EXTREMUM PROPERTIES OF THE NEW ELLIPSOID

YUAN JUN, SI LIN AND LENG GANGSONG

Abstract

For a convex body K in \mathbb{R}^{n}, Lutwak, Yang and Zhang defined a new ellipsoid $\Gamma_{-2} K$, which is the dual analog of the Legendre ellipsoid. In this paper, we prove the following two results: (i) For any origin-symmetric convex body K, there exist an ellipsoid E and a parallelotope P such that $\Gamma_{-2} E \supseteq \Gamma_{-2} K \supseteq \Gamma_{-2} P$ and $V(E)=V(K)=V(P)$; (ii) For any convex body K whose John point is at the origin, then there exists a simplex T such that $\Gamma_{-2} K \supseteq \Gamma_{-2} T$ and $V(K)=V(T)$.

1. Introduction

For each convex subset in \mathbb{R}^{n}, it is well-known that there is a unique ellipsoid with the following property: The moment of inertia of the ellipsoid and the the moment of inertia of the convex set are the same about every 1-dimensional subspace of \mathbb{R}^{n}. This ellipsoid is called the Lengendre ellipsoid of the convex set. The Lengendre ellipsoid and its polar (the Binet ellipsoid) are well-known concepts from classical mechanics. See ([4, $5,10]$) for historical references.

It has slowly come to be recognized that along side the Brunn-Minkowski theory there is a dual theory. The Lengendre ellipsoid (and Binet ellipsoid) is an object of this dual Brunn-Minkowski theory. A nature question is whether there is a dual analog of the classical Legendre ellipsoid in the Brunn-Minkowski theory. Applying the L_{p}-curvature theory $([7,8])$, Lutwak, Yang and Zhang demonstrated the existence of precisely this dual object. Further, some beautiful and deep properties for this dual analog of the Legendre ellipsoid have been discovered ([9], see also [6]).

An often used fact in convex geometry is that associated with each convex body K is a unique ellipsoid $J K$ of maximal volume that is contained in K. The ellipsoid is called the John ellipsoid of K and the center of this ellipsoid is called John point of K.

Let $V(K)$ denote the n-dimensional volume of the convex body K in \mathbb{R}^{n}. Let B_{n} denote the unit ball in \mathbb{R}^{n} and ω_{n} the volume of B_{n}. For each convex body K, let $\Gamma_{-2} K$ denote the new ellipsoid which is defined by Lutwak, Yang and Zhang. In [9], the authors proved the following two theorems for the new ellipsoid.

[^0]Theorem A. Let K be an origin-symmetric convex body. Then

$$
2^{-n} \omega_{n} V(K) \leq V\left(\Gamma_{-2} K\right) \leq V(K)
$$

Equality on the left-hand side holds if and only if K is a parallelotope and equality on the right-hand side holds if and only if K is an ellipsoid.

Theorem B. Suppose $K \subset \mathbb{R}^{n}$ is a convex body positioned so that its John point is at the origin, then

$$
V\left(\Gamma_{-2} K\right) \geq \frac{n!\omega_{n}}{n^{n / 2}(n+1)^{(n+1) / 2}} V(K)
$$

with equality if and only if K is a simplex.
The aim of this paper is to study the new ellipsoid further. We give two extremal properties of the new ellipsoid. Our main results are the following two theorems:

Theorem 1. For any origin-symmetric convex body K, there exist an ellipsoid E and a parallelotope P such that

$$
\Gamma_{-2} E \supseteq \Gamma_{-2} K \supseteq \Gamma_{-2} P \quad \text { and } \quad V(E)=V(K)=V(P)
$$

Equality on the left-hand side holds if and only if K is an ellipsoid and equality on the right-hand side holds if and only if K is a parallelotope.

Theorem 2. Suppose $K \subset \mathbb{R}^{n}$ is a convex body positioned so that its John point is at the origin, then there exists a simplex T such that

$$
\Gamma_{-2} K \supseteq \Gamma_{-2} T \quad \text { and } \quad V(K)=V(T)
$$

with equality if and only if K is a simplex.
As usual, S^{n-1} denotes the unit sphere in \mathbb{R}^{n}. Let K be a nonempty compact convex body in \mathbb{R}^{n}, the support function h_{K} of K is defined by $([1,11])$

$$
h_{K}(u)=\max \{u \cdot x: x \in K\}, u \in S^{n-1}
$$

where $u \cdot x$ denotes the usual inner product of u and x in \mathbb{R}^{n}.
For a compact subset L of \mathbb{R}^{n}, which is star-shaped with respect to the origin, we shall use $\rho(L, \cdot)$ to denote its radial function; i.e., for $u \in S^{n-1}([1,11])$

$$
\rho(L, u)=\max \{\lambda>0: \lambda u \in L\} .
$$

For each convex body K, the new ellipsoid $\Gamma_{-2} K$ was defined by ([9])

$$
\begin{equation*}
\rho_{\Gamma_{-2} K}^{-2}(u)=\frac{1}{V(K)} \int_{S^{n-1}}|u \cdot v|^{2} d S_{2}(K, v), \tag{1}
\end{equation*}
$$

for all $u \in S^{n-1}$, where $S_{2}(K, \cdot)$ denotes the L_{2}-surface measure.
It was shown in [7] that $S_{2}(K, \cdot)$ is absolutely continuous with respect to the classical surface area measure S_{K} and that the Radon-Nikodym derivative

$$
\frac{d S_{2}(K, \cdot)}{d S_{K}}=\frac{1}{h_{K}} .
$$

Thus, if P is a polytope whose faces have outer unit normals u_{1}, \ldots, u_{N}, and a_{i} denotes the area $\left((n-1)\right.$-dimensional volumes) of the face with outer normal u_{i} and h_{i} denotes the distance from the origin to this face, then the measure $S_{2}(P, \cdot)$ is concentrated at the points $u_{1}, \ldots, u_{N} \in S^{n-1}$ and $S_{2}\left(P, u_{i}\right)=a_{i} / h_{i}$. Thus, for the polytope P, we have for $u \in S^{n-1}$

$$
\begin{equation*}
\rho_{\Gamma_{-2} P}^{-2}(u)=\frac{1}{V(P)} \sum_{i=1}^{N}\left(u \cdot u_{i}\right)^{2} \frac{a_{i}}{h_{i}} \tag{2}
\end{equation*}
$$

Suppose K is a convex body that contains the origin in its interior. In [9], the authors proved that $\Gamma_{-2} K$ is affine invariant, i.e., if $\phi \in G L(n)$, then

$$
\begin{equation*}
\Gamma_{-2}(\phi K)=\phi \Gamma_{-2} K \tag{3}
\end{equation*}
$$

Since $\Gamma_{-2} B_{n}=B_{n}$, it follows from (3) that if E is an ellipsoid centered at the origin, then

$$
\begin{equation*}
\Gamma_{-2} E=E \tag{4}
\end{equation*}
$$

To prove of Theorem 1 and Theorem 2, we need the following lemmas.
Lemma 1.(John [2]) Each convex body K contains an unique ellipsoid JK of maximal volume. This ellipsoid is the unit ball B_{n} if and only if the following conditions are satisfied: $B_{n} \subset K$ and there are contact points $\left\{u_{i}\right\}_{1}^{m}$ and positive numbers $\left\{c_{i}\right\}_{1}^{m}$ so that

$$
\begin{equation*}
\sum_{i=1}^{m} c_{i} u_{i} \otimes u_{i}=I_{n} \tag{5}
\end{equation*}
$$

where $u_{i} \otimes u_{i}$ is the rank-one orthogonal projection onto the span of u_{i} and I_{n} is the identity on \mathbb{R}^{n}.

The condition (5) shows that the u_{i} behave like an orthonormal basis to the extent that, for each $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\|x\|^{2}=\sum_{i=1}^{m} c_{i}\left(x \cdot u_{i}\right)^{2} \tag{6}
\end{equation*}
$$

The equality of the traces in (5) shows that

$$
\begin{equation*}
\sum_{i=1}^{m} c_{i}=n \tag{7}
\end{equation*}
$$

Lemma 2. Let C be a cube centered at the origin in \mathbb{R}^{n}. Then

$$
\Gamma_{-2} C=J C .
$$

Proof. Without loss of generality, let C be $[-1,1]^{n}$ in \mathbb{R}^{n}. For C the John ellipsoid is B_{n}. The contact points are the standard basis vectors $\left(e_{1}, \ldots, e_{n}\right)$ of \mathbb{R}^{n} and their negatives, and they satisfy

$$
\sum_{i=1}^{m} e_{i} \otimes e_{i}=I_{n}
$$

That is, one can take all the weights c_{i} equal to 1 in (6).
Hence, it is sufficient to prove that the new ellipsoid is B_{n}. By the definition (2) and (6), we have for $u \in S^{n-1}$

$$
\begin{aligned}
& \rho_{\Gamma_{-2} C}^{-2}(u)= \frac{1}{V(C)} \sum_{i=1}^{2 n}\left(u \cdot e_{i}\right)^{2} \frac{a_{i}}{h_{i}} \\
&= \frac{2}{2^{n}} \sum_{i=1}^{n}\left(u \cdot e_{i}\right)^{2} 2^{n-1} \\
&=\|u\|^{2}=1 .
\end{aligned}
$$

Hence $\Gamma_{-2} C=B_{n}$, the proof of lemma 2 is completed.
Lemma 3.(Fejes Tóth [13]) Let T be a simplex in \mathbb{R}^{n} with inscribed ball radius r. Then

$$
V(T) \geq \frac{n^{n / 2}(n+1)^{(n+1) / 2}}{n!} r^{n}
$$

with equality if and only if T is a regular simplex.
Lemma 4. Let T be a simplex in \mathbb{R}^{n} that contains the origin in its interior. Then

$$
\Gamma_{-2} T=J T
$$

Proof. Since both $\Gamma_{-2} T$ and $J T$ are affine invariant, it suffices to prove that $\Gamma_{-2} T=$ $J T$ holds for a regular simplex. It is easy to verify that the John ellipsoid of a regular simplex is its inscribed ball.

Without loss of generality, we may assume that T is a regular simplex whose inscribed ball is B_{n}. Let u_{1}, \ldots, u_{n+1} denote the outer unit normals and S the area of the face of T. By (6), we have for each $x \in \mathbb{R}^{n}$,

$$
\|x\|^{2}=\sum_{i=1}^{n+1} c_{i}\left(x \cdot u_{i}\right)^{2}, \quad \sum_{i=1}^{n+1} c_{i}=n .
$$

Take u_{i} for x, and notice that $\left(u_{i} \cdot u_{j}\right)=-\frac{1}{n}$ for $i \neq j$.

It follows that

$$
1=\sum_{j=1}^{n+1} c_{j}\left(u_{j} \cdot u_{i}\right)^{2}=\frac{1}{n^{2}}\left(\sum_{j=1}^{n+1} c_{j}-c_{i}\right)+c_{i}
$$

Hence

$$
c_{i}=\frac{n}{n+1} .
$$

By (2), we have

$$
\begin{aligned}
\rho_{\Gamma_{-2} T}^{-2}(u) & =\frac{1}{V(T)} \sum_{i=1}^{n+1}\left(u \cdot u_{i}\right)^{2} S \\
& =\frac{n}{n+1} \sum_{i=1}^{n+1}\left(u \cdot u_{i}\right)^{2} \\
& =\|u\|^{2}=1
\end{aligned}
$$

Hence $\Gamma_{-2} T=B_{n}$, the proof of lemma 4 is completed.
Now we give the proofs of theorems.
Proof of Theorem 1. We first prove the left inclusion. Let

$$
V\left(\Gamma_{-2} K\right)=\lambda V(K)
$$

From Theorem A, we have

$$
\begin{equation*}
\frac{\omega_{n}}{2^{n}} \leq \lambda \leq 1 \tag{8}
\end{equation*}
$$

Now put

$$
E=\lambda^{-\frac{1}{n}} \Gamma_{-2} K
$$

we obtain

$$
V(E)=V\left(\lambda^{-\frac{1}{n}} \Gamma_{-2} K\right)=\lambda^{-1} V\left(\Gamma_{-2} K\right)=V(K)
$$

Since $\lambda^{-\frac{1}{n}} \geq 1$, we have

$$
\Gamma_{-2} E=\Gamma_{-2}\left(\lambda^{-\frac{1}{n}} \Gamma_{-2} K\right)=\lambda^{-\frac{1}{n}} \Gamma_{-2} K \supseteq \Gamma_{-2} K
$$

Now we prove the right inclusion of Theorem 1.
Since $\Gamma_{-2} K$ is an ellipsoid, there exists a $\phi \in S L(n)$ such that $\phi\left(\Gamma_{-2} K\right)$ is a ball, that is,

$$
\begin{equation*}
\phi\left(\Gamma_{-2} K\right)=\left(\frac{V\left(\Gamma_{-2} K\right)}{\omega_{n}}\right)^{\frac{1}{n}} B_{n} \tag{9}
\end{equation*}
$$

Let C be the cube centered at the origin with the side length $V(K)^{\frac{1}{n}}$, so $V(C)=$ $V(K)$. By Lemma 2, we have

$$
\begin{equation*}
\Gamma_{-2} C=J C=\frac{1}{2} V(K)^{\frac{1}{n}} B_{n} \tag{10}
\end{equation*}
$$

From (9),(10) and the left-hand side inequality of Theorem A, we have

$$
\phi\left(\Gamma_{-2} K\right) \supseteq \Gamma_{-2} C,
$$

that is,

$$
\phi\left(\Gamma_{-2} K\right) \supseteq \phi\left[\Gamma_{-2}\left(\phi^{-1} C\right)\right] .
$$

It follows that

$$
\Gamma_{-2} K \supseteq \Gamma_{-2}\left(\phi^{-1} C\right)
$$

Let $P=\phi^{-1} C$, then

$$
\Gamma_{-2} K \supseteq \Gamma_{-2}(P) \quad \text { and } \quad V(K)=V(C)=V(P)
$$

The proof of Theorem 1 is completed.
Proof of Theorem 2. As in the proof of Theorem 1, there exists a $\phi \in S L(n)$ such that $\phi\left(\Gamma_{-2} K\right)$ is a ball, that is

$$
\begin{equation*}
\phi\left(\Gamma_{-2} K\right)=\left(\frac{V\left(\Gamma_{-2} K\right)}{\omega_{n}}\right)^{\frac{1}{n}} B_{n} \tag{11}
\end{equation*}
$$

Construct a regular simplex T^{\prime} with inscribed ball radius $r=\left(\frac{n!V(K)}{n^{n / 2}(n+1)^{(n+1) / 2}}\right)^{\frac{1}{n}}$.
By Lemma 4, we know $V\left(T^{\prime}\right)=V(K)$.
By Lemma 3, we have

$$
\begin{equation*}
\Gamma_{-2} T=J T^{\prime}=r B_{n}=\left(\frac{n!V(K)}{n^{n / 2}(n+1)^{(n+1) / 2}}\right)^{\frac{1}{n}} B_{n} \tag{12}
\end{equation*}
$$

According to the Theorem B, from (11) and (12), we infer that

$$
\phi\left(\Gamma_{-2} K\right) \supseteq \Gamma_{-2} T^{\prime}
$$

that is,

$$
\Gamma_{-2} K \supseteq \Gamma_{-2}\left(\phi^{-1} T^{\prime}\right)
$$

Let $T=\phi^{-1} T^{\prime}$, then

$$
\Gamma_{-2} K \supseteq \Gamma_{-2}(T) \quad \text { and } \quad V(K)=V\left(T^{\prime}\right)=V(T)
$$

The proof of Theorem 2 is completed.
The idea of this paper origins from Schneider's excellent survey [12] and Jonasson [3].

References

[1] R. J. Gardner, Geometric Tomography. Cambridge Univ. Press, Cambridge, 1995.
[2] F. John, Extremun problems with inequalities as subsidiary conditions, in Studies and essays presented to R. Courant on his 6oth birthday (Jan. 8, 1948), Interscience, New York, 1948, 187-204.
[3] J. Jonasson, Optimization of shape in continuum percolation, Ann. Probab. 29(2001), 624635.
[4] K. Leichtwei β, Affine Geometry of Convex Bodies. J. A. Barth, Heidelberg, 1998.
[5] J. Lindenstrauss and V. D. Milman, Local theory of normal spaces and convexity, Handbook of Convex Geometry (P.M. Gruber and J.M. Wills, eds.), North-Holland, Amsterdam, 1993, 1149-1220.
[6] M. Ludwig, Ellipsoids and matrix-valued valuations, Duke. Math. J. 119(2003), 159-188.
[7] E. Lutwak, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem, J. Differential Geom. 38(1993), 131-150.
[8] E. Lutwak, The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas, Adv. in Math. 118(1996), 244-294.
[9] E. Lutwak, D. Yang and G. Y. Zhang(2000), A new ellipsoid associated with convex bodies, Duke. Math. J. 104(2000), 375-390.
[10] V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normal n-dimensional space, Geometric Aspect of Functional Analysis, Springer Lecture Note in Math. 1376(1989), 64-104.
[11] R. Schneider, Convex Bodies: The Brunn-Minkowski theory. Cambridge Univ. Press, Cambridge, 1993.
[12] R. Schneider, Simplices, Program "Asymptotic Theory of the Geometry of Finite Dimensional Spaces", Schrödinger Institute, Vienna, July 2005.
[13] L. Fejes Tóth, Regulaere Figuren, Akademiai Kiado, Budapest, 1965.

School of Mathematics and Computer Science, Nanjing Normal University, 210097, Nanjing, P.R. China.

E-mail: yuanjun@graduate.shu.edu.cn
College of Science, Beijing Forestry University, Beijing, 100083, P.R. China.
E-mail: silin@bjfu.edu.cn
Department of Mathematics, Shanghai University, Shanghai, 200444, P.R. China.
E-mail: gleng@staff.shu.edu.cn

[^0]: Received March 2, 2006; revised November 20, 2006. 2000 Mathematics Subject Classification. 52A40, 52A20.
 Key words and phrases. Lengendre ellipsoid, John ellipsoid, new ellipsoid, simplex.
 Supported in part by the National Natural Science Foundation of China. (Grant NO.10671117).

