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A PERTURBATION TECHNIQUE TO COMPUTE INITIAL AMPLITUDE

AND PHASE FOR THE KRYLOV-BOGOLIUBOV-MITROPOLSKII

METHOD

A. K. AZAD, M. ALAL HOSEN, M. SAIFUR RAHMAN AND M. S. ALAM

Abstract. Recently, a unified Krylov-Bogoliubov-Mitropolskii method has been presented

(by Shamsul [1]) for solving an n-th, n = 2 or n > 2, order nonlinear differential equation.

Instead of amplitude(s) and phase(s), a set of variables is used in [1] to obtain a general

formula in which the nonlinear differential equations can be solved. By a simple variables

transformation the usual form solutions (i.e., in terms of amplitude(s) and phase(s)) have

been found. In this paper a perturbation technique is developed to calculate the initial

values of the variables used in [1]. By the noted transformation the initial amplitude(s)

and phase(s) can be calculated quickly. Usually the conditional equations are nonlinear

algebraic or transcendental equations; so that a numerical method is used to solve them.

Rink [7] earlier employed an asymptotic method for solving the conditional equations

of a second-order differential equation; but his derived results were not so good. The

new results agree with their exact values (or numerical results) nicely. The method can

be applied whether the eigen-values of the unperturbed equation are purely imaginary,

complex conjugate or real. Thus the derived solution is a general one and covers the three

cases, i.e., un-damped, under-damped and over-damped.

1. Introduction

Recently, Shamsul [1] has presented a unified Krylov-Bogoliubov-Mitropolskii (KBM)

method [2, 3, 4] for solving an n-th, n = 2,3, . . ., order differential equation with small non-

linearities. The method is a widely used tool to tackle nonlinear vibration problems. First,

the method was presented (by Krylov and Bogoliubov [2]) for obtaining periodic solution of a

second order differential equation. Then the method was amplified and justified by Bogoli-

ubov and Mitropolskii [3]. Popov [5] extended the method to an under-damped case. Using

the same method, Murty, Deekshatulu and Krisna [6] investigated the over-damped cases of

the second- and fourth-order differential equations. Murty [4] also presented a unified KBM

method for solving a second-order nonlinear differential equation.

Though the KBM method is a used tool in perturbation method, yet it has a major prob-

lem. The conditional equations (in which the initial amplitude(s) and phase(s) are calculated)
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appear in as nonlinear algebraic or transcendental equations. In general, these equations are

solved by a numerical method. But Rink [7] earlier employed a perturbation tool to calculate

the initial amplitude and phase of a second-order equation. He considered the over-damped

case to illustrate his technique. He formulated his method for one of the Murty, Deekshat-

ulu and Krisna’s [5] solutions, which had covered a class of over-damped systems only. It is

noted that Murty, Deekshtulu and Krisna found two over-damped solutions for two classes

of over-damped systems (see [5] also [6] for details). However, shamsul’s [1] unified solution

covers all kinds of over-damped solutions as well as under-damped and un-damped. Though

Rink [7] investigated a class of over-damped problems yet his results were not so good. He

had determined the third approximation of the solution and carried out the calculations un-

til third approximation and obtained a satisfactory result (theoretically, a third approximate

solution is very close to exact or numerical solution). The aim of this paper is to develop a

new perturbation technique, which gives more correct results of the initial amplitude(s) and

phase(s). The method covers the un-damped, under-damped and over-damped cases. A sin-

gle solution can be arbitrarily used for the three cases. Moreover, the method can be easily

extended to an n-th, n = 2, 3, · · · , order nonlinear differential equation. It should be noted

that the Rink’s technique is too difficult to calculate the amplitude(s) and phase(s) for a non-

linear differential equation possessing more than the second-derivative. On the contrary, the

formulation as well as the determination of the solution (concern of this paper) is very simple.

2. Determination of solution and initial condition equations of a second-order equation

Let us consider the second-order autonomous equation

ẍ +2k ẋ +ω2
0x = ε f (x, ẋ). (2.1)

An asymptotic solution of this equation can be chosen in the form [1]

x(t , ε) = a1(t )eλt t +a2(t )eλ2t +εu1(a1, a2)+ε2u2(a1, a2)+ε3 · · · , (2.2)

where a j , j = 1, 2 satisfy the first order differential equations

ȧ j = εA(1)
j

(a1, a2)+ε2 A(2)
j

(a1, a2)+ε3 A(3)
j

(a1, a2)+ε4 · · · (2.3)

It is noted that λ j , j = 1, 2 are the eigen-values of the unperturbed equation of Eq. (2.1).

Now Eq. (2.1) can be written as

(D −λ1)(D −λ2)x = ε f ,D = d/d t . (2.4)

Substituting solution Eq. (2.2) into the left side of Eq. (2.4), utilizing Eq. (2.3) and then equat-

ing the coefficients of ε1, we obtain ([1], see also [8] for details)

(D −λ2)(A(1)
1 eλ1t )+ (D −λ1)(A(1)

2 eλ2t )+ (D −λ1)(D −λ2)u1 = f (0)(a1, a2, t ). (2.5)
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It is clear that solution Eq. (2.2) is not considered in a usual form. This solution starts with

two variables, a j (t ), j = 1, 2, rather than amplitude and phase. Generally the used variables

are respectively complex and real for the under-damped (or, un-damped) and over-damped

cases. Shamsul [1] has used the set of variables a j , j = 1, 2, · · · , n to present a general for-

mula for solving an n-th order differential equation. Such choice of variables greatly facilitates

the KBM method, since the formulation of the method is simple and the related equations to

ȧ j , j = 1, 2 and the functions u1, u2, · · · can be found in terms of a j , j = 1, 2 quickly by im-

posing a restriction that u1, u2, · · ·exclude the terms a
m1

1 a
m2

2 e (m1λ1+m2λ2)t where m1 ∼ m2 = 1.

This assumption guarantees that the terms u1, u2, · · · exclude the first harmonic terms as well

as secular terms. By a simple variable transformation, namely, a1 = 1
2αe iϕ, a2 = 1

2αe−iϕ or

a1 = 1
2
αeϕ, a2 = ±1

2
αe−ϕ(α and ϕ are respectively amplitude and phase variables), all these

equations and functions can be transformed to the usual forms (see [1, 8] for details).

2.1. Example

Let us consider the Duffing equation with a linear damping, −2k ẋ,

ẍ +2k ẋ +ω2
0x =−εx3. (2.6)

For Eq. (2.6), f =−x3 and formula Eq. (2.5) becomes

(D −λ2)(A(1)
1 eλ1t )+ (D −λ1)(A(1)

2 eλ2t )+ (D −λ1)(D −λ2)u1

= −a3
1e3λ1t −3a2

1 a2e (2λ1+λ2)t −3a1a2
2e (λ1+2λ2)t −a3

2e3λ2t . (2.7)

To eliminate the secular terms it has already been restricted that u1, u2, · · · do not contain the

terms a
m1

1 a
m2

2 e (m1λ1+m2λ2)t where m1 ∼ m2 = 1. Therefore, Eq. (2.7) can be separated into

three parts for A(2.1)
1 , A(2.1)

2 and u1 as

(D −λ2)(A(1)
1 eλ1t ) = −3a2

1 a2e (2λ1+λ2)t , (2.8)

(D −λ1)(A(1)
2 eλ2t ) = −3a1a2

2e (λ1+2λ2)t , (2.9)

(D −λ1)(D −λ2)u1 = −a3
1e3λ1t _a3

2e3λ2t . (2.10)

Solving the above three equations, we obtain

A(1)
1 = l1a2

1 a2e (2λ1+λ2)t , A(1)
2 = l∗1 a1a2

2e (2λ1+λ2)t , l1 =−3/(2λ1), l∗1 =−3/(2λ2), (2.11)

and

u1 = c1a3
1e3λ1t +c∗1 a3

2e3λ2t ,c1 =−1/[2λ1(3λ1 −λ2)],c∗1 =−1/[2λ2(3λ2 −λ1)]. (2.12)

Thus a first approximate solution of the Eq. (2.6) becomes

x(t , ε) = a1eλ1t +a2eλ2t +ε(c1a3
1e3λ1t +c∗1 a3

2e3λ2t ), (2.13)
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where a1, a2 satisfy

ȧ1 = ε l1a2
1 a2e (2λ1+λ2)t , ȧ2 = ε l∗1 a1a2

2e (2λ1+λ2)t , (2.14)

and c1, c∗1 ; l1, l∗1 are given by Eqs. (2.11)-(2.12). This solution is used arbitrarily for different

values of λ1, λ2, whether they are real, complex conjugate or purely imaginary. Solution Eq.

(2.13) represents the over-damped case when λ1, λ2 are real. In this case Eq. (2.13) can be

written as the usual forms (presented by Murty et al. [4, 6]) by replacing the variables a1 =
1
2 a eϕ, a2 =±1

2 a e−ϕ and substituting λ1 =−k +ω, λ2 =−k −ω, ω2 = k2 −ω2
0 (see [1]). On the

contrary, the under-damped solution (early presented by Popov [5]) can be found from Eqs.

(2.13) and (2.14) by replacing a1 = 1
2

a e iϕ, a2 = ±1
2

a e−iϕand substituting λ1 = −k + iω, λ2 =

−k−iω, ω2 =ω2
0−k2. If k → 0+, the solution approaches to the original solution (un-damped)

derived by KBM [2, 3]. It is noted that the over-damped solutions can be transformed to the

under-damped and un-damped solutions replacing ω, ϕ, a by iω, iϕ or/and −i a. All these

transformations are also possible for the initial conditions equations of the general solution

Eq. (2.13).

The initial condition equations of Eq. (2.13) become

xI = x(0, ε) = a1,0 +a2,0 +ε(c1a3
1,0 +c∗1 a3

2,0),

ẋI = ẋ(0, ε) =λ1a1,0 +λ2a2,0 +ε(3λ1c1a3
1,0 + l1a2

1,0a2,0+ l∗1 a1,0a2
2,0 +3λ2c∗1 a3

2,0) ,
(2.15)

where a1(0) = a1,0, a2(0) = a2,0. We can show that Eq. (2.15) is similar to that presented by

Murty et al. [4, 6]. If we replacea1,0 = 1
2 a0 eϕ0 , a2,0 =±1

2 a0 e−ϕ0 , Eq. (2.15) becomes

xI =
1

2
a0(eϕ0 ±e−ϕ0)+εa3

0(c1e3ϕ0 ±c∗1 e−3ϕ0)/8, (2.16)

ẋI =
1

2
a0(λ1eϕ0 ±λ2e−ϕ0)±εa3

0(l1eϕ0 ± l∗1 e−ϕ0)/8+3εa3
0(λ1c1e3ϕ0 ±λ2c∗1 e−3ϕ0)/8.

In an over- damped case, we can substitute λ1 =−k +ω, λ2 =−k −ω, in Eq. (2.16) and obtain

xI = a0 coshϕ0 −
εa3

0[(k2 +2ω2)cosh 3ϕ0 +3kωsinh3ϕ0]

16ω2
0(k2 −4ω2)

, (2.17)

ẋI = a0(−k coshϕ0 +ωsinhϕ0)+3εa3
0

(

k coshϕ0 +ωsinhϕ0

8ω2
0

+
k cosh3ϕ0 +2ωsinh 3ϕ0

16(k2 −4ω2)

)

or

xI = a0 sinhϕ0 −
εa3

0[3kωcosh3ϕ0 + (k2 +2ω2)sinh3ϕ0]

16ω2
0(k2 −4ω2)

, (2.18)

ẋI = a0(ωcoshϕ0 −k sinhϕ0)−3εa3
0

(

ωcoshϕ0 +k sinhϕ0

8ω2
0

−
2ωcosh 3ϕ0 +k sinh3ϕ0

16(k2 −4ω2)

)

Except notations, Eqs. (2.17) and (2.18) are identical to those obtained by Murty et al. [4, 6]. It

is noted that ϕ0is real for the over-damped cases while ϕ0becomes purely imaginary for both
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under-damped and un-damped cases. For the given initial conditions [x(0), ẋ(0)] or [xI , ẋI ],

one of two equations is solvable, either Eq. (2.17) or Eq. (2.18) (see [4, 6] for details). But

both equations are solvable in under-damped and un-damped cases. By replacing ω, ϕ with

iω, iϕ, Eq. (2.17) becomes

xI = a0 cosϕ0 −
εa3

0[(k2 −2ω2)cos 3ϕ0 −3kωsin3ϕ0]

16ω2
0(k2 +4ω2)

,

(2.19)

ẋI = a0(−k cosϕ0 +ωsinϕ0)+3εa3
0

(

k cosϕ0 −ωsinϕ0

8ω2
0

+
k cos3ϕ0 −2ωsin 3ϕ0

16(k2 +4ω2)

)

.

On the contary, Eq. (2.18) becomes

xI = a0 sinϕ0 −
εa3

0[3kωcos3ϕ0 + (k2 −2ω2)sin3ϕ0]

16ω2
0(k2 +4ω2)

,

(2.20)

ẋI = a0(ωcosϕ0 −k sinϕ0)+3εa3
0

(

ωcosϕ0 +k sinϕ0

8ω2
0

−
2ωcos 3ϕ0 +k sin3ϕ0

16(k2 +4ω2)

)

.

Herein ais also replaced by−i a. One can verify that both Eqs. (2.19) and (2.20) are solvable for

every initial value problem. It is noted that a0is same for both equations; but ϕ0has different

values. Thus one asymptotic solution covers all under-damped and un-damped cases, but

two solutions are needed for over-damped case (see [4] for details).

3. Determination of asymptotic solution of initial condition equations

We can use two asymptotic series to solve Eq. (2.15) as

a j ,0 = ã j ,0 +εα j (ã1,0, ã2,0)+ε2β j (ã1,0, ã2,0)+ε3 · · · , j = 1, 2, (3.1)

where xI = ã1,0+ ã2,0 and ẋI =λ1ã1,0 +λ2ã2,0.

Substituting Eq. (3.1) into Eq. (2.15), simplifying and equating the coefficients of ε1 and ε2,

we obtain

α1 +α2 =−(c1ã3
1,0+c∗1 ã3

2,0) ,

λ1α1 +λ2α2 =−3(λ1c1ã3
1,0+λ2c∗1 ã3

2,0)− ã1,0ã2,0(l1ã1,0 + l∗1 ã2,0) ,
(3.2)

and

β1 +β2 =−3(c1 ã2
1,0α1 +c∗1 ã2

2,0α2) ,

λ1β1 +λ2β2 =−9(λ1c1ã2
1,0α1 +λ2c∗1 ã2

2,0α2)− ã1,0ã2,0(l1α1 + l∗1 α2)

−(α1 ã2,0 +α2ã1,0)(l1ã1,0+ l∗1 ã2,0) .

(3.3)

The right hand sides of Eqs. (3.2)-(3.3) are real, since λ1, λ2 as well as c1, c∗1 ; l1, l∗1 are oc-

curred in conjugate pairs. For the over-damped case, α1 +α2, λ1α1 +λ2α2, · · · ,
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λ1β1 +λ2β2 can be calculated directly from Eqs. (3.2)-(3.3). However, in the case of under-

damped or un-damped, these terms can be calculated easily replacing the right hand sides in

real forms as

α1 +α2 =−2Re(c1ã3
1,0),λ1α1 +λ2α2 =−6Re(λ1c1ã3

1,0)− ã1,0ã2,0Re(l1ã1,0), (3.4)

and

β1 +β2 =−6Re(c1ã2
1,0α1) ,

λ1β1 +β2α2 =−18Re(λ1c1ã2
1,0α1)−2 ã1,0ã2,0 Re(l1α1)−4Re(α1ã2,0)×Re(l1ã1,0) .

(3.5)

Solving Eqs. (3.2)-(3.3) or Eqs. (3.4)-(3.5), we obtainα1, α2; β1, β2 which complete the second

approximation of the initial condition equations Eq. (2.15).

4. Rink’s [7] solution

To solve the transformed initial condition equations Eq. (2.17), Rink [7] had chosen the

following asymptotic series

aI = ã0 +µ ã1(ã0,ψ̃0)+ε2 ã2(ã0,ψ̃0)+ε3 · · · ,

ψI = ψ̃0 +µψ1(ã0,ψ̃0)+ε2ψ2(ã0,ψ̃0)+ε3 · · · ,
(4.1)

where ã0, ψ̃0 satisfy the equations xI = ã0 cosh ψ̃0 and ẋI = −k ã0 cosh ψ̃0 +ω ã0 sinhψ̃0, or

ã0 = [x2
I − ((ẋI +k xI )/ω)2]

1
2 , ψ̃0 = tanh−1((ẋI +k xI )/ω).

First, Rink had determined a third approximate solution of equation, ẍ +3ẋ +2x =µx3,

µ << 1 and then substituting the series Eq. (4.1) into the initial conditions equations of that

solution, he calculated a1, ψ1 to third approximation to obtain a satisfactory result. Definitely

that was a difficult task. But we are not interested to determine higher approximate solution.

The first approximation solution is usually applied in a practical problem when the damping

force is significant, since the derivation of the formula as well as determination of the solu-

tion of a nonlinear differential equation is difficult (see [4, 9] for details). We only calculate

aI , ψI to second approximation from Eqs. (3.2)-(3.3) or (3.4)-(3.5) for the first approximation

solution Eq. (2.13). All these results show a good agreement with the numerical results. Rink’s

solution (truncated form for the first approximation) is

x(t , µ) = a coshψ+µa3(11cosh 3ψ−9sinh 3ψ)/160, (4.2)

where a and ψ satisfy the differential equations

ȧ =−3a/2−9µa3/32,ψ̇=−1/2+3µa2/32. (4.3)
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For this solution, the initial conditional equations become

xI = a0 coshψ0 +µa3
0(11cosh 3ψ0 −9sinh 3ψ0)/160 ,

(4.4)
ẋI = −a0(3coshψ0 +sinhψ0)/2

−3µa3
0(15coshψ0 −5sinhψ0 −12cosh 3ψ0 +8sinh3ψ0)/160

Solution Eq. (4.2) as well as initial conditions Eq. (4.4) was determined by Murty, Deekatulu

and Krisna [6]. Rink [7] formulated and determined the following results of aI , ψI for Eq. (4.4)

(only first order solution is given)

aI = ã0 +µ ã3
0(−10cosh 2ψ̃0 −16cosh 4ψ̃0 +30sinh 2ψ̃0 +24sinh 4ψ̃0 +15)/160,

ψI = ψ̃0 +µ ã2
0(−60cosh 2ψ̃0 −24cosh 4ψ̃0 +20sinh 2ψ̃0 +16sinh 4ψ̃0 −45)/160 .

(4.5)

4.1. Determination of Rink’s [7] solution from our solution

For the equation, ẍ +3ẋ +2x =µx3, µ<<1 [4, 6, 7], ε=−µ, λ1 =−2, λ2 =−1. Therefore,

we can choose k = 3/2 and ω = −1/2. Substituting these values of k , ω into Eq. (2.17), we

obtain

xI = a0 coshϕ0 −εa3
0(11cosh 3ϕ0 −9sinh 3ϕ0)/160,

(4.6)
ẋI = −a0(3coshϕ0 +sinhϕ0)/2

−3εa3
0(15coshϕ0 −5sinhϕ0 −12cosh 3ϕ0 +8sinh3ϕ0)/160.

It is noted that the used variables of our solution are not same to Murty et al.’s [4, 6]. But it has

been proved that Eq.(2.13) and Eq. (4.2) are identical (see [1]). However, the initial conditions

equations Eq. (4.4) and Eq. (4.6) are same, if we only replace ϕ0by ψ0and ε by −µ.

Now we shall find Rink’s solution of Eq.(4.5) from our solution. Substituting λ1 = −2 and

λ2 =−1, Eqs. (3.2)-(3.3) become

α1 +α2 = ã3
1,0/20+ ã3

2,0/2
(4.7)

2α1 +α2 = 3(ã3
1,0/10+ ã3

2,0/2)+3 ã1,0ã2,0(3 ã1,0/4+ ã2,0/2).

The solution of Eq. (4.7) is

α1 = ã3
1,0/4+3 ã3

1,0ã2,0/4+3 ã1,0ã2
2,0/2+ ã3

2,0 ,

α2 =−(ã3
1,0/5+3 ã2

1,0 a2,0/4+3 a1,0ã2
2,0/2+ ã3

2,0/2).
(4.8)

Substituting the values of α1, α2 from Eq. (4.8) into Eq. (2.19), the first order solution of the

conditional equations Eq. (2.15) can be found as

a1,I = ã1,0 +ε(ã3
1,0/4+3 ã2

1,0 ã2,0/4+3ã1,0ã2
2,0/2+ ã3

2,0),

a2,I = ã2,0 −ε(ã3
1,0/5+3 ã2

1,0 ã2,0/4+3ã1,0ã2
2,0/2+ ã3

2,0/2).
(4.9)
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Replacing a1,0 = 1
2 aI eϕI , a2,0 = 1

2 aI e−ϕI and ã1,0 = 1
2 ã0e ϕ̃0 ,ã2,0 = 1

2 ã0e−ϕ̃0

and simplifylng, we obtain

aI eϕI = ã0e ϕ̃0 +ε ã3
0(e3ϕ̃0/4+3e ϕ̃0 /4+3e−ϕ̃0 /2+e−3ϕ̃0 )/4,

aI e−ϕI = ã0e−ϕ0 −ε ã3
0(e3ϕ̃0/5+3e ϕ̃0 /4+3e−ϕ̃0 /2+e−3ϕ̃0/2)/4.

(4.10)

Now substituting aI = ã0 +εp +ε2 · · · , ϕI = ϕ̃0 +εq +ε2 · · ·and expanding e±εq in Maclaurin’s

series, we obtain

(ã0 +εp +·· · )(1+εq +·· · )e ϕ̃0 = ã0e ϕ̃0 +εa3
0(e3ϕ̃0/4+3e ϕ̃0 /4+3e−ϕ̃0 /2+e−3ϕ̃0 )/4,

(4.11)
(ã0 +εp +·· · )(1−εq +·· · )e−ϕ̃0 = ã0e−ϕ̃0 −εa3

0(e3ϕ̃0/5+3e ϕ̃0 /4+3e−ϕ̃0 /2+e−3ϕ̃0/2)/4.

Equation the coefficients of ε on both sides of Eq. (4.11), we obtain

p + ã0q = ã3
0(e2ϕ̃0/4+3/4+3e−2ϕ̃0 /2+e−4ϕ0 )/4,

p − ã0q =−ã3
0(e4ϕ̃0/5+3e2ϕ̃0 /4+3/2+e−2ϕ̃0 /2)/4,

(4.12)

or,

p =−ã3
0(10e2ϕ̃0 −20e−2ϕ̃0 +4e4ϕ̃0 −20e−4ϕ̃0 +15)/160,

q =−ã2
0(20e2ϕ̃0 +40e−2ϕ̃0 +20e4ϕ̃0 +40e−4ϕ̃0 +45)/160.

(4.13)

or,

p =−ã3
0(−10cosh 2ϕ̃0 −16cosh 4ϕ̃0 +30sinh 2ϕ̃0 +24sinh 4ϕ̃0 +15)/160,

q =−ã2
0(−60cosh 2ϕ̃0 −24cosh 4ϕ̃0 +20sinh 2ϕ̃0 +16sinh 4ϕ̃0 −45)/160.

(4.14)

Substituting these values, we obtain

aI = a0 −εa3
0(−10cosh 2ϕ0 −16cosh 4ϕ0 +30sinh 2ϕ0 +24sinh 4ϕ0 +15)/160,

ϕI =ϕ0 −εa2
0(−60cosh 2ϕ0 −24cosh 4ϕ0 +20sinh 2ϕ0 +16sinh 4ϕ0 −45)/160.

(4.15)

Except notations, Eqs. (4.5) and (4.15) are identical. Thus the first order Rink’s solution has

been determined from our solution. In a similar way we can determine Rink’s higher order

solution; but each step it needs the truncation of e±εq .

5. A third order nonlinear problem

Let us consider the nonlinear mechanical system governed by

mẍ +σ= 0,

σ+γσ̇= g x +hẋ +ex3 ,
(5.1)

where x is the deformation, m is the mass of the system, and γ, g , hand eare positive con-

stants. The terms with coefficients g and e(small) represent respectively the linear and non-

linear elasticity, the term with coefficient h corresponds to the linear viscous damping, and

the term with coefficient γ reflects the linear relaxation.
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Herein x satisfies a third-order nonlinear differential equation [eliminating σ from two equa-

tions of (5.1)]
...
x +k1ẍ +k2ẋ +k3x =−εx3. (5.2)

where k1 = γ−1, k2 = hγ−1m−1, k3 = gγ−1m−1 and ε = eγ−1. For this equation the first ap-

proximate solution is

x(t , ε) = ã1eλ1t+ã2eλ2t+ã3eλ3t+ε(h2ã1ã2
2e (λ1+2λ2)t+h∗

2 ã1ã2
3e (λ1+2λ3)t+h3ã3

2e3λ1t+h∗
3 ã3

3e3λ2t )

(5.3)

where λ1, λ2, λ3 are eigen-values of unperturbed equation of Eq. (5.2) and a1, a2, a3satisfy

ȧ1 = ε(l2a3
1 + l3a1a2a3),

ȧ2 = ε(m1a2
1a2 +m2a2

2a3),

ȧ3 = ε(m∗
1 a2

1 a2 +m∗
2 a2

2 a3).

(5.4)

and

l2 = [(3λ1 −λ2)(3λ1 −λ3)]−1, l3 = 6[(λ1 +λ2)(λ1 +λ3)]−1,

m1 = 3[(λ1 +λ2)(2λ1 +λ2 −λ3)]−1, m∗
1 = 3[(λ1 +λ3)(2λ1 +λ3 −λ2)]−1,

m2 = 3[2λ2(2λ2 +λ3 −λ1)]−1, m∗
2 = 3[2λ3(λ2 +2λ3 −λ1)]−1

h2 = 3[2λ2(λ1 +λ2)(λ1 +2λ2 −λ3)]−1, h∗
2 = 3[2λ3(λ1 +λ3)(λ1 +2λ3 −λ2)]−1,

h3 = [2λ2(3λ2 −λ1)(3λ2 −λ3)]−1, h∗
3 = [2λ3(3λ3 −λ1)(3λ3 −λ2)]−1.

(5.5)

The initial condition equations of solution Eq. (5.3) are

xI = ã1,0 + ã2,0 + ã3,0 +ε(h2ã1,0ã2
2,0 +h∗

2 ã1,0ã2
3,0 +h3ã3

2,0 +h∗
3 ã3

3,0),

ẋI = λ1ã1,0+λ2 ã2,0+λ3 ã3,0+ε(l2ã3
1,0 + l3ã1,0ã2,0ã3,0 +m1ã2

1,0ã2,0 +m2ã2
2,0ã3,0 +m∗

1 ã2
1,0ã3,0

+m∗
2 ã2ã2

3 + (λ1 +2λ2)h2ã1,0ã2
2,0 + (λ1 +2λ3)h∗

2 ã1,0ã2
3,0 +3λ2h3ã3

2,0 +3λ2h∗
3 ã3

3,0)
(5.6)

ẍI = λ2
1ã1,0+λ2

2 ã2,0+λ2
3 ã3,0+ε[4λ1l2ã3

1,0+ (2λ1 +λ2 +λ3)l3ã1,0ã2,0ã3,0

+2(λ1 +λ2)m1ã2
1,0ã2,0 + (3λ2 +λ3)m2ã2

2,0ã3 +2(λ1 +λ3)m∗
1 ã2

1,0ã3,0+ (λ2 +3λ3)m∗
2 ã2ã2

3,0

+(λ1 +2λ2)2h2ã1,0ã2
2,0+ (λ1 +2λ3)2h∗

2 ã1,0ã3
2 +9λ2

2h3ã3
2,0 +9λ2

3h∗
3 ã3

3,0]

Substituting Eq. a j ,0 = ã j ,0+εα j (ã1,0, ã2,0)+ε2β j (ã1,0, ã2,0)+ε3 · · · , j = 1, 2, 3, into Eq. (5.6),

simplifying and equating the coefficients of ε1 and ε2, we obtain

α1 +α2 +α3 = −[h2ã1,0ã2
2,0 +h∗

2 ã1,0ã2
3,0+h3ã3

2,0 +h∗
3 ã3

3,0],

λ1α1 +λ2α2 +λ3α3 = −[l2ã3
1,0 + l3ã1,0ã2,0ã3,0+ ã2

1,0(m1ã2,0 +m∗
1 ã3,0)

+ã2,0ã3,0(m2ã2,0 +m∗
2 ã3,0)+a1,0{(λ1 +2λ2)h2ã2

2,0

+(λ1 +2λ3)h∗
2 ã2

3,0}+3(λ2h3ã3
2,0+λ3h∗

3 ã3
3,0)], (5.7)
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λ2
1α1 +λ2

2α2 +λ2
3α3 = −[4λ1l2ã3

1,0 + (2λ1 +λ2 +λ3)l3ã1,0ã2,0ã3,0+2ã2
1,0{(λ1 +λ2)m1ã2,0

+(λ1 +λ3)m∗
2 ã3,0}+ ã2,0ã3,0{(3λ2 +λ3)m2ã2,0 + (λ2 +3λ3)m∗

2 ã3,0}

+a1,0{(λ1 +2λ2)2h2ã2
2,0 + (λ1 +2λ3)2h∗

2 ã2
3,0}+9(λ2

2h3ã3
2,0 +λ2

3h∗
3 ã3

3,0)],

and

β1 +β2 +β3 =−[2ã1,0(h2ã2,0α2 +h∗
2 ã3,0α3)+αI (h2ã2

2,0 +h∗
2 ã2

3,0)+3(h3 ã2
2,0α2 +h∗

3 ã2
3,0α3),

λ1β1 +λ2β2 +λ3β3 = −[3l2ã2
1,0α1 + l3(ã1,0ã2,0α3 + ã1,0ã3,0α2 + ã2,0ã3,0α1)

+ã1,0{(ã1,0α2 +2ã2,0α1)m1 + (ã1,0α3 +2ã3,0α1)m∗
1 }

+2ã2,0ã3,0(m2α2 +m∗
2α3)+m2ã2

2,0α3 +m∗
2 ã2

3,0α2

+{(λ1 +2λ2)(2ã1,0α2 + ã2,0α1)h2ã2,0

+(λ1 +2λ3)(ã1,0α3 + ã3,0α1)h∗
2 ã3,0+9(λ2h3ã2

2,0α2 +λ3h∗
3 ã2

3,0α3), (5.8)

λ2
1β1 +λ2

2β2 +λ2
3β3 = −[12l1λ1ã2

1,0α1 + l3(2λ1 +λ2 +λ3)(ã1,0ã2,0α3 + ã1,0ã3,0α2 + ã2,0ã3,0α1)

2ã1,0{m1(λ1 +λ2)(ã1,0α2 +2ã2,0α1)+m∗
1 (λ1 +λ3)(ã1,0α3 +2ã3,0α1)

+2ã2,0ã3,0{(3λ2 +λ3)m2α2 + (λ2 +3λ3)m∗
2α3}

+(3λ2 +λ3)m2ã2
2,0α3 + (λ2 +3λ3)m∗

2 ã2
3,0α2}

{(λ1 +2λ2)2(2ã1,0α2 + ã2,0α1)h2ã2,0

+(λ1 +2λ3)2(2ã1,0α3 + ã3,0α1)h∗
2 ã3,0}

+27(λ2
2h3ã2

2,0α2 +λ2
3h∗

3 ã2
2,0α3)].

The right hand sides of Eqs. (5.7)-(5.8) are real as of Eqs. (3.2)-(3.3). Solving Eqs. (5.7)-(5.8),

we obtain α1, α2, α3 ; β1, β2, β3 which complete the second approximation of the initial

condition equations Eq. (5.6). We can transform these equations to real form; but it is no

difficult to calculate these terms (without transformation) whether λ1, λ2, λ3are real, complex

or purely imaginary.

6. Results and discussion

In general Eqs. (2.17) or (2.18) or (2.19) or (2.20) is solved by a numerical method. Rink

[7] employed a perturbation technique to solved Eq.(2.18); but his solution converges very

slowly to the real solution. So, it is difficult to apply his [7] method in particular problems.

In this paper, we have provided a new perturbation technique to solve the same equations.

The new solution converges faster than that of Rink. It has been shown that Rink’s solu-

tion is a truncated version of our solution (see sub-section 4.1). The main advantage of this

method is that it can be quickly extended in third-, fourth-, etc. order problems. For the

initialẍ+3ẋ+2x =µx3, µ= 0.1, [x(0) = 2.2888, ẋ(0) =−4.2865]. Rink [7] found that the initial

values of amplitude and phase are aI = 2.12, ψI = 0.415 (first approximation); but the exact
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value are a0 = 2.0, ψ0 = 0.5 (which completely satisfy initial condition equations Eq. (27)).

On the contrary, we have found from Eq. (4.9) that aI = 1.9493 and ϕI = 0.5465 (= ψI )(see

Appendix A). These results are better than those second approximate values derived by Rink

(which are aI = 1.96, ψI = 0.578, see [7]). But using our technique we have found the sec-

ond approximation results as aI = 1.9955 and ϕI = 0.5122, which are much better results than

the third approximate results obtained by Rink (Note: Rink’s third approximate results are

aI = 1.96, ψI = 0.578).

In an under-damped case the results also rapidly converge to their exact values. For the

initial value problemẍ + ẋ + x = − εx3, ε = 0.1, [x(0) = 1.0, ẋ(0) = 0], we have calculated

(see Appendix B) the initial amplitude and phase as aI = 1.123296, ϕI =−0.465357 (first ap-

proximation) and the numerical results (obtain from Eq. (2.19) by Newton-Raphson formula)

are a0 = 1.125335, ϕ0 = −0.470666. We have also calculated second approximate results as

aI = 1.125595, ϕI =−0.471295. It is interesting to note that the results converge more rapidly

when the system is un-damped. For the initial value problem ẍ + x = −εx3, ε = 0.1, [x(0) =

1.0, ẋ(0) = 0], we have calculated the initial amplitude and phase as aI = 0.996875, ϕI =

0 (first approximation) and the numerical results (obtained from Eq. (2.19) withk = 0, by

Newton-Raphson formula) are a0 = 0.996904, ϕ0 = 0. Then we calculated second approxima-

tion as aI = 0.996904, ϕI = 0, which are similar to the numerical solution up to six decimal

places.

For the initial value problem (considered from [1]),
...
x + 0.9ẍ + 1.24ẋ + 0.52x = − εx3,

ε = 0.1, [x(0) = 1.49125, ẋ(0) = −0.43631, ẍ(0) = −0.72346], we have calculated the initial

amplitudes and phase as aI = 0.4817, bI = 1.0184, ϕI = 0.0066 (first approximation) utilizing

formulae Eq. (5.7). The exact results area0 = 0.5, b0 = 1.0, ϕ0 = 0. In this case the first approx-

imate results of bI , ϕI are close to b0, ϕ0; but aI is far froma0. So it needs second approxi-

mation. We calculated these as aI = 0.50033, bI = 1.00009, ϕI = 0.00003. Which are almost

equal to the exact values. However, we can show that the first approximate results are very

close to the numerical results when the modulus of the real eigen-value is an order of 1. Let

us consider another third-order initial value problem (from [9]).
...
x + ẍ+4ẋ+4x =µx3, µ= 0.1,

[x(0) = 1., ẋ(0) = 0, ẍ(0) = −2]. For this problem, we have computedaI = 0.40486, bI =

0.62802, ϕI = 0.32723. Their exact results area0 = 0.40449, b0 = 0.62845, ϕ0 = 0.32608. It

is clear that the first order approximate results of both amplitudes and phase are very close to

the numerical results.

Seeing all these problems we can decide that the second approximate results (sometimes

first approximation) of the amplitude(s) and phase are very close to the numerical solutions

whether the nonlinear system possesses the second or third derivative. The method can be
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easily applied to fourth- or more than fourth-order nonlinear differential systems. Thus it is

no need to calculate the amplitude(s) and phase(s) by a numerical technique.

Appendix A

The eigen-values of ẍ +3ẋ +2x = 0 are λ1 =−2, λ2 =−1.Therefore, for initial conditions

[x[0] = 2.2888, ẋ(0) = −4.2865], we have ã1,0 + ã2,0 = 2.2888, −ã1,0 − 2ã2,0 = −4.28650, or,

ã1,0 = 1.9977, ã2,0 = 0.2911. For the nonlinear eqation ẍ +3ẋ +2x =−εx3, we have calculated

the following results:

c1 =−1/20, c∗1 =−1/2, l1 = 3/4, l∗1 = 3/2.

Substituting these values into Eq. (3.2) and simplifying, we obtain

α1 +α2 = 0.41096, −α1 −2α2 =−3.55395. (A.1)

The solution of Eq. (A.1) is

α1 = 3.1430, α2 =−2.7320 (A.2)

Substituting these values of ã1,0, ã2,0, α1, α2together with ε =−0.1(since Murty, Deekshat-

ulu and Krisna’s [6] paper it was given that µ = 0.1 and µ = −ε) and simplifying, we ob-

tain a1,0 = 1.6834, a2,0 = 0.5643. From the approximate result of a1,0 and a2,0, we can eas-

ily calculate initial amplitude and phase as aI = 1.9493, ϕI = 0.5465 since a1,0 = aI eϕI and

a2,0 = aI e−ϕI .

Appendix B

The eigen- values of ẍ + ẋ +x = 0are λ1 = (−1+ i
p

3)/2, λ2 = (−1− i
p

3)/2. Therefore, for

initial conditions [x(0) = 1.0, ẋ(0) = 0].

We have ã1,0 + ã2,0 = 1, (−1+ i
p

3)ã1,0 + (−1− i
p

3)ã2,0 = 0, or, ã1,0 = (
p

3− i )/2
p

3,

ã2,0 = (
p

3+ i )/2
p

3. For the nonlinear equation ẍ + ẋ + x =−εx3, we have calculated the fol-

lowing results:

c1 = (5− i 3
p

3)/52, c∗1 = (5+ i 3
p

3)/52, l1 = 3(1+ i
p

3)/4, l∗1 = 3(1− i
p

3)/4.

Substituting these values into Eq. (3.2) and simplifying, we obtain

α1 +α2 = 1/26 , (−1+ i
p

3)α1 + (−1− i
p

3)α2 =−17/13 (B.1)

The solution of Eq. (B.1) is

α1 = (
p

3+33i )/52
p

3, α2 = (
p

3−33i )/52
p

3 (B.2)
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Substituting these values of ã1,0, ã2,0, α1, α2 together with ε= 0.1 and simplifying, we obtain

a1,0 = 0.501923−0.252035i , a2,0 = 0.501923+0.252035i . From the approximate result of a1,0

or a2,0, we can easily calculate initial amplitude and phase as aI = 1.123296, ϕI =−0.465357,

since a1,0 = aI e iϕI and a2,0 = aI e−iϕI .

In a similar way, we can determine β1, β2 from Eq. (3.3) (for both over-damped and

under-damped cases) and then calculated a1,0, a2,0 as well as aI , ϕI up to second approxima-

tion.
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