UNICITY OF MEROMORPHIC FUNCTIONS CONCERNING DIFFERENTIAL EQUATION

SUBHAS S. BHOOSNURMATH, MILIND N. KULKARNI, VAISHALI PRABHU |

Abstract. In this paper, we investigate the uniqueness of meromorphic function satisfying a differential equation. Our result improves some known results.

1. Introduction

In this paper, the term 'meromorphic' means meromorphic in the whole complex plane.It is assumed that the reader is familiar with notations of Nevanlinna Theory as in [2]. We denote by $S(r, f)$ any function satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$, possibly outside the set of finite measure. We say $a(z)$ is a small meromorphic function of f if $T(r, a(z))=S(r, f)$.

Subhas. S. Bhoosnurmath and K. S. L. N. Prasad [1] have proved the following Theorem on uniqueness of meromorphic functions sharing a small meromorphic function.

Theorem A. Let f be a non-constant transcendental meromorphic function with $N(r, f)+N\left(r, \frac{1}{f}\right)=S(r, f) L e t^{\prime} a^{\prime}$ be a small meromorphic function of f i.e.

$$
T(r, a)=S(r, f)
$$

If f satisfies the equation,

$$
k f^{\prime}-f-(k-1) a=0
$$

for $k \neq 0$, then $f=f^{\prime}$.

2. We require the following definitions

By a Monomial in f we mean an expression of the type

$$
M_{j}(f)=a_{j}(z)(f(z))^{n_{o j}}\left(f^{\prime}(z)\right)^{n_{1 j}} \cdots\left(f^{(k)}(z)\right)^{n_{k j}}
$$

where $n_{0 j}, n_{1 j}, \ldots, n_{k j}$ are non-negative integers. We define $\bar{d}\left(M_{j}\right)=\sum_{i=o}^{k} n_{i j}$ as the degree of $M_{j}(f)$ and $\Gamma\left(M_{j}\right)=\sum_{i=o}^{k}(i+1) n_{i j}$ as the weight of $M_{j}(f)$.

Received December 04, 2005; revised March 09, 2006.
Key words and phrases. Meromorphic functions, shared value, differential polynomial.

Differential polynomial in f is a finite sum of such monomials i.e.

$$
P(f)=\sum_{j=1}^{s} a_{j}(z) M_{j}(f)
$$

We define $\bar{d}(P)=\max _{1 \leq j \leq s}\left\{\bar{d}\left(M_{j}\right)\right\}$ as the degree, $\underline{d}(P)=\min _{1 \leq j \leq s}\left\{\bar{d}\left(M_{j}\right)\right\}$ as the lower degree and $\Gamma(P)=\max _{1 \leq j \leq s}\left\{\Gamma\left(M_{j}\right)\right\}$ as the weight of $P(f)$.

If $\bar{d}(P)=\underline{d}(P)=n, P(f)$ is a called homogeneous differential polynomial and inhomogeneous otherwise.

We shall improve Theorem A for a homogeneous differential polynomial in f as follows.

3. Statement of main Theorem

Theorem 1. Let $f(z)$ be a non-constant transcendental meromorphic function with $N(r, f)+N\left(r, \frac{1}{f}\right)=S(r, f)$. Let $P(f)$ be a homogeneous differential polynomial in $f . L e t$ ' a ' be a small meromorphic function of f i.e.

$$
T(r, a(z))=S(r, f)
$$

If f satisfies the equation

$$
\begin{equation*}
k P(f)-f-(k-1) a=0 \quad \text { for } \quad k \neq 0 \tag{1}
\end{equation*}
$$

Then, $f \equiv P(f)$.
We require the following lemmas to prove our results.
Lemma 1.([3]) Let f_{1} and f_{2} be two non-constant meromorphic functions and $\alpha_{1} \neq o$, $\alpha_{2} \neq o$ be two small meromorphic functions satisfying,

$$
T\left(r, \alpha_{i}\right)=S(r, f) \text { for } i=1,2
$$

where,

$$
T(r, f)=\max \left\{T\left(r, f_{1}\right), T\left(r, f_{2}\right)\right\}
$$

If $\alpha_{1} f_{1}+\alpha_{2} f_{2} \equiv 1$, then

$$
\begin{gathered}
T\left(r, f_{1}\right)<\bar{N}\left(r, \frac{1}{f_{1}}\right)+\bar{N}\left(r, \frac{1}{f_{2}}+\bar{N}\left(r, f_{1}\right)+o\{T(r, f)\}\right. \\
T\left(r, f_{2}\right)<\bar{N}\left(r, \frac{1}{f_{2}}\right)+\bar{N}\left(r, \frac{1}{f_{1}}\right)+\bar{N}\left(r, f_{2}\right)+o\{T(r, f)\}
\end{gathered}
$$

Lemma 2. If f is a non-constant transcendental meromorphic function and if $P(f)$ is a homogeneous differential polynomial in f of degree n, then

$$
N\left(r, \frac{P(f)}{f^{n}}\right) \leq m n\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right]+S(r, f)
$$

where m is the order of highest order derivative occuring in $P(f)$.
Proof of Lemma 2. Since m is the order of the highest derivative $f^{(m)}$ occuring in P. Then clearly a zero or a pole of f which is not a pole of any co-efficient $a(z)$ of P, is a pole of $\frac{P}{f^{n}}$ of degree $m n$ atmost. Hence we have,

$$
N\left(r, \frac{P}{f^{n}}\right) \leq m n\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right]+S(r, f)
$$

Lemma 3.([4]) If f is a non-constant trancsendental meromorphic function and if $P(f)$ is a homogeneous differential polynomial in f of degree n, then

$$
m\left(r, \frac{P(f)}{f^{n}}\right)=S(r, f)
$$

Lemma 4. If f is a non-constant transcendental meromorphic function and if $P(f)$ is a homogeneous differential polynomial in f of degree n then,

$$
N\left(r, \frac{1}{P(f)}\right) \leq m n\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right]+n N\left(r, \frac{1}{f}\right)+S(r, f)
$$

where m is the order of highest order derivative occuring in $P(f)$.
Proof of Lemma 4. Consider,

$$
\begin{aligned}
N\left(r, \frac{1}{P(f)}\right) & \leq N\left(r, \frac{f^{n}}{P(f)}\right)+N\left(r, \frac{1}{f^{n}}\right) \\
& \leq T\left(r, \frac{f^{n}}{P(f)}\right)+n N\left(r, \frac{1}{f}\right)+S(r, f) \\
& =m\left(r, \frac{P(f)}{f^{n}}\right)+N\left(r, \frac{P(f)}{f^{n}}\right)+n N\left(r, \frac{1}{f}\right)+O(1) \quad \text { by Lemma } 2 \text { and } 4, \\
& \leq S(r, f)+m n\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right]+n N\left(r, \frac{1}{f}\right)+O(1) \\
N\left(r, \frac{1}{P(f)}\right) & \leq m n\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right]+n N\left(r, \frac{1}{f}\right)+S(r, f) .
\end{aligned}
$$

Proof of Theorem 1. We have,

$$
\begin{aligned}
k P(f)-f-(k-1) a & =0 \\
\Rightarrow k(P(f)-a) & =f-a \\
\Rightarrow \frac{f-a}{P(f)-a} & =k \quad \text { where } \quad k \neq 0
\end{aligned}
$$

Put $f_{1}=\frac{1}{a} f, f_{2}=k, f_{3}=\frac{-k}{a} P(f)$ where $(a \neq 0)$, so that $f_{1}+f_{2}+f_{3} \equiv 1$.
If $k \neq 1$, we get,

$$
\frac{1}{a(1-k)} f-\frac{k}{a(1-k)} P(f) \equiv 1
$$

By lemma 1. we have,

$$
\begin{gather*}
T(r, f)<\bar{N}\left(r, \frac{1}{P(f)}\right)+\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+S(r, f) \tag{2}\\
T(r, P(f))<\bar{N}\left(r, \frac{1}{P(f)}\right)+\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, P(f))+S(r, f) \tag{3}
\end{gather*}
$$

Also we have,

$$
N(r, P(f)) \leq n N(r, f)+m n \bar{N}(r, f)+S(r, f)
$$

where m is degree of highest order derivative occuring in it. Also by Lemma 4, we get

$$
N\left(r, \frac{1}{P(f)}\right) \leq m n\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right]+n N\left(r, \frac{1}{f}\right)+S(r, f)
$$

Therefore, using lemma 4, (2) and (3) can be written as

$$
\begin{align*}
T(r, f) \leq & \bar{N}\left(r, \frac{1}{f}\right)+m n\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right]+n N\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+S(r, f), \tag{4}\\
T(r, P(f)) \leq & m n\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right]+n N\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f}\right)+n N(r, f) \\
& +m n \bar{N}(r, f)+S(r, f) . \tag{5}
\end{align*}
$$

Adding (4) and (5) we get,

$$
\begin{aligned}
T(r, f)+T(r, P(f)) \leq & 2 m n\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right]+2 n N\left(r, \frac{1}{f}\right)+2 \bar{N}\left(r, \frac{1}{f}\right) \\
& +n N(r, f)+(m n+1) \bar{N}(r, f)+S(r, f) \\
\leq & 2(m n+n+1) N\left(r, \frac{1}{f}\right)+(3 m n+n+1) N(r, f)+S(r, f) \\
\leq & (3 m n+2 n+2)\left(N\left(r, \frac{1}{f}\right)+N(r, f)\right)+S(r, f)
\end{aligned}
$$

$$
\leq S(r, f) \text { which is contradiction, as the above relation implies }
$$

$$
1 \leq \frac{S(r, f)}{T(r, f)+T(r, P(f))} \rightarrow 0, \quad \text { as } \quad r \rightarrow \infty
$$

possibly outside a set of finite measure. Hence, $k=1$ Therefore

$$
f \equiv P(f)
$$

Acknowledgements

The authors thank the refrees for their valuable suggestions.
The second author thanks the University Grants Comission (U.G.C (India)) for the award of Teacher Fellowship under Faculty Improvement Programme.

References

[1] K. S. L. N. Prasad, The value Distribution of Differential Polynomials, Meromorphic matrix valued functions and related topics, Ph.D thesis submitted to Karnatak University Dharwad in 2002.
[2] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[3] Indrajit Lahiri, Uniqueness of meromorphic functions sharing same 1 points, Bull. Korean Math. Society 35(1998), 375-385.
[4] H. S. Gopalkrishna and S. S. Bhoosnurmath, On deficiencies of Differential Polynomials, Karnataka University Journal of Science 28(1973), 329-335.

Department of Mathematics, Karnatak University Dharwad.
E-mail: ssbmath@yahoo.com
E-mail: meelind2000@yahoo.co.in
E-mail: vaishali23nov@yahoo.co.in

