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UNIQUENESS AND VALUE SHARING OF MEROMORPHIC

FUNCTIONS WITH REGARD TO MULTIPLICITY

SUBHAS S. BHOOSNURMATH AND SMITA R. KABBUR

Abstract. In this paper, we study the uniqueness theorems of meromorphic functions,

concerning differential polynomials and obtain theorems, from which we obtain as a very

special case the results of Lin and Yi [4], Xiao Yu Zhang, Jun-Fan Chen, Wei-Chuan lin [8],

and Renukadevi S. Dyavanal [9]. We also obtain several new interesting results.

1. Introduction And Main Results

In this paper the term meromorphic will always mean meromorphic in the complex

plane. Let f and g be non-constant meromorphic functions and a be a complex number.

We say f and g share the value a CM, if f − a and g − a have the same zeros with the same

multiplicities. It is assumed that reader is familiar with notations of Nevanlinna theory of

meromorphic functions, for instance, T (r, f ), m(r, f ), N (r, f ), N (r, f ), etc (see [1, 3]). We de-

note by S(r, f ) any function satisfying S(r, f ) = o{T (r, f )}. as r →+∞, possibly outside a set of

finite measure.

In 2004, Lin and Yi [4] proved the following theorems.

Theorem A. Let f and g be two non-constant meromorphic functions, n ≥ 12 be a positive

integer. If f n( f − 1) f ′ and g n(g − 1)g ′ share the value 1 CM, then g = (n + 2)(1−hn+1)/(n +

1)(1−hn+2), f = (n +2)h(1−hn+1)/(n +1)(1−hn+2), where h is a non-constant meromorphic

function.

Theorem B. Let f and g be non-constant meromorphic functions, n ≥ 13 be a positive integer.

If f n( f −1)2 f ′ and g n(g −1)2g ′ share the value 1 CM, then f (z) ≡ g (z).

In 2008, Xiao-Yu Zhang, Jun-Fan Chen, Wei-Chuan Lin [8] extended Theorems A and B

and proved the following theorem.

Theorem C. Let f and g be two nonconstant meromrophic functions, let n and m be two posi-

tive integers with n>max{m+10,3m+3} and let P(z) = am zm+am−1zm−1+·· ·+a0, where a0 6=
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0, a1, a2, . . . , am−1, am 6= 0 are complex constants. If f nP( f ) f ′ and g nP(g )g ′ share 1 CM, then

either f ≡ t g , for a constant t such that t d = 1, where d = {n +m+1, . . . ,n +m+1− i , . . . ,n +1},

am−i 6= 0 for some i = 0,1, . . . ,m or f and g satisfy algebraic equation R( f , g )= 0, where

R(ω1,ω2) = ωn+1
1

(

amωm
1

n +m +1
+

am−1ω
m−1
1

n +m
+·· ·+

a0

n +1

)

−ωn+1
2

(

amωm
2

n +m +1
+

am−1ω
m−1
2

n +m
+·· ·+

a0

n +1

)

.

In 2004, Wei-Chuan Lin and Hong Xun Yi [7], extended Theorems A and B by replacing

the value 1 with the function z and obtained the following results.

Theorem D. Let f and g be two transcendental meromorphic functions, n ≥ 12 an integer. If

f n( f −1) f ′ and g n(g −1)g ′ share z CM, then either f (z) ≡ g (z) or g = (n +2)(1−hn+1)/(n +

1)(1−hn+2), f = (n +2)h(1−hn+1)/(n +1)(1−hn+2), where h is a non-constant meromorphic

function.

Theorem E. Let f and g be transcendental meromorphic functions, n ≥ 13 is an integer. If

f n( f −1)2 f ′ and g n(g −1)2g ′ share z CM, then f (z) ≡ g (z).

In 2009, Hong Yan Xu and Ting Bin Cao [6], obtained the following result.

Theorem F. Let f and g be two transcendental meromorphic functions and let n and m be

two positive integers with n > m+10, and let P(z) = am zm +am−1zm−1+·· ·+a0, where a0 6= 0,

a1, a2, . . . , am−1, am 6= 0 are complex constants. If f nP( f ) f ′ and g nP(g )g ′ share z CM, then

conclusion of Theorem C still holds.

In 2011, Renukadevi S. Dyavanal [9] proved the following results.

Theorem G. Let f and g be two non-constant meromorphic functions, whose zeros and poles

are of multiplicities atleast s, where s is a positive integer. Let n be an integer satisfying (n−2)s ≥

10. If f n( f −1) f ′ and g n(g −1)g ′ share the value 1 CM, then g = (n +2)(1−hn+1)/(n +1)(1−

hn+2), f = (n+2)h(1−hn+1)/(n+1)(1−hn+2), where h is a non-constant meromorphic function.

Theorem H. Let f and g be two non-constant meromorphic functions, whose zeros and poles

are of multiplicities atleast s, where s is a positive integer. Let n be an integer satisfying (n−3)s ≥

10. If f n( f −1)2 f ′ and g n(g −1)2g ′ share the value 1 CM, then f ≡ g .

In this paper, using notion of multiplicity, we prove the following two theorems. As a

consequence of these theorems, we improve the above mentioned theorems and in addition,

we also obtain some new interesting results.
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Theorem 1.1. Let f and g be two non-constant meromorphic functions, whose zeros and

poles are of multiplicities atleast s, where s is a positive integer. Let n,m be positive inte-

gers with (n −m − 1)s ≥ max{10,2m + 3} and let P(z) = am zm + am−1zm−1 + ·· · + a0, where

a0 6= 0, a1, a2, . . . , am−1, am 6= 0 are complex constants. If f nP( f ) f ′ and g nP(g )g ′ share 1 CM,

then one of the following two cases holds:

(1) f = t g for a constant t such that t d = 1, where d = {n +m +1, . . . ,n +m +1− i , . . . ,n +1},

am−i 6= 0 for some i = 0,1, . . . ,m;

(2) f and g satisfy algebraic equation R( f , g ) ≡ 0, where

R(ω1,ω2) = ωn+1
1

(

amωm
1

n +m +1
+

am−1ω
m−1
1

n +m
+·· ·+

a0

n +1

)

−ωn+1
2

(

amωm
2

n +m +1
+

am−1ω
m−1
2

n +m
+·· ·+

a0

n +1

)

.

Remark 1.1. We set P(z) = (z −1)m . Then with am = 1, a0 =−1 and under the condition (2) of

Theorem 1.1, Theorem 1.1 reduces to

(i) Theorem G, if m = 1,

(ii) Theorem A, if m = 1 and s = 1,

(iii) Theorem H, if m = 2,

(iv) Theorem B, if m = 2 and s = 1,

(v) Theorem C, if s = 1.

Theorem 1.2. Let f and g be two transcendental meromorphic functions, whose zeros and

poles are of multiplicities atleast s, where s is a positive integer. Let n,m be positive inte-

gers with (n −m −1)s ≥ max{10,2m +3}. Let P(z) = am zm + am−1zm−1 + ·· ·+ a0, where a0 6=

0, a1, a2, . . . , am−1, am 6= 0 are complex constants. Let f nP( f ) f ′ and g nP(g )g ′ share z CM, then

conclusion of Theorem 1.1 still holds.

Remark 1.2. We set P(z) = (z −1)m . Then with am = 1, a0 =−1 and under the condition (2) of

Theorem 1.2, Theorem 1.2 reduces to

(i) Theorem D, if m = 1, s = 1,

(ii) Theorem E, if m = 2, s = 1,

(iii) Theorem F, if s = 1.

Some interesting new results in this vein are indicated in Section 4.
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2. Some Lemmas

Lemma 1 ([2]). Let f be non-constant meromorphic function and let an(6= 0), an−1, . . . , a0 be

small functions with respect to f . Then

T
(

r, an f n
+an−1 f n−1

+·· ·+a1 f +a0

)

= nT (r, f )+S(r, f )

Lemma 2 ([5]). Let f and g be two non-constant meromorphic functions. If f and g share 1

CM, one of the following three cases holds:

(i) T (r, f ) ≤ N2(r, f )+N2(r, g )+N2

(

r, 1
f

)

+N2

(

r, 1
g

)

+S(r, f )+S(r, g ) the same inequality hold-

ing for T (r, g );

(ii) f ≡ g ;

(iii) f g ≡ 1.

Lemma 3 ([10]). Let Q(ω) = (n −1)2(ωn −1)(ωn−2 −1)−n(n −2)(ωn−1 −1)2, then

Q(ω) = (ω−1)4(ω−β1)(ω−β2) · · · (ω−β2n−6),

where β j ∈C\ {0,1}, ( j = 1,2, . . . ,2n −6), which are distinct respectively.

Lemma 4 ([2]). Suppose f (z) is a nonconstant meromorphic function in the complex plane

and k is a positive integer.Then

N (r,
1

f (k)
) ≤ N (r,

1

f
)+k N

(

r, f
)

+S(r, f ).

3. Proof of Theorems 1.1 and 1.2

3.1. Proof of Theorem 1.1.

Let

F = f nP( f ) f ′, G = g nP(g )g ′ (1)

and

F∗
=

am f m+n+1

m +n +1
+

am−1 f m+n

m +n
+·· ·+

a0 f n+1

n +1 (2)

G∗
=

am g m+n+1

m +n +1
+

am−1g m+n

m +n
+·· ·+

a0g n+1

n +1

By hypothesis F and G share 1 CM. By Lemma 1, we have

T (r,F∗) = (n +m +1)T (r, f )+S(r, f )
(3)

T (r,G∗) = (n +m +1)T (r, g )+S(r, f )
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Since (F∗)′ = F , we deduce,

m

(

r,
1

F∗

)

≤ m

(

r,
1

F

)

+S(r, f ),

and by the first fundamental Theorem,

T (r,F∗) ≤ T (r,F )+N

(

r,
1

F∗

)

−N

(

r,
1

F

)

+S(r, f )

≤ T (r,F )+N

(

r,
1

f

)

+N

(

r,
1

f −b1

)

+·· ·+N

(

r,
1

f −bm

)

−N

(

r,
1

f −c1

)

−·· ·−N

(

r,
1

f −cm

)

−N

(

r,
1

f ′

)

+S(r, f ) (4)

where b1,b2, . . . ,bm are roots of algebraic equation am zm

m+n+1
+

am−1zm−1

m+n
+·· ·+

a0

n+1
= 0 and c1,c2, . . .,

cm are roots of the algebraic equation am zm +am−1zm−1 +·· ·+a0 = 0.

By Lemma 2, one of the following three cases holds:

Case 1:

T (r,F ) ≤ N2(r,F )+N2

(

r,
1

F

)

+N2(r,G)+N2

(

r,
1

G

)

+S(r, f )+S(r, g ), (5)

the same inequality holding for T (r,G).

On the other hand, we have

N2(r,F )+N2

(

r,
1

F

)

≤ 2N (r, f )+2N

(

r,
1

f

)

+N

(

r,
1

f −c1

)

+·· ·+N

(

r,
1

f −cm

)

+N

(

r,
1

f ′

)

(6)

N2(r,G)+N2

(

r,
1

G

)

≤ 2N (r, g )+2N

(

r,
1

g

)

+N

(

r,
1

g −c1

)

+·· ·+N

(

r,
1

g −cm

)

+N

(

r,
1

g ′

)

(7)

From (3)−(7), we obtain

T (r,F∗) ≤ 2N (r, f )+2N

(

r,
1

f

)

+2N (r, g )+2N

(

r,
1

g

)

+N

(

r,
1

g −c1

)

+·· ·+N

(

r,
1

g −cm

)

+N

(

r,
1

g ′

)

+N

(

r,
1

f

)

+N

(

r,
1

f −b1

)

+·· ·+N

(

r,
1

f −bm

)

+S(r, f )+S(r, g ).

By lemma 4, N
(

r, 1
g ′

)

≤ N
(

r, 1
g

)

+N (r, g )+S(r, g ) and by our assumption, zeros and poles of

f and g are of multiplicities atleast s, we have

N (r, g ) ≤
1

s
N (r, g )≤

1

s
T (r, g ) (8)

and

N

(

r,
1

g

)

≤
1

s
N

(

r,
1

g

)

≤
1

s
T (r, g ), (9)
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we deduce above inequality as,

T (r,F∗) ≤

(

4

s
+m +1

)

T (r, f )+

(

5

s
+m +1

)

T (r, g )+S(r, f )+S(r, g )

(n +m +1)T (r, f ) ≤

(

4

s
+m +1

)

T (r, f )+

(

5

s
+m +1

)

T (r, g )+S(r, f )+S(r, g )

(

n −
4

s

)

T (r, f ) ≤

(

5

s
+m +1

)

T (r, g )+S(r, f )+S(r, g ) (10)

Similarly
(

n −
4

s

)

T (r, g ) ≤

(

5

s
+m +1

)

T (r, f )+S(r, f )+S(r, g ). (11)

From (10) and (11), we deduce that (n −m −1)s ≤ 9, which contradicts (n −m −1)s ≥ 10.

Case 2: Suppose that FG ≡ 1, that is

f nP( f ) f ′ g n P(g )g ′
≡ 1. (12)

Now we rewrite P(z) = am zm +am−1zm−1 +·· ·+a1z +a0 as

P(z) = am(z −d1)l1 (z −d2)l2 · · · (z −di )li · · · (z −dk )lk ,

where l1 + l2 + ·· ·+ lk = m, 1 ≤ k ≤ m; di 6= d j , i 6= j , i , j ≤ k ; d1,d2, · · · ,dk are non-zero con-

stants and l1, l2, . . . , lk are positive integers.

Let z0 be a zero of f of order p . Then from (12) we know that z0 is a pole of g . Suppose z0

is a pole of g of order q . Again by (12), we obtain

np +p −1= nq +mq +q +1,

that is

(n +1)(p −q) = mq +2.

which implies p ≥ q +1 and mq +2 ≥ n +1. Hence

p ≥
n +m −1

m
(13)

Let z1 be a zero of P( f ) of order p1 and a zero of f −di of order qi for i = 1,2, . . . ,k . Then

p1 = li qi for i = 1,2, . . . ,k . Suppose that z1 is a pole of g of order t1. Again by (12), we obtain

qi li +qi −1 = nt1+mt1 + t1 +1. That is,

qi =
nt1+mt1 + t1 +2

(li +1)

qi ≥
ns +ms + s +2

li +1
, f or i = 1,2, . . . ,k (14)
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Let z2 be a zero of f ′ of order p2, that is not a zero of f P( f ). Similarly, we get p2 =nt2+mt2+

t2 +1. That is,

p2 ≥ ns +ms + s +1 (15)

In the same manner as above, we have similar results for the zeros of g nP(g )g ′.

From (12), we can write,

N
(

r, f nP( f ) f ′
)

= N

(

r,
1

g nP(g )g ′

)

N
(

r, f
)

= N

(

r,
1

g

)

+N

(

r,
1

P(g )

)

+N

(

r,
1

g ′

)

N (r, f ) ≤ N

(

r,
1

g

)

+N

(

r,
1

g −d1

)

+·· ·+N

(

r,
1

g −dk

)

+N0

(

r,
1

g ′

)

From (13)−(15), we obtain

N (r, f ) ≤

(

m

n +m −1
+

m +k

ns +ms + s +2

)

T (r, g )+N0

(

r,
1

g ′

)

+S(r, g ) (16)

where N0

(

r, 1
g ′

)

denotes the counting function corresponding to the zeros of g ′ that are not

the zeros of g P(g ) and N0

(

r, 1
f ′

)

denotes the analogous quantity,
(

N0

(

r, 1
g ′

))

denotes the re-

duced counting function.

Similarly , as above we can obtain,

N

(

r,
1

f

)

+N

(

r,
1

f −d1

)

+·· ·+N

(

r,
1

f −dk

)

≤

(

m

n +m −1
+

m +k

ns +ms + s +2

)

T (r, f ).

By the second fundamental theorem and from (16), we have

kT (r, f ) ≤ N

(

r,
1

f

)

+N

(

r,
1

f −d1

)

+·· ·+N

(

r,
1

f −dk

)

+N (r, f )−N0

(

r,
1

f ′

)

+S(r, f )

≤

(

m

n +m −1
+

m +k

ns +ms + s +2

)

T (r, f )+

(

m

n +m −1
+

m +k

ns +ms + s +2

)

T (r, g )

+N0

(

r,
1

g ′

)

−N0

(

r,
1

f ′

)

+S(r, f ). (17)

Similarly , we have

kT (r, g ) ≤

(

m

n +m −1
+

m +k

ns +ms + s +2

)

T (r, g )+

(

m

n +m −1
+

m +k

ns +ms + s +2

)

T (r, f )

+N0

(

r,
1

f ′

)

−N0

(

r,
1

g ′

)

+S(r, g ). (18)

From (17) and (18), we have

k(T (r, f )+T (r, g )) ≤

(

2m

n +m −1
+

2m +2k

ns +ms + s +2

)

(T (r, f )+T (r, g ))+S(r, f )+S(r, g )
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which contradicts (n −m −1)s ≥ 2m +3.

Case 3: If F ≡G , that is

F∗
=G∗

+c (19)

where c is a constant, then it follows that

T (r, f ) = T (r, g )+S(r, f ). (20)

Suppose that c 6= 0, by (2), (3), (8), (9), (20), the second fundamental theorem, and lemma 1,

we have

T (r,G∗) ≤ N

(

r,
1

G∗

)

+N

(

r,
1

G∗+c

)

+N
(

r,G∗
)

+S(r, g )

(n +m +1)T (r, g ) ≤ N

(

r,
1

G∗

)

+N

(

r,
1

F∗

)

+N
(

r,G∗
)

+S(r, g )

≤ N

(

r,
1

g

)

+N

(

r,
1

g m +·· ·+
m+n+1

n+1
a0

am

)

+N

(

r,
1

f

)

+N

(

r,
1

f m +·· ·+
m+n+1

n+1
a0

am

)

+N (r, g )+S(r, g )

≤

(

3

s
+2m

)

T (r, f )+S(r, f )+S(r, g ) (21)

which contradicts our assumption (n −m −1)s ≥ 10. Therefore F∗ =G∗ that is,

f n+1

(

am f m

m +n +1
+

am−1 f m−1

m +n
+·· ·+

a0

n +1

)

= g n+1

(

am g m

m +n +1
+

am−1g m−1

m +n
+·· ·+

a0

n +1

)

.

(22)

Let h =
f

g
. If h is a constant, then substituting f = g h into (22) we deduce,

amg m+n+1(hm+n+1 −1)

m +n +1
+

am−1g n+m(hm+n −1)

m +n
+·· ·+

a0g n+1(hn+1 −1)

n +1
= 0 (23)

which implies hd = 1, where d = (n+m+1,n+m, . . . ,n+m+1−i , . . . ,n+1),am−i 6= 0, for some

i = 0,1,2, . . . ,m.

Thus f = t g for a constant t , such that t d = 1, where d = (n +m +1,n +m, . . . ,n +m +1−

i , . . . ,n +1), am−i 6= 0, for some i = 0,1, . . . ,m.

If h is not a constant, then by (23) f and g satisfy the algebraic equation R( f , g ) ≡ 0, where

R(ω1,ω2) = ωn+1
1

(

amωm
1

n +m +1
+

am−1ω
m−1
1

n +m
+·· ·+

a0

n +1

)

−ωn+1
2

(

amωm
2

n +m +1
+

am−1ω
m−1
2

n +m
+·· ·+

a0

n +1

)
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This completes the proof of Theorem 1.1.

3.2. Proof of Theorem 1.2.

Let

F =
f nP( f ) f ′

z
, G =

g nP(g )g ′

z
(24)

and

F∗
=

am f m+n+1

m +n +1
+

am−1 f m+n

m +n
+·· ·+

a0 f n+1

n +1 (25)

G∗
=

am g m+n+1

m +n +1
+

am−1g m+n

m +n
+·· ·+

a0g n+1

n +1

Thus we obtain that F and G share 1 CM.

Since (F∗)′ = F z, we deduce

m

(

r,
1

(F∗)′

)

≤ m

(

r,
1

zF

)

+S(r, f ) ≤ m

(

r,
1

F

)

+ l og r +S(r, f ) (26)

and by the first fundamental Theorem,

T (r,F∗) ≤ T (r,F )+N

(

r,
1

F∗

)

−N

(

r,
1

F

)

+S(r, f )

≤ T (r,F )+N

(

r,
1

f

)

+N

(

r,
1

f −b1

)

+·· ·+N

(

r,
1

f −bm

)

−N

(

r,
1

f −c1

)

−·· ·−N

(

r,
1

f −cm

)

−N

(

r,
1

f ′

)

+ l og r +S(r, f ) (27)

where b1,b2, . . . ,bm are roots of the algebraic equation,

am zm

m +n +1
+

am−1zm−1

m +n
+·· ·+

a0

n +1
= 0

and c1,c2, . . . ,cm are roots of the algebraic equation,

am zm
+am−1zm−1

+·· ·+a0 = 0.

By Lemma 2, one of the following three cases holds.

Case 1:

T (r,F ) ≤ N2(r,F )+N2

(

r,
1

F

)

+N2(r,G)+N2

(

r,
1

G

)

+S(r, f )+S(r, g ). (28)

On the other hand, we have

N2(r,F )+N2

(

r,
1

F

)

≤ 2N (r, f )+2N

(

r,
1

f

)

+N

(

r,
1

f −c1

)

+·· · +N

(

r,
1

f −cm

)

+N

(

r,
1

f ′

)

+2l og r

(29)
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N2(r,G)+N2

(

r,
1

G

)

≤ 2N (r, g )+2N

(

r,
1

g

)

+N

(

r,
1

g −c1

)

+·· · +N

(

r,
1

g −cm

)

+N

(

r,
1

g ′

)

+2l og r

(30)

From (27) - (30), we obtain

T (r,F∗) ≤

(

4

s
+m +1

)

T (r, f )+

(

5

s
+m +1

)

T (r, g )+4l og r +S(r, f )+S(r, g )

(

n −
4

s

)

T (r, f ) ≤

(

5

s
+m +1

)

T (r, g )+4l og r +S(r, f )+S(r, g ) (31)

Similarly,
(

n −
4

s

)

T (r, g )≤

(

5

s
+m +1

)

T (r, f )+4l og r +S(r, f )+S(r, g ) (32)

From (31) and (32), we deduce that (n −m −1)s ≤ 9, which contradicts the assumption (n −

m −1)s ≥ 10

Case 2: Suppose FG ≡ 1, that is

f nP( f ) f ′g nP(g )g ′
≡ z2.

Proceeding as in the proof of Theorem 1.1(case 2), we get a contradiction.

Case 3: F ≡G that is F∗ =G∗+c .

Proceeding as in the proof of Theorem 1.1(case 3), we get a conclusion of Theorem 1.2.

Therefore, we complete the proof of Theorem 1.2.

4. Consequences of Theorem 1.1 and Theorem 1.2

Under the condition of Theorem 1.1 and Theorem 1.2, setting P(z) = (z − 1)m , we get

following results as immediate consequences of Theorem 1.1 and Theorem 1.2.

Consequences of Theorem 1.1

(A) Let f and g be two nonconstant meromorphic functions, whose zeros and poles are of

multiplicities atleast s.Let n,m, s be positive integers with ,(n −m −1)s ≥ max{10,2m +3}.If

f nP( f ) f ′ and g nP(g )g ′ share 1 CM , and
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(1) if s = 1,

(i) m = 1,n ≥ 12 then g =
(n +2)(1−hn+1)

(n +1)(1−hn+2)
, f =

(n +2)h(1−hn+1)

(n +1)(1−hn+2)

(ii) m = 2,n ≥ 13 then f ≡ g

(iii) m ≥ 3 then f n+1
m
∑

k=0

(−1)kC m−k
m

n +m −k +1
f m−k =g n+1

m
∑

k=0

(−1)kC m−k
m

n +m −k +1
g m−k

(2) if s = 2,

(i) m = 1,n ≥ 7 then g =
(n +2)(1−hn+1)

(n +1)(1−hn+2)
, f =

(n +2)h(1−hn+1)

(n +1)(1−hn+2)

(ii) m = 2,n ≥ 8 then f ≡ g

(iii) m ≥ 3 then f n+1
m
∑

k=0

(−1)kC m−k
m

n +m −k +1
f m−k =g n+1

m
∑

k=0

(−1)kC m−k
m

n +m −k +1
g m−k

Similar observations can be made for s = 3,4, . . . ,9

(3) if s ≥ 10,

(i) m = 1,n ≥ 2 then g =
(n +2)(1−hn+1)

(n +1)(1−hn+2)
, f =

(n +2)h(1−hn+1)

(n +1)(1−hn+2)

(ii) m = 2,n ≥ 3 then f ≡ g

(iii) m ≥ 3 then f n+1
m
∑

k=0

(−1)kC m−k
m

n +m −k +1
f m−k =g n+1

m
∑

k=0

(−1)kC m−k
m

n +m −k +1
g m−k .

Thus as per the above observations , we see that as multiplicity ′s′ increases , the value of

n decreases.

Consequences of Theorem 1.2

(B) Let f and g be two trancendental meromorphic functions, whose zeros and poles are of

multiplicities atleast s. Let n,m, s be positive integers with (n −m −1)s ≥ max{10,2m +3}. If

f nP( f ) f ′ and g n P(g )g ′ share z CM, we observe results similar to consequences mentioned

above.

Under the condition of Theorem 1.1 and Theorem 1.2, setting P(z) = zm −a, a 6= 0 we get

following results as immediate consequences of Theorem 1.1 and Theorem 1.2.

Consequences of Theorem 1.1

(C) Let f and g be two nonconstant meromorphic functions, whose zeros and poles are of

multiplicities atleast s. Let n,m, s be positive integers with (n −m −1)s ≥ max{10,2m +3}.If

f nP( f ) f ′ and g nP(g )g ′ share 1 CM , and

(1) if s = 1,

(i) m = 1,n ≥ 12 then g =
a(n +2)(1−hn+1)

(n +1)(1−hn+2)
, f =

ah(n +2)(1−hn+1)

(n +1)(1−hn+2)
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(ii) m ≥ 2 then g =

[a(n +m +1)(1−hn+1)

(n +1)(1−hn+m+1)

]
1
m

, f =

[a(n +m +1)(1−hn+1)

(n +1)(1−hn+m+1)

]
1
m

h.

(2) if s ≥ 10,

(i) m = 1,n ≥ 2 then g =
a(n +2)(1−hn+1)

(n +1)(1−hn+2)
, f =

ah(n +2)(1−hn+1)

(n +1)(1−hn+2)

(ii) m ≥ 2 then g =

[a(n +m +1)(1−hn+1)

(n +1)(1−hn+m+1)

]
1
m

, f =

[a(n +m +1)(1−hn+1)

(n +1)(1−hn+m+1)

]
1
m

h

5. Final Remarks

It follows from the proof of Theorem 1.2 that if condition f nP( f ) f ′ and g nP(g )g ′ share

z CM is replaced by the condition f nP( f ) f ′ and g nP(g )g ′ share α(z) CM, where α is a mero-

morphic function such that α 6= 0,∞ and T (r,α) = o{T (r, f ),T (r, g )}, the conclusion of the

Theorem 1.2 still holds.
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