 \log r+S(r, f)+S(r, g) \\
\left(n-\frac{4}{s}\right) T(r, f) \leq\left(\frac{5}{s}+m+1\right) T(r, g)+4 \log r+S(r, f)+S(r, g) \tag{31}
\end{gather*}
$$

Similarly,

$$
\begin{equation*}
\left(n-\frac{4}{s}\right) T(r, g) \leq\left(\frac{5}{s}+m+1\right) T(r, f)+4 \log r+S(r, f)+S(r, g) \tag{32}
\end{equation*}
$$

From (31) and (32), we deduce that $(n-m-1) s \leq 9$, which contradicts the assumption ($n-$ $m-1) s \geq 10$
Case 2: \quad Suppose $F G \equiv 1$, that is

$$
f^{n} P(f) f^{\prime} g^{n} P(g) g^{\prime} \equiv z^{2}
$$

Proceeding as in the proof of Theorem 1.1(case 2), we get a contradiction.
Case 3: $\quad F \equiv G$ that is $F^{*}=G^{*}+c$.
Proceeding as in the proof of Theorem 1.1 (case 3), we get a conclusion of Theorem 1.2.
Therefore, we complete the proof of Theorem 1.2.

4. Consequences of Theorem 1.1 and Theorem 1.2

Under the condition of Theorem 1.1 and Theorem 1.2, setting $P(z)=(z-1)^{m}$, we get following results as immediate consequences of Theorem 1.1 and Theorem 1.2.

Consequences of Theorem 1.1
(A) Let f and g be two nonconstant meromorphic functions, whose zeros and poles are of multiplicities atleast s.Let n, m, s be positive integers with,$(n-m-1) s \geq \max \{10,2 m+3\}$.If $f^{n} P(f) f^{\prime}$ and $g^{n} P(g) g^{\prime}$ share 1 CM , and
(1) if $s=1$,
(i) $m=1, n \geq 12$ then $g=\frac{(n+2)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}, f=\frac{(n+2) h\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}$
(ii) $m=2, n \geq 13$ then $f \equiv g$
(iii) $m \geq 3$ then $f^{n+1} \sum_{k=0}^{m} \frac{(-1)^{k} C_{m}^{m-k}}{n+m-k+1} f^{m-k}=g^{n+1} \sum_{k=0}^{m} \frac{(-1)^{k} C_{m}^{m-k}}{n+m-k+1} g^{m-k}$
(2) if $s=2$,
(i) $m=1, n \geq 7$ then $g=\frac{(n+2)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}$, $f=\frac{(n+2) h\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}$
(ii) $m=2, n \geq 8$ then $f \equiv g$
(iii) $m \geq 3$ then $f^{n+1} \sum_{k=0}^{m} \frac{(-1)^{k} C_{m}^{m-k}}{n+m-k+1} f^{m-k}=g^{n+1} \sum_{k=0}^{m} \frac{(-1)^{k} C_{m}^{m-k}}{n+m-k+1} g^{m-k}$

Similar observations can be made for $s=3,4, \ldots, 9$
(3) if $s \geq 10$,
(i) $m=1, n \geq 2$ then $g=\frac{(n+2)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}$, $f=\frac{(n+2) h\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}$
(ii) $m=2, n \geq 3$ then $f \equiv g$
(iii) $m \geq 3$ then $f^{n+1} \sum_{k=0}^{m} \frac{(-1)^{k} C_{m}^{m-k}}{n+m-k+1} f^{m-k}=g^{n+1} \sum_{k=0}^{m} \frac{(-1)^{k} C_{m}^{m-k}}{n+m-k+1} g^{m-k}$.

Thus as per the above observations, we see that as multiplicity ' s^{\prime} increases, the value of n decreases.

Consequences of Theorem 1.2
(B) Let f and g be two trancendental meromorphic functions, whose zeros and poles are of multiplicities atleast s. Let n, m, s be positive integers with $(n-m-1) s \geq \max \{10,2 m+3\}$. If $f^{n} P(f) f^{\prime}$ and $g^{n} P(g) g^{\prime}$ share $z \mathrm{CM}$, we observe results similar to consequences mentioned above.

Under the condition of Theorem 1.1 and Theorem 1.2, setting $P(z)=z^{m}-a, a \neq 0$ we get following results as immediate consequences of Theorem 1.1 and Theorem 1.2.

Consequences of Theorem 1.1
(C) Let f and g be two nonconstant meromorphic functions, whose zeros and poles are of multiplicities atleast s. Let n, m, s be positive integers with $(n-m-1) s \geq \max \{10,2 m+3\}$.If $f^{n} P(f) f^{\prime}$ and $g^{n} P(g) g^{\prime}$ share 1 CM , and
(1) if $s=1$,
(i) $m=1, n \geq 12$ then $g=\frac{a(n+2)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}, f=\frac{a h(n+2)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}$
(ii) $m \geq 2$ then $g=\left[\frac{a(n+m+1)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+m+1}\right)}\right]^{\frac{1}{m}}, f=\left[\frac{a(n+m+1)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+m+1}\right)}\right]^{\frac{1}{m}} h$.
(2) if $s \geq 10$,
(i) $m=1, n \geq 2$ then $g=\frac{a(n+2)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}, f=\frac{a h(n+2)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}$
(ii) $m \geq 2$ then $g=\left[\frac{a(n+m+1)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+m+1}\right)}\right]^{\frac{1}{m}}, f=\left[\frac{a(n+m+1)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+m+1}\right)}\right]^{\frac{1}{m}} h$

5. Final Remarks

It follows from the proof of Theorem 1.2 that if condition $f^{n} P(f) f^{\prime}$ and $g^{n} P(g) g^{\prime}$ share $z \mathrm{CM}$ is replaced by the condition $f^{n} P(f) f^{\prime}$ and $g^{n} P(g) g^{\prime}$ share $\alpha(z)$ CM, where α is a meromorphic function such that $\alpha \neq 0, \infty$ and $T(r, \alpha)=o\{T(r, f), T(r, g)\}$, the conclusion of the Theorem 1.2 still holds.

Acknowledgement

This research work is supported by Department of Science and Technology Government of India ,Ministry of Science and Technology,Technology Bhavan,New Delhi under the sanction letter No (SR/S4/MS:520/08).

References

[1] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford, 1964.
[2] H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995.
[3] L. Yang, Value Distribution, Springer - Verlag, Berlin, Science Press, Beijing, 1993.
[4] W. Lin and H. X. Yi, Uniqueness Theorems for Meromorphic Function, Indian J. Pure Appl. Math., 35, 121132.(2004)
[5] C. C. Yang and X. H. Hua, Uniqueness and Value Sharing of Meromorphic Functions, Ann. Acad. Sci. Fenn. Math., 22(1997), 395-406.
[6] Hong-Yan Xu and Ting-Bin Cao, Uniqueness of Entire or Meromorphic Functions sharing One Value or a Function with Finite Weight, Journal of Inequalities in Pure and Applied Mathematics, 10(2009), Issue 3, Art. 88.
[7] Weichuon Lin and Hong Xun Yi, Uniqueness Theorems for Meromorphic Functions Concerning Fixed-Points, Complex Variables, 49(2004), 793-806.
[8] Xiao-Yu Zhang, Jun-Fan Chen and Wei-Chuan Lin, Entire or meromorphic functions sharing one vlue, Computers and Mathematics with Applications, 56(2008), 1876-1883.
[9] Renukadevi S. Dyavanal, Uniqueness and value sharing of differential polynomial of meromorphic functions, J. Math. Annal. Appl., 374(2011), 335-345.
[10] G. Frank and M. Reinders, A Unique range set for meromorphic functions with 11 elements, Complex Variables, 37(1998), 185-193.

Department of Mathematics, Karnatak University, Dharwad - 580003.
E-mail: ssbmath@gmail.com

