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ALGEBRAIC ELEMENTARY OPERATORS ON B(E)

GYAN PRAKASH TRIPATHI

Abstract. In this paper we have obtained a necessary and sufficient condition for gen-

eralized derivations to be algebraic on B(E ). Further some results on algebraicness of

elementary operators are given.

1. Introduction

Let B (E ) be the algebra of all bounded linear operators on a Banach space E and A =

(A1, A2, . . . , An) and B = (B1,B2, . . . ,Bn) be n-tuples of elements in B (E ). The elemenatary op-

erator R A,B associated with A and B is the operator on B (E ) into itself defined by

R A,B (X ) = A1X B1 + A2 X B2 +·· ·+ An X Bn for all X ∈ B (E ).

We say A = (A1, A2, . . . , An) is commuting family if Ai A j = A j Ai for each 1 ≤ j ≤ n. For A

and B in B (E ), by MA,B we denote elementary multiplication operator defined by MA,B (X ) =

AX B for all X ∈ B (E ). This can also be seen as elementary operator of length one. For A,B ∈

B (E ), inner derivation δA on B (E ) into itself is defined by δA(X ) = AX − X A and generalized

derivation δA,B on B (E ) into itself is defined by δA,B (X ) = AX − X B for all X ∈ B (E ). It is

easy to see that generalized derivation and inner derivation are particular cases of elementary

operators.

Definition 1.1. Let A be an associative algebra with identity. An elementary operator E : A →

A is called algebraic if p(E )= 0 for some nonzero polynomial p.

Algebraic derivations are well-studied objects in the field of pure algebra. The first gen-

eral result on algebraic elementary operators was obtained by S.A. Amitsure [1] who proved

that an algebraic derivation on a simple ring of characteristic zero must be inner. Miers and

Philips [8] have studied algebraic derivation in the setting of C∗-algebra. I. N. Herstein [5] has

given the sufficient condition for an inner derivation to be algebraic on an associative algebra.
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Sanjay Kumar [9] has obtained a necessary and sufficient condition for an inner derivation to

be algebraic on a separable Hilbert space by using spectral properties of inner derivation. For

further work on this topic see [2, 3, 6, 7, 8] and references therein.

Theorem 1.1 ([5]). If a ∈ A is algebraic then δA is algebraic.

Theorem 1.2 ([9]). Let T be a bounded linear operator on a separable Hilbert space H. Then

δT is algebraic if and only if T is algebraic.

2. Main results

In this section we shall give a necessary condition for an elementary operator to be alge-

braic, and then a necessary and sufficient condition for a generalized derivation to be alge-

braic.

First we shall give some simple results about algebraic operators.

Proposition 2.1. Let B (E ) be the algebra of all bounded linear operators on a Banach space

E.

(a) If T is algebraic then T 2 is algebraic.

(b) If T1 and T2 are algebraic and T1T2 = T2T1 then

(i) T1 +T2 is algebraic.

(ii) T1T2 is algebraic.

(c) If T is algebraic then T n is algebraic.

Proof. (a) Suppose T is algebraic then p(T )= 0 for some nonzero polynomial p i.e.
k
∑

i=0
ai T i =

0. Let degree of p be odd i.e. k = 2m +1.

Now
2m+1
∑

i=0
ai T i = 0 i.e. a0I +a1T +a2T 2 +·· ·+a2m+1T 2m+1 = 0

=⇒ (a0I +a2T 2 +a4T 4 +·· ·+a2mT 2m)+ (a1T +a3T 3 +·· ·+a2m+1T 2m+1)= 0

=⇒ (a0I +a2T 2 +a4T 4 +·· ·+a2mT 2m) =−(a1T +a3T 3 +·· ·+a2m+1T 2m+1).

It is easy to see by squaring both sides we get a nonzero polynomial q such that q(T 2) = 0.

If n = 2m, result follows similarly.

(b)(i) Let T1 and T2 be algebraic of degree m and n respectively. Suppose p(T1) =
m
∑

i=0
ai T i

1 = 0

and q(T2) =
n
∑

i=0
bi T i

2 = 0.

Now p(T1) =
m
∑

i=0
ai T i

1 = 0

=⇒ T m
1 =−1/am(a0I +a1T +a2T 2 +·· ·+am−1T m−1

1 ).
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Thus any power power of T1 can be expressed as a linear combination of I, T1,T 2
1 , . . . ,

T m−1
1 . Similarly any power of T2 can be expressed as a linear combination of I, T2,T 2

2 , . . . ,

T n−1
2 . Now

(T1 +T2)k
=

k
∑

i=0

(

k

i

)

T k−i
1 T i

2 (∵ T1T2 =T2T1) =
m−1
∑

p=0

n−1
∑

q=0

apq T
p

1 T
q

2 ,

where apq are suitable constants.

Suppose r is a polynomial of degree mn i.e.r (x) =
mn
∑

k=0
ck xk .

Now
mn
∑

k=0

ck (T1 +T2)k
=

mn
∑

k=0

ck

m−1
∑

p=0

n−1
∑

q=0

a(k)
pq T

p

1 T
q

2

here a(k)
pq are suitable constants for 0 ≤ k ≤ mn.

mn
∑

k=0

ck (T1 +T2)k
=

m−1
∑

p=0

n−1
∑

q=0

(
mn
∑

k=0

a(k)
pq ck )T

p
1 T

q
2

Suppose
mn
∑

k=0
a(k)

pq ck = 0 for each 0 ≤ p ≤ m −1 and 0 ≤ q ≤n −1.

Since number of homogeneous equations is mn and number of constants is mn +1, which

are treated as variable here. It follows that there is a nonzero solution in ck ’s. Therefore there

exist a polynomial r such that r (T1 +T2) = 0.

(ii) Since T1 ±T2 is algebraic, (T1 ±T2)2 is algebraic by (a). Therefore T1T2 = 1/4((T1 +T2)2 +

(T1 −T2)2) is algebraic.

(c) By using result b(ii), it is easy to see that T n is algebraic if T is algebraic. ���

Remark 2.1. It is easy to see that if T1T2 6= T2T1 then T1 +T2 and T1T2 may not be algebraic.

Theorem 2.1. Let A = (A1, A2, . . . , An) and B = (B1,B2, . . . ,Bn) be commuting families of ele-

ments in B (E ). Then the elementary operator R A,B =
n
∑

i=1
Ai X Bi is algebraic if Ai and Bi are

algebraic for each 1 ≤ i ≤n.

Proof. First we shall prove it for n = 1.

Let R A1,B1
(X ) = A1 X B1, where A1 and B1 are algebraic. Suppose p(A1) =

m
∑

i=0
ai Ai

1 = 0,

am 6= 0. Then

Am
1 =−

1

a m
(a0I +a1 A1 +a2 A2

1 +·· ·+am−1 Am−1
1 ).

It is easy to see that every power of A1 can be expressed as a linear combination of I, A1, A2
1,. . . ,

Am−1
1 . Similarly, suppose q(B1) =

n
∑

i=0
bi B i

1 = 0, bn 6= 0. Then B n
1 = −1/bn (b0I +b1B1 +b2B 2

1 +
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· · · +bn−1B n−1
1 ). Therefore, every power of B1 can be expressed as a linear combination of I,

B1, B 2
1 ,. . . , B n−1

1 . Now

Rk(X ) = Ak
1 X B k

1

= (
m
∑

i=1

ai Ai
1)X (

n
∑

j=1

b j B
j
1 )

=

m−1
∑

i=0

n−1
∑

j=0

ri j Ai
1 X B

j
1 ,

where ri j are suitable constants for 0≤ i ≤ m −1, 0 ≤ j ≤n −1.

Let r (x)=
mn
∑

i=0
ck xk , then r (R)=

mn
∑

i=0
ck Rk . Now

r (R)(X ) =
mn
∑

k=0

ck

m−1
∑

i=0

n−1
∑

j=0

r (k)
i j

Ai
1 X B

j

1

=

m−1
∑

i=0

n−1
∑

j=0

(
mn
∑

k=0

r (k)
i j

ck )Ai
1 X B

j

1 ,

where r (k)
i j

are suitable constants for 0 ≤ k ≤ mn.

Now assume
mn
∑

k=0
r (k)

i j
ck for each 0 ≤ i ≤ m −1 and 0 ≤ j ≤ n −1. Thus we have a system

of homogeneous equation with mn equations and mn +1 constants ck which are treated as

variables. Therefore there exists a nonzero solution in ck ’s and hence r (R)= 0.

Now suppose statement is true for n = m.

For n =m +1, let

R(X ) =
m+1
∑

i=1

Ai X Bi

=

m
∑

i=1

Ai X Bi + Am+1 X Bm+1

= R ′(X )+MAm+1,Bm+1
,

here R ′(X ) =
m
∑

i=1
Ai X Bi . But R ′MAm+1.Bm+1

= MAm+1,Bm+1
R ′ because A and B one commut-

ing families. Therefore by Theorem 2.1 b(i) there exists a nonzero polynomial r such

that r (R)= 0. ���

Corollary 2.1. (i) If R is an algebraic elementary operator then Rn is algebraic.

(ii) If R1 and R2 are algebraic with R1R2 = R2R1 then R1R2 is algebraic.

Now we shall state a formula for nt h iterate of a generalized derivation which can be

proved easily by using method of induction.



ALGEBRAIC ELEMENTARY OPERATORS ON B(E) 467

Lemma 2.1. Let δA,B be generalized derivation on B (E ) into itself then

δ
n
A,B (X ) =

n
∑

k=0

((−1)n

(

n

k

)

)An−k X B k .

Theorem 2.2. The generalized derivation δA,B is algebraic if and only if A and B are algebraic.

Proof. Let A and B are algebraic, then
n
∑

k=0
((−1)n

(n
k

)

)An−k X B k is algebraic by Theorem 2.1

because generalized derivation is a particular case of elementary operator of length 2.

Conversely, suppose δA,B is algebraic i.e. there exists a non-zero polynomial p of degree n

such that p(δA,B ) =
n
∑

k=0
ckδ

k
A,B = 0. We have δk

A,B (X ) =
n
∑

i=0
((−1)i

(k
i

)

)Ak−i X B i . By consequence

of Hahn-Banach theorem there exists a linear functional f such that f (x) 6= 0 for each nonzero

x in E . Let f ⊗x be a rank one operator on E defined by ( f ⊗x)(y) = f (y)x, x ∈ E .

Now

δ
k
A,B ( f ⊗x) =

k
∑

i=0

(

(−1)i

(

k

i

)

)

Ak−i ( f ⊗x)B k ,

δ
k
A,B ( f ⊗x)(x) =

k
∑

i=0

(

(−1)i

(

k

i

)

)

f (B i x)Ak−i x

and
n
∑

i=0

ckδ
k
A,B ( f ⊗x)(x) =

n
∑

i=0

ck

k
∑

i=0

(

(−1)i

(

k

i

)

)

( f (B i x)Ak−i x

=

n
∑

j=0

(b j A j )(x),

where b j =
n
∑

k= j
(−1)k

(k
j

)

ck f (B k− j x). In particular bn = (−1)n cn f (x) 6= 0.

Since
n
∑

k=0
ckδ

k
A,B (X ) = 0 for all X ∈ B (E ), it follows that

n
∑

j=0
b j A j = 0 i.e. A is algebraic.

Further since an operator T is algebraic if and only if its transpose T t is algebraic, it follows

that δA,B is algebraic if and only if δB,A is algebraic.Thus by using same method as above we

get B is algebraic. ���

Theorem 2.3. If the elementary operator MA,B is algebraic then either A or B is algebraic.

Proof. Let p(MA,B ) =
n
∑

k=0
ak M k

A,B = 0, an 6= 0. Then
n
∑

k=0
ak M k

A,B (X ) =
n
∑

k=0
ak Ak X B k = 0 for all

X ∈ B (E ).

Now suppose B is not algebraic. Therefore B is not nilpotent. Then there exists some

nonzero vector x ∈ E such thatB n(x) 6= 0. Now by using method similar as in proof of above

theorem we get A is algebraic. ���
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Example 2.1. Let B = I , then MA,B (X ) = AX B = AX . Now MA,B is algebraic if and only if A is

algebraic. If A is not algebraic then MA,B is not algebraic though B = I is algebraic. This shows

that converse of Theorem 2.1 is not true.
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