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UNICITY OF MEROMORPHIC FUNCTIONS CONCERNING

DIFFERENTIAL EQUATION

SUBHAS S. BHOOSNURMATH, MILIND N. KULKARNI, VAISHALI PRABHU

Abstract. In this paper,we investigate the uniqueness of meromorphic function satisfying a

differential equation. Our result improves some known results.

1. Introduction

In this paper, the term ‘meromorphic’ means meromorphic in the whole complex
plane.It is assumed that the reader is familiar with notations of Nevanlinna Theory as in

[2].We denote by S(r, f) any function satisfying S(r, f) = o(T (r, f)) as r → ∞, possibly
outside the set of finite measure.We say a(z) is a small meromorphic function of f if
T (r, a(z)) = S(r, f).

Subhas. S. Bhoosnurmath and K. S. L. N. Prasad [1] have proved the following
Theorem on uniqueness of meromorphic functions sharing a small meromorphic function.

Theorem A. Let f be a non-constant transcendental meromorphic function with

N (r, f) + N
(

r, 1
f

)

= S (r, f) Let ′a′ be a small meromorphic function of f i.e.

T (r, a) = S(r, f).

If f satisfies the equation,

kf ′ − f − (k − 1)a = 0

for k 6= 0, then f = f ′.

2. We require the following definitions

By a Monomial in f we mean an expression of the type

Mj(f) = aj(z)(f(z))noj (f ′(z))n1j · · · (f (k)(z))nkj

where n0j , n1j, . . . , nkj are non-negative integers. We define d̄(Mj) =
∑k

i=o nij as the

degree of Mj(f) and Γ(Mj) =
∑k

i=o(i + 1)nij as the weight of Mj(f).
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Differential polynomial in f is a finite sum of such monomials i.e.

P (f) =
s

∑

j=1

aj(z)Mj(f).

We define d̄(P ) = max1≤j≤s

{

d̄(Mj)
}

as the degree, d(P ) = min1≤j≤s

{

d̄(Mj)
}

as the

lower degree and Γ(P ) = max1≤j≤s {Γ(Mj)} as the weight of P (f).

If d̄(P ) = d(P ) = n, P (f) is a called homogeneous differential polynomial and inho-

mogeneous otherwise.

We shall improve Theorem A for a homogeneous differential polynomial in f as fol-

lows.

3. Statement of main Theorem

Theorem 1. Let f (z) be a non-constant transcendental meromorphic function with

N (r, f) + N
(

r, 1
f

)

= S (r, f). Let P (f) be a homogeneous differential polynomial in

f .Let ′a′ be a small meromorphic function of f i.e.

T (r, a(z)) = S(r, f).

If f satisfies the equation

kP (f) − f − (k − 1) a = 0 for k 6= 0 (1)

Then, f ≡ P (f).

We require the following lemmas to prove our results.

Lemma 1.([3]) Let f1 and f2 be two non-constant meromorphic functions and α1 6= o,

α2 6= o be two small meromorphic functions satisfying,

T (r, αi) = S(r, f) for i = 1, 2

where,

T (r, f) = max {T (r, f1) , T (r, f2)} .

If α1f1 + α2f2 ≡ 1, then

T (r, f1) < N

(

r,
1

f1

)

+ N(r,
1

f2
+ N(r, f1) + o {T (r, f)} ,

T (r, f2) < N

(

r,
1

f2

)

+ N

(

r,
1

f1

)

+ N (r, f2) + o {T (r, f)} .
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Lemma 2. If f is a non-constant transcendental meromorphic function and if P (f)
is a homogeneous differential polynomial in f of degree n, then

N

(

r,
P (f)

fn

)

≤ mn

[

N(r, f) + N

(

r,
1

f

)]

+ S(r, f),

where m is the order of highest order derivative occuring in P (f).

Proof of Lemma 2. Since m is the order of the highest derivative f (m) occuring in
P . Then clearly a zero or a pole of f which is not a pole of any co-efficient a(z) of P , is
a pole of P

fn of degree mn atmost. Hence we have,

N(r,
P

fn
) ≤ mn

[

N(r, f) + N(r,
1

f
)

]

+ S(r, f).

Lemma 3.([4]) If f is a non-constant trancsendental meromorphic function and if

P (f) is a homogeneous differential polynomial in f of degree n,then

m

(

r,
P (f)

fn

)

= S(r, f).

Lemma 4. If f is a non-constant transcendental meromorphic function and if P (f)
is a homogeneous differential polynomial in f of degree n then,

N

(

r,
1

P (f)

)

≤ mn

[

N(r, f) + N(r,
1

f
)

]

+ nN(r,
1

f
) + S(r, f),

where m is the order of highest order derivative occuring in P (f).

Proof of Lemma 4. Consider,

N

(

r,
1

P (f)

)

≤ N

(

r,
fn

P (f)

)

+ N

(

r,
1

fn

)

≤ T

(

r,
fn

P (f)

)

+ nN

(

r,
1

f

)

+ S(r, f)

= m

(

r,
P (f)

fn

)

+ N

(

r,
P (f)

fn

)

+ nN(r,
1

f
) + O(1) by Lemma 2 and 4,

≤ S(r, f) + mn

[

N(r, f) + N(r,
1

f
)

]

+ nN(r,
1

f
) + O(1)

N

(

r,
1

P (f)

)

≤ mn

[

N(r, f) + N

(

r,
1

f

)]

+ nN

(

r,
1

f

)

+ S(r, f).

Proof of Theorem 1. We have,

kP (f) − f − (k − 1) a = 0

⇒ k (P (f) − a) = f − a

⇒
f − a

P (f) − a
= k where k 6= 0
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Put f1 = 1
a
f , f2 = k, f3 = −k

a
P (f) where (a 6= 0), so that f1 + f2 + f3 ≡ 1.

If k 6= 1, we get,
1

a (1 − k)
f −

k

a (1 − k)
P (f) ≡ 1.

By lemma 1. we have,

T (r, f) < N

(

r,
1

P (f)

)

+ N

(

r,
1

f

)

+ N (r, f) + S (r, f) , (2)

T (r, P (f)) < N

(

r,
1

P (f)

)

+ N

(

r,
1

f

)

+ N (r, P (f)) + S (r, f) . (3)

Also we have,
N (r, P (f)) ≤ nN (r, f) + mnN (r, f) + S(r, f),

where m is degree of highest order derivative occuring in it. Also by Lemma 4, we get

N

(

r,
1

P (f)

)

≤ mn

[

N(r, f) + N

(

r,
1

f

)]

+ nN

(

r,
1

f

)

+ S(r, f).

Therefore,using lemma 4, (2) and (3) can be written as

T (r, f) ≤ N

(

r,
1

f

)

+mn

[

N(r, f)+N

(

r,
1

f

)]

+nN

(

r,
1

f

)

+N(r, f)+S(r, f), (4)

T (r, P (f)) ≤ mn

[

N(r, f) + N

(

r,
1

f

)]

+ nN

(

r,
1

f

)

+ N

(

r,
1

f

)

+ nN(r, f)

+mnN(r, f) + S(r, f). (5)

Adding (4) and (5) we get,

T (r, f) + T (r, P (f)) ≤ 2mn

[

N(r, f) + N

(

r,
1

f

)]

+ 2nN(r,
1

f
) + 2N(r,

1

f
)

+nN(r, f) + (mn + 1)N(r, f) + S(r, f)

≤ 2(mn + n + 1)N

(

r,
1

f

)

+ (3mn + n + 1)N(r, f) + S(r, f)

≤ (3mn + 2n + 2)

(

N

(

r,
1

f

)

+ N(r, f)

)

+ S(r, f)

≤ S(r, f) which is contradiction, as the above relation implies

1 ≤
S (r, f)

T (r, f) + T (r, P (f))
→ 0, as r → ∞,

possibly outside a set of finite measure. Hence, k = 1 Therefore

f ≡ P (f).
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