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AN INTERIOR INVERSE PROBLEM FOR STURM-LIOUVILLE

OPERATORS WITH EIGENPARAMETER DEPENDENT

BOUNDARY CONDITIONS

YU PING WANG

Abstract. In this paper, we consider the inverse problem for Sturm-Liouville operators

with eigenparameter dependent boundary conditions and show that the potential q(x)

and coefficients
a1λ+b1

c1λ+d1
and

a2λ+b2

c2λ+d2
of the eigenparameter dependent boundary condi-

tions can be uniquely determined by a set of values of eigenfunctions at some interior

point and parts of two spectra.

1. Introduction

In 1929, Ambartsumyan [1] firstly considered the inverse problem for Sturm-Liouville

problems. Since 1929, one of this kind of inverse problems was discussed by many authors

(see [1], [7]-[18]). Mochizuki and Trooshin [12] studied the inverse problem for interior spec-

tral data of Sturm-Liouville operators on the finite interval [0,1] and showed that a set of val-

ues of eigenfunctions at some interior point and parts of two spectra can uniquely determine

the potential q(x). Yang (C. F.) and Yang (X. P.) [13] discussed the inverse problem for Sturm-

Liouville operators with discontinuous boundary conditions and proved that the spectral data

of parts of two spectra and some information on eigenfunctions at some interior point of the

interval (0,π) is sufficient to determine the potential q(x).

Consider the following Sturm-Liouville operator L satisfying (1.1)-(1.3)

Ly =−y ′′+q(x)y =λy, (1.1)

with boundary conditions

(a1λ+b1)y(0,λ)− (c1λ+d1)y ′(0,λ) = 0 (1.2)

or

y ′(0,λ) = h y(0,λ) or y(0,λ) = 0, (1.2′)

2000 Mathematics Subject Classification. 34A55; 34B24; 47E05.
Key words and phrases. Inverse problem, Sturm-Liouville operator, spectrum, eigenparameter bound-

ary condition.

395

http://dx.doi.org/10.5556/j.tkjm.42.2011.395-403


396 YU PING WANG

and

(a2λ+b2)y(π,λ)− (c2λ+d2)y ′(π,λ)= 0. (1.3)

where ak ,bk ,ck ,dk∈ R, (−1)kδk = ak dk −bk ck < 0(k = 1,2), q(x) is a real-valued function and

in L2[0,π].

Sturm-Liouville problem with eigenparameter dependent boundary conditions is inter-

esting in Engineering, Physics, Mathematics, etc (see [2]-[10]). In 1977, Fulton [6] studied

the Sturm-Liouville problem (1.1), (1.2′), (1.3) and obtained the spectral theory of this kind of

problems. Binding, Browne and Seddighi [7] considered the Sturm-Liouville problem (1.1)-

(1.3) and got the oscillation, comparison results and asymptotic estimates. Using nodal points

as spectral data, Browne and Sleeman [8] discussed the inverse nodal problem for the bound-

ary value problem (1.1), (1.2′), (1.3) and showed that a dense set of nodal points of eigenfunc-

tions for the boundary value problem (1.1), (1.2′), (1.3) is sufficient to determine the potential

q(x) and coefficient h of the boundary condition. Guliyev [9] found the regularized trace for-

mula for the Sturm-Liouville problem (1.1)-(1.3). Wang, Yang and Huang [10] discussed the

half inverse problem for the Sturm-Liouville problem (1.1)-(1.3) and showed that if q(x) is

prescribed on [π/2,π] and q− q̃ ∈W 6
2 [0,π], then the potential q(x) on the whole interval [0,π]

and coefficient a1λ+b1

c1λ+d1
of the eigenparameter dependent boundary condition are uniquely de-

termined by one spectrum.

In this paper, using Mochizuki and Trooshin’s method, we discuss the interior inverse

problem for Sturm-Liouville problem (1.1)-(1.3) and show that some information on eigen-

functions at some interior point of the interval (0,π) and parts of two spectra are sufficient

to determine the potential q(x) and coefficients
a1λ+b1

c1λ+d1
and

a2λ+b2

c2λ+d2
of the eigenparameter de-

pendent boundary conditions.

The following two lemmas are important for us to show the main theorems.

Lemma 1.1. ([7, Theorem 4.2], [9, Theorem]) Let λn(n = 0,1,2, . . .) be spectrum of the Sturm-

Liouville problem (1.1)−(1.3), then λn is real and simple and satisfies

λ0 <λ1 <λ2 < ·· ·→+∞,
p
λn = n(1+O( 1

n )).
(1.4)

Suppose that ϕ(x),θ(x) are two fundamental solutions of the equation (1.1) satisfying

ϕ(0) = 1,ϕ′(0) = 0,θ(0) = 0 and θ′(0) = 1,

respectively, then solution of the equation (1.1) satisfying (1.2) is

y(x,λ) = (c1λ+d1)ϕ(x)+ (a1λ+b1)θ(x).

By transformation, we have
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Lemma 1.2. Solution of the equation (1.1) satisfying (1.2) is

y(x,λ) = (c1λ+d1)[cos
p
λx +

∫x

0
A(x, t )cos

p
λt d t ]

+(a1λ+b1)[
sin

p
λx

p
λ

+
1
p
λ

∫x

0
B (x, t )sin

p
λt d t ], (1.5)

where the kernel A(x, t ) satisfies

∂2 A(x, t )

∂x2
−q(x)A(x, t ) =

∂2 A(x, t )

∂t 2
,

where q(x) = 2 d
dx A(x, x), A(0,0) = h, ∂A(x,t )

∂t |t=0 = 0. The kernel B (x, t ) satisfies

∂2B (x, t )

∂x2
−q(x)B (x, t )=

∂2B (x, t )

∂t 2
,

where q(x) = 2 d
dx B (x, x),B (x,0)= 0.

2. Main results

Consider another Sturm-Liouville operator L̃

L̃ y =−y ′′+ q̃(x)y =λy, (2.1)

with boundary conditions

(ã1λ+ b̃1)y(0,λ)− (c̃1λ+ d̃1)y ′(0,λ) = 0, (2.2)

(ã2λ+ b̃2)y(π,λ)− (c̃2λ+ d̃2)y ′(π,λ) = 0, (2.3)

where ãk , b̃k , c̃k , d̃k ,∈ R, (−1)k δ̃k = ãk d̃k − b̃k c̃k < 0(k = 1,2), q̃(x) is a real-valued function in

L2[0,π].

By virtue of [10], we obtain the following Lemma 2.1, which plays an important role in

the proof of Theorem 2.2.

Lemma 2.1. ([10, Theorem]) Let {λn}(n ≥ 0) be real and simple spectrum of the Sturm-Liouville

problem (1.1)-(1.3) and {λ̃n}(n ≥ 0) be real and simple spectrum of the Sturm-Liouville problem

(2.1), (2.2), (1.3), respectively and q−q̃ ∈W 6
2 [0,π]. If λn = λ̃n(n ≥ 0) and q(x)= q̃(x) on [π/2,π],

then

q(x)= q̃(x) a.e. on [0,π],

and
ã1λ+ b̃1

c̃1λ+ d̃1

=
a1λ+b1

c1λ+d1
, ∀λ ∈ C,

where q(x), q̃(x) are real-valued functions in L2[0,π].
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Next, we present the main results in this paper. When b = π/2, we get the following

uniqueness Theorem 2.2.

Theorem 2.2. Let {λn } and {λ̃n} be a spectrum of both Sturm-Liouville problem (1.1)-(1.3) and

Sturm-Liouville problem (2.1)-(2.3), respectively and q−q̃ ∈W 6
2 [0,π]. If for any n (n = 0,1,2, . . .)

λn = λ̃n and
y ′

n(π/2,λn )

yn(π/2,λn )
=

ỹ ′
n(π/2, λ̃n )

ỹn(π/2, λ̃n)
, (2.4)

then

q(x)= q̃(x) a.e. on [0,π]

and
ã1λ+ b̃1

c̃1λ+ d̃1

=
a1λ+b1

c1λ+d1
and

ã2λ+ b̃2

c̃2λ+ d̃2

=
a2λ+b2

c2λ+d2
(∀λ ∈ C),

where yn(x,λn) is an eigenfunction of λn and ỹn(x, λ̃n) is an eigenfunction of λ̃n .

When b 6=π/2, the uniqueness theorem of q(x) can be obtained from a part of the second

spectrum and some information on eigenfunctions at the point b ∈ (0,π).

Let m(n) be a subsequence of natural numbers such that

m(n)=
n

σ
(1+εn ), 0 <σ≤π, εn → 0. (2.5)

Lemma 2.3. Let m(n) be a subsequence of natural numbers satisfying (2.5), b ∈ (0,π/2) be such

that σ> 2b
π and q − q̃ ∈W 6

2 [0,π]. If for any n(n = 0,1,2, . . .),

λm(n) = λ̃m(n) and
y ′

m(n)(b,λm(n))

ym(n)(b,λm(n))
=

ỹ ′
m(n)(b, λ̃m(n))

ỹm(n)(b, λ̃m(n))
, (2.6)

then

q(x)= q̃(x) a.e. on [0,b] and
ã1λ+ b̃1

c̃1λ+ d̃1

=
a1λ+b1

c1λ+d1
(∀λ ∈ C).

Let l (n) and r (n) be a subsequence of natural numbers such that

l (n) =
n

σ1
(1+ε1,n), 0 <σ1 ≤π, ε1,n → 0, (2.7)

r (n) =
n

σ2
(1+ε2,n), 0 <σ2 ≤π, ε2,n → 0 (2.8)

and let µn be the eigenvalues of the problem (1.1),(1.2) and (2.9) and µ̃n be the eigenvalues of

the problem (2.1), (2.2) and (2.9).

(a3λ+b3)y(π,λ)− (c3λ+d3)y ′(π,λ)= 0, (2.9)

where δ3 = a3d3 −b3c3 < 0,δ3 6= δ2.

Using Mochizuki and Trooshin’s method, from Lemma 2.3 and Theorem 2.2, we will prove

that the following Theorem 2.4 holds.
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Theorem 2.4. Let l (n) and r (n) be subsequence of natural numbers satisfying (2.7) and (2.8),

respectively, and b ∈ (π/2,π) be such that σ1 > 2b
π −1, σ2 > 2− 2b

π and q − q̃ ∈ W 6
2 [0,π]. If for

any n (n = 0,1,2, . . .),

λn = λ̃n , µl(n) = µ̃l(n) and
y ′

r (n)
(b,λr (n))

yr (n)(b,λr (n))
=

ỹ ′
r (n)(b, λ̃r (n))

ỹr (n)(b, λ̃r (n))
,

then

q(x) = q̃(x) a.e. on [0,π]

and
ã1λ+ b̃1

c̃1λ+ d̃1

=
a1λ+b1

c1λ+d1
and

ã2λ+ b̃2

c̃2λ+ d̃2

=
a2λ+b2

c2λ+d2
(∀λ ∈ C).

3. Proofs of main results

In this section, we present the proofs of main results in this paper.

Proof of Theorem 2.2. We give the proof of Theorem 2.2 by two steps.

Step 1: From the assumptions of Theorem 2.2, similar to the proof of Lemma 2.1, we have

q(x) = q̃(x) a.e. on [0,π/2] and
ã1λ+ b̃1

c̃1λ+ d̃1

=
a1λ+b1

c1λ+d1
(∀λ ∈ C). (3.1)

Step 2: Consider the following supplementary problem

L1 y =−y ′′+q1(x)y =λy,

q1(x) = q(π−x), x ∈ [0,π],
(3.2)

with the boundary conditions

(a2λ+b2)y(0,λ)− (c2λ+d2)y ′(0,λ) = 0, (3.3)

(a1λ+b1)y(π,λ)− (c1λ+d1)y ′(π,λ) = 0. (3.4)

and
L̃1 y =−y ′′+ q̃1(x)y =λy,

q̃1(x) = q̃(π−x), x ∈ [0,π],
(3.5)

with the boundary conditions

(ã2λ+ b̃2)y(0,λ)− (c̃2λ+ d̃2)y ′(0,λ) = 0, (3.6)

(ã1λ+ b̃1)y(π,λ)− (c̃1λ+ d̃1)y ′(π,λ) = 0. (3.7)
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Repeating the Step 1 for the supplementary problem, we get

q(x)= q̃(x) a.e. on [π/2,π] and
ã2λ+ b̃2

c̃2λ+ d̃2

=
a2λ+b2

c2λ+d2
(∀λ ∈ C). (3.8)

By virtue of (3.1) and (3.8), this yields

q(x) = q̃(x) a.e. on [0,π]

and
ã1λ+ b̃1

c̃1λ+ d̃1

=
a1λ+b1

c1λ+d1
and

ã2λ+ b̃2

c̃2λ+ d̃2

=
a2λ+b2

c2λ+d2
(∀λ ∈ C).

Therefore, Theorem 2.2 is proved.

Next, we show that Lemma 2.3 holds.

Proof of Lemma 2.3. Multiplying (2.1) by y , (1.1) by ỹ , subtracting and integrating from 0 to

b, we obtain

G(λ) :=
∫b

0 Q(x)y(x,λ)ỹ(x,λ)d x

= [ỹ(x,λ)y ′(x,λ)− y(x,λ)ỹ ′(x,λ)]|b0 .
(3.9)

From (1.2), (2.2) and the assumption

y ′
m(n)(b,λm(n))

ym(n)(b,λm(n))
=

ỹ ′
m(n)(b, λ̃m(n))

ỹm(n)(b, λ̃m(n))
,

we get

G(λm(n))= 0, n ∈ N .

Next, we will show G(λ) = 0, ∀λ ∈ C.

From (3.9), we see that the entire function G(λ) is a function of exponential type ≤ 2b and

we have

|G(λ)| ≤ Me2br |sinθ|, (3.10)

where M is a positive constant, λ= r e iθ.

Define the indicator of function G(λ) by

h(θ)= limsup
λ→+∞

ln |G(reiθ)|
r . (3.11)

Since |Imλ| = r |sinθ|, θ = ar gλ, from (3.10) and (3.11), we get

h(θ)≤ 2b|sinθ|. (3.12)

Let n(r ) be the number of zeros of G(λ) in the disk |λ| ≤ r . From the assumption of Lemma

2.3 and the asymptotic form (1.4) of the eigenvalues λn , we obtain

n(r )≥ 2
∑

n
σ

[1+O(1/n)]<r

1 ≥ 2σr [1+ε(r )],r →∞, (3.13)
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where ε(r ) → 0,r →∞, [x] is the integer part of x.

For the case σ> 2b
π ,

liminf
n→∞

n(r )

r
≥ 2σ>

4b

π
≥

1

2π

∫2π

0
h(θ)dθ. (3.14)

According to [19], for any entire function G(λ) of exponential type, not identically zero,

then

liminf
n→∞

n(r )

r
≤

1

2π

∫2π

0
h(θ)dθ. (3.15)

The inequalities (3.14) and (3.15) imply that G(λ) = 0, ∀λ ∈ C.

Similar to the proof of the Lemma 2.1, we have

q(x) = q̃(x) a.e. on [0,b] and
ã1λ+ b̃1

c̃1λ+ d̃1

=
a1λ+b1

c1λ+d1
.

This completes the proof of Lemma 2.3.

Now, we prove that Theorem 2.4 is valid.

Proof of Theorem 2.4. From

λr (n) = λ̃r (n), and
y ′

r (n)(b,λr (n))

yr (n)(b,λr (n))
=

ỹ ′
r (n)(b, λ̃r (n))

ỹr (n)(b, λ̃r (n))
,

where r (n) satisfies (2.8) and σ2 > 2− 2b
π

, according to Lemma 2.3, we get

q(x) = q̃(x), a.e. on [b,π] and
ã2λ+ b̃2

c̃2λ+ d̃2

=
a2λ+b2

c2λ+d2
(∀λ ∈ C) (3.16)

Let yn(x,λn) and ỹn(x,λn) be the eigenfunctions of Sturm-Liouville problems (1.1)−(1.3)

and (2.1)−(2.3), corresponding to eigenvalueλn , respectively. Since the eigenfunctions yn (x,λn)

and ỹn(x,λn) satisfy the same boundary condition at π and q̃(x) = q(x), a.e. on [b,π], we ob-

tain

yn(x,λn) =αn ỹn(x,λn), x ∈ [b,π], n ∈ N, (3.17)

where αn are constants.

From (3.9), (3.17), (1.2) and (2.2), we obtain

G(λn) = 0, n ∈ N

and

G(µl(n)) = 0, n ∈ N,

where λn and µl(n) satisfy (1.4).
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Let us count the number of λn and µl(n) located inside the disc of radius r (sufficiently

large r ). We see that there are 1+2r [1+o(1)] of λn and 1+2rσ1[1+o(1)] of µl(n) located inside

the disc of radius r . Therefore

n(r )= 2+2r [1+σ1 +o(1)].

Hence

lim
n→∞

n(r )

r
= 2(σ1 +1).

Considering the condition σ1 > 2b
π −1, we get

lim
n→∞

n(r )

r
≥ 2σ1 >

4b

π
≥

1

2π

∫2π

0
h(θ)dθ. (3.18)

According to [19], for any entire function G(λ) of exponential type, not identically zero, we see

the following inequality (3.19) holds.

liminf
n→∞

n(r )

r
≤

1

2π

∫2π

0
h(θ)dθ. (3.19)

The inequalities (3.18) and (3.19) imply that

G(λ) = 0, ∀λ ∈ C. (3.20)

From (3.20), we can show that

q(x)= q̃(x) a.e. on [0,b] and
ã1λ+ b̃1

c̃1λ+ d̃1

=
a1λ+b1

c1λ+d1
. (3.21)

From (3.15) and (3.21), we have

q(x)= q̃(x) a.e. on [0,π]

and
ã1λ+ b̃1

c̃1λ+ d̃1

=
a1λ+b1

c1λ+d1
and

ã2λ+ b̃2

c̃2λ+ d̃2

=
a2λ+b2

c2λ+d2
(∀λ ∈ C).

Hence, the proof of Theorem 2.4 is completed.
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