Available online at http://journals.math.tku.edu.tw/

(θ, ϕ) -DERIVATIONS AS HOMOMORPHISMS OR AS ANTI-HOMOMORPHISMS ON A NEAR RING

ASMA ALI, HOWARD E. BELL AND REKHA RANI

Abstract. Let *N* be a near ring. An additive mapping $d : N \longrightarrow N$ is said to be a (θ, ϕ) -derivation on *N* if there exist mappings $\theta, \phi : N \longrightarrow N$ such that $d(xy) = \theta(x)d(y) + d(x)\phi(y)$ holds for all $x, y \in N$. In the context of 3-prime and 3-semiprime nearrings, we show that for suitably-restricted θ and ϕ , there exist no nonzero (θ, ϕ) -derivations which act as a homomorphism or an anti-homomorphism on *N* or a nonzero semigroup ideal of *N*.

1. Introduction

Throughout the paper *N* will be a zero-symmetric right nearring with multiplicative centre *Z*; and for arbitrary $x, y \in N$, [x, y] will denote the commutator xy - yx. The nearring *N* is said to be 3-prime if $xNy = \{0\}$, for $x, y \in N$ implies that x = 0 or y = 0 and 3-semiprime if $xNx = \{0\}$ implies that x = 0; moreover, *N* is called reduced if *N* contains no nonzero nilpotents. A nonempty subset *A* of *N* is called a semigroup ideal if $AN \subseteq A$ and $NA \subseteq A$.

An additive mapping $d: N \longrightarrow N$ is said to be a derivation on N if d(xy) = xd(y) + d(x)yfor all $x, y \in N$. Or equivalently (cf [5]) d(xy) = d(x)y + xd(y) for all $x, y \in N$. As in [1], an additive mapping $d: N \longrightarrow N$ is called a (θ, ϕ) -derivation if there exist mappings $\theta, \phi: N \longrightarrow N$ such that $d(xy) = \theta(x)d(y) + d(x)\phi(y)$ for all $x, y \in N$. If I denotes the identity map on N, an (I, I)-derivation is just a derivation, so the notion of (θ, ϕ) -derivation generalizes that of derivation. Moreover, the generalization is not trivial, as the following example shows:

Example 1. Let N_1 be an arbitrary zero-symmetric nearring; and N_2 be an algebra over a field of characteristic not 2, with basis $\{u, v, w\}$ and multiplication given by uv = w and all other two-products of basis elemants equal to 0. Let $N = N_1 \oplus N_2$. Define $\theta, \phi : N \longrightarrow N$ by $\theta((x_1, x_2)) = (x_1, 0)$ and $\phi((x_1, x_2)) = (x_1^2, 0)$; and let $d : N \longrightarrow N$ be given by $d((x_1, x_2)) = (0, h(x_2))$, where $h : N_2 \longrightarrow N_2$ is the additive map such that h(u) = u, h(v) = v, and h(w) = 0. It is easy to verify that d is a (θ, ϕ) -derivation which is not a derivation.

Corresponding author: Asma Ali.

2010 Mathematics Subject Classification. 16Y30, 16W25.

Key words and phrases. 3-prime nearrings, 3-semiprime nearrings, derivations, (θ, ϕ) -derivations.

In [4] it is proved that if *R* is a semiprime ring and *d* is a derivation on *R* which is either an endomorphism or an anti-endomorphism on *R*, then d = 0. Of course derivations which are not endomorphisms or anti-endomorphisms on *R* may behave as such on certain subsets of *R*; for example, any derivation *d* behaves as the zero endomorphism on the subring *C* consisting of all constants (i.e. elements *x* for which d(x) = 0.) In fact, in a semiprime ring, *d* may behave as an endomorphism on a proper ideal of *R*. However, as noted in [4], the behaviour of *d* is somewhat restricted in the case of a prime ring.

Recently the authors in [2] considered (θ, ϕ) -derivations d acting as homomorphisms or anti-homomorphisms on a nonzero Lie ideal of a prime ring such that $u^2 \in U$ for all $u \in U$ and concluded that d = 0. The purpose of the present paper is to establish similar results in the setting of semigroup ideal of 3-prime and 3-semiprime nearrings admitting a (θ, ϕ) derivation.

Usually, we shall require that $\theta(N) = N$, and that $\theta(ab) = \theta(a)\theta(b)$ and $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in N$. A (θ, ϕ) -derivation with θ and ϕ satisfying these conditions will be called a standard (θ, ϕ) -derivation.

2. Preliminary results

We begin with the following Lemma that was proved by the second author in [3].

Lemma 2.1. Let N be a 3-prime nearring and A be a nonzero semigroup ideal of N.

- (i) If $x \in N$ and $xA = \{0\}$ or $Ax = \{0\}$, then x = 0.
- (ii) If $x, y \in N$ and $xAy = \{0\}$, then x = 0 or y = 0.
- (iii) If $x \in N$ and x centralizes A, then $x \in Z$.

Lemma 2.2. Let N be an arbitrary nearring. If d is a standard (θ, ϕ) -derivation on N, then N satisfies the following partial distributive law:

$$a(\theta(b)d(c) + d(b)\phi(c)) = a\theta(b)d(c) + ad(b)\phi(c) \text{ for all } a, b, c \in N.$$

Proof. For $a, b, c \in N$, we have

$$\begin{aligned} d((ab)c) &= \theta(ab)d(c) + d(ab)\phi(c) \\ &= \theta(a)\theta(b)d(c) + (\theta(a)d(b) + d(a)\phi(b))\phi(c) \\ &= \theta(a)\theta(b)d(c) + \theta(a)d(b)\phi(c) + d(a)\phi(b)\phi(c) & \text{for all } a, b, c \in N. \end{aligned}$$

Again

$$d(a(bc)) = \theta(a)d(bc) + d(a)\phi(bc)$$

= $\theta(a)(\theta(b)d(c) + d(b)\phi(c)) + d(a)\phi(b)\phi(c)$ for all $a, b, c \in N$.

Comparing both expressions, we obtain

$$\theta(a)(\theta(b)d(c) + d(b)\phi(c)) = \theta(a)\theta(b)d(c) + \theta(a)d(b)\phi(c)$$
 for all $a, b, c \in N$.

Since $\theta(N) = N$, it follows that

$$a(\theta(b)d(c) + d(b)\phi(c)) = a\theta(b)d(c) + ad(b)\phi(c) \text{ for all } a, b, c \in N.$$

Lemma 2.3. Let N be an arbitrary zero-symmetric nearring. If d is a (θ, ϕ) -derivation on N and $\theta(2a) = 2\theta(a)$ for all $a \in N$, then $d(ab) = d(a)\phi(b) + \theta(a)d(b)$ for all $a, b \in N$.

Proof.

$$d((a+a)b) = \theta(a+a)d(b) + d(a+a)\phi(b)$$
$$= (\theta(a) + \theta(a))d(b) + (d(a) + d(a))\phi(b)$$
$$\theta(a)d(b) + \theta(a)d(b) + d(a)\phi(b) + d(a)\phi(b)$$

and

$$d(ab+ab) = \theta(a)d(b) + d(a)\phi(b) + \theta(a)d(b) + d(a)\phi(b).$$

Equating the two expressions yields the desired result.

The proof of the next lemma is trivial.

Lemma 2.4. Let N be a reduced nearring.

- (i) If $a, b \in N$ and ab = 0, then ba = 0.
- (ii) If $a, b \in N$ and ab = 0, then $aNb = \{0\}$.

Lemma 2.5. Let N be an arbitrary nearring. If A is a nonzero semigroup ideal of N and d is a standard (θ, ϕ) -derivation on N which acts as homomorphism on A, then

$$(d(z) - \theta(z))\theta(x)d(y) = 0$$
 for all $x, y, z \in A$.

Proof. Since *d* acts as a homomorphism on *A*, we have

$$d(xy) = \theta(x)d(y) + d(x)\phi(y) = d(x)d(y) \text{ for all } x, y \in A.$$

$$(2.1)$$

Replacing *x* by zx in (2.1), we get

$$\theta(z)\theta(x)d(y) + d(z)d(x)\phi(y) = d(z)d(x)d(y) \text{ for all } x, y, z \in A.$$

and it follows that

$$\theta(z)\theta(x)d(y) + d(z)d(x)\phi(y) = d(z)(\theta(x)d(y) + d(x)\phi(y)) \text{ for all } x, y, z \in A.$$

Using Lemma 2.2, we find that

$$\theta(z)\theta(x)d(y) + d(z)d(x)\phi(y) = d(z)\theta(x)d(y) + d(z)d(x)\phi(y)$$
 for all $x, y, z \in A$.

i.e.

$$\theta(z)\theta(x)d(y) = d(z)\theta(x)d(y)$$
 for all $x, y, z \in A$.

Thus,

$$(d(z) - \theta(z))\theta(x)d(y) = 0$$
 for all $x, y, z \in A$.

Lemma 2.6. Let N be an arbitrary nearring. If A is a nonzero semigroup ideal of N and d is a standard (θ, ϕ) -derivation on N which acts as an anti-homomorphism on A, then

$$[\theta(z), d(y)]\theta(x)d(y) = 0$$
 for all $x, y, z \in A$.

Proof. Let *d* act as an anti-homomorphism on *A*. Then we have

$$d(xy) = \theta(x)d(y) + d(x)\phi(y) = d(y)d(x) \text{ for all } x, y \in A.$$

$$(2.2)$$

Replacing x by xy in (2.2), we obtain

$$\theta(x)\theta(y)d(y) + d(y)d(x)\phi(y) = d(y)d(xy) \text{ for all } x, y \in A - -$$

i.e.

$$\theta(x)\theta(y)d(y) + d(y)d(x)\phi(y) = d(y)(\theta(x)d(y) + d(x)\phi(y))$$
 for all $x, y \in A$.

Using Lemma 2.2, we get

$$\theta(x)\theta(y)d(y) + d(y)d(x)\phi(y) = d(y)\theta(x)d(y) + d(y)d(x)\phi(y) \text{ for all } x, y \in A,$$

so that

$$\theta(x)\theta(y)d(y) = d(y)\theta(x)d(y) \text{ for all } x, y \in A.$$
(2.3)

Replacing x by zx in (2.3), we find that

$$\theta(z)\theta(x)\theta(y)d(y) = d(y)\theta(z)\theta(x)d(y)$$
 for all $x, y, z \in A$.

Again using (2.3), the above relation gives that

$$\theta(z)d(y)\theta(x)d(y) = d(y)\theta(z)\theta(x)d(y)$$
 for all $x, y, z \in A$

$$(\theta(z)d(y) - d(y)\theta(z))\theta(x)d(y) = 0 \text{ for all } x, y, z \in A - -$$

i.e.

$$[\theta(z), d(y)]\theta(x)d(y) = 0 \text{ for all } x, y, z \in A.$$

388

3. Main results

Theorem 3.1. Let N be 3-prime. Let A be a nonzero semigroup ideal of N such that $\theta(A) = A$ and $\phi(A) = A$. If d is a standard (θ, ϕ) -derivation on N which acts as a homomorphism or an anti-homomorphism on A, then d = 0.

Proof. Assume first that *d* act as a homomorphism on *A*. By Lemma 2.5, we have $(d(z) - \theta(z))\theta(x)d(y) = 0$ for all $x, y, z \in A$; and since $\theta(A) = A$, we see that $(d(z) - \theta(z))Ad(y) = 0$ for all $y, z \in A$. It follows by Lemma 2.1 (ii) that $d(z) - \theta(z) = 0$ for all $z \in A$ or $d(A) = \{0\}$. In the latter case, using the definition of (θ, ϕ) -derivation and Lemma 2.1 (i), we get d = 0. Thus, assume $d(z) - \theta(z) = 0$ for all $z \in A$, in which case equation (2.1) implies $d(x)\phi(y) = 0$ for all $x, y \in A$. Since $\phi(A) = A$, another appeal to Lemma 2.1 (i) gives $d(A) = \{0\}$ and hence d = 0. \Box

Assume now that *d* acts as an anti-homomorphism on *A*. Since $\theta(A) = A$, Lemma 2.6 shows that d(A) centralizes *A*; hence by Lemma 2.1 (iii) $d(A) \subseteq Z$. Thus, *d* acts as a homomorphism.

We proceed now to the case of 3-semiprime nearrings.

Theorem 3.2. If N is 3-semiprime and d is a standard (θ, θ) -derivation which acts as a homomorphism on N, then d = 0.

Proof. Using the same method in Lemma 2.5, we get

$$(d(z) - \theta(z))\theta(x)d(y) = 0$$
, for all $x, y, z \in N$.

Replacing *z* by $zw, w \in N$ in this equation, we have

$$\begin{aligned} 0 &= (d(zw) - \theta(zw))\theta(x)d(y) = (\theta(z)d(w) + d(z)\theta(w) - \theta(z)\theta(w))\theta(x)d(y) \\ &= (\theta(z)d(w) + (d(z) - \theta(z))\theta(w))\theta(x)d(y) \\ &= \theta(z)d(w)\theta(x)d(y) + (d(z) - \theta(z))\theta(wx)d(y) \\ &= \theta(z)d(w)\theta(x)d(y) \text{ for all } x, y, z, w \in N. \end{aligned}$$

Since $\theta(N) = N$ and $\theta(ab) = \theta(a)\theta(b)$ for all $a, b \in N$, we conclude that $\theta(x)d(y)N\theta(x)d(y) = 0$ for all $x, y \in N$, so that Nd(y) = 0 for all $y \in N$. Since *N* is 3-semiprime, we have d = 0.

For reduced nearrings, which form a subclass of the class of 3-semiprime nearrings, we can get a result similar to Theorem 3.1 without the assumption that $\theta = \phi$.

Theorem 3.3. Let N be reduced, and let d be a standard (θ, ϕ) -derivation. Assume also that $\phi(N) = N$ and $\theta(2a) = 2\theta(a)$ for all $a \in N$. If d acts as a homomorphism or an anti-homomorphism on N, then d = 0.

Proof. Consider first *d* acting as a homomorphism on *N*. In a right nearring, -xy = (-x)y for all $x, y \in N$; hence Lemma 2.5 gives

$$(d(z) - \theta(z))\theta(x)d(y) = 0 = (\theta(z) - d(z))\theta(x)d(y) \text{ for all } x, y \in N.$$
(3.1)

Replacing *z* by *zw* in the first equality and applying Lemma 2.3, we see that the left annihilator of $\theta(N)d(N)$ contains

$$d(z)\phi(w) + \theta(z)d(w) - \theta(z)\theta(w) = d(z)\phi(w) + (\theta(z) - d(z) + d(z))d(w) - \theta(z)\theta(w)$$
$$= d(z)\phi(w) + (\theta(z) - d(z))d(w) + d(zw) - \theta(zw).$$

By (3.1) and Lemma 2.4 (ii), it follows that

$$d(z)\phi(w)\theta(x)d(y) = 0$$
 for all $x, y, z, w \in N$.

Postmultiplying by $\phi(u)\theta(v)$ and using the hypothesis that *N* is reduced, we see that $d(N)NN = \{0\}$; hence $d(N)d(N)d(N) = \{0\}$ and therefore $d(N) = \{0\}$.

Finally, suppose that d acts as an anti-homomorphisms on N. By Lemma 2.6 we have

$$[\theta(z), d(y)]\theta(x)d(y) = 0$$
 for all $x, y, z \in N$.

so by Lemma 2.4

$$d(y)[\theta(z), d(y)]\theta(x) = 0 = \theta(z)d(y)[\theta(z), d(y)]\theta(x) = d(y)\theta(z)[\theta(z), d(y)]\theta(x).$$

Since $\theta(N) = N$, we conclude that $[\theta(z), d(y)]^2 = 0$ for all $y, z \in N$, so that $d(N) \subseteq Z$ and therefore *d* acts as a homomorphism.

References

- [1] M. Ashraf, Ali Asma and Ali Shakir, (σ, τ) -derivations on prime near rings, Arch. Math., 40(2004), 281–286.
- [2] A. Ali, N. Rehman and A. Shakir, On Lie ideals with derivations as homomorphisms and antihomomorphisms, Acta Math. Hungar., 101(2003), 79–82.
- [3] H. E. Bell, On derivations in near rings II, Kluwer Academic Publ. Math. Appl. Dordr., 426(1997), 191–197.
- [4] H. E. Bell and L. C. Kappe, *Rings in which derivations satisfy certain algebraic conditions*, Acta. Math. Hungar., 53 (1989), 339–346.
- [5] X. K., Wang, Derivations in prme near rings, proc. Amer. Math. Soc., 121(1994), 361–366.

Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India.

E-mail: asma_ali2@rediffmail.com

Department of Mathematics, Brock University, St.Catharines, Ontario L2S 3AI, Canada.

E-mail: hbell@brocku.ca

Department of Mathematics, N. R. E. C. Collage, Khurja - 203131, India.

E-mail: linerekha2@yahoo.co.in