ALGEBRAIC ELEMENTARY OPERATORS ON $B(E)$

GYAN PRAKASH TRIPATHI

Abstract

In this paper we have obtained a necessary and sufficient condition for generalized derivations to be algebraic on $B(E)$. Further some results on algebraicness of elementary operators are given.

1. Introduction

Let $B(E)$ be the algebra of all bounded linear operators on a Banach space E and $A=$ $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ be n-tuples of elements in $B(E)$. The elemenatary operator $R_{A, B}$ associated with A and B is the operator on $B(E)$ into itself defined by

$$
R_{A, B}(X)=A_{1} X B_{1}+A_{2} X B_{2}+\cdots+A_{n} X B_{n} \quad \text { for all } X \in B(E) .
$$

We say $A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is commuting family if $A_{i} A_{j}=A_{j} A_{i}$ for each $1 \leq j \leq n$. For A and B in $B(E)$, by $M_{A, B}$ we denote elementary multiplication operator defined by $M_{A, B}(X)=$ $A X B$ for all $X \in B(E)$. This can also be seen as elementary operator of length one. For $A, B \in$ $B(E)$, inner derivation δ_{A} on $B(E)$ into itself is defined by $\delta_{A}(X)=A X-X A$ and generalized derivation $\delta_{A, B}$ on $B(E)$ into itself is defined by $\delta_{A, B}(X)=A X-X B$ for all $X \in B(E)$. It is easy to see that generalized derivation and inner derivation are particular cases of elementary operators.

Definition 1.1. Let A be an associative algebra with identity. An elementary operator $E: A \rightarrow$ A is called algebraic if $p(E)=0$ for some nonzero polynomial p .

Algebraic derivations are well-studied objects in the field of pure algebra. The first general result on algebraic elementary operators was obtained by S.A. Amitsure [1] who proved that an algebraic derivation on a simple ring of characteristic zero must be inner. Miers and Philips [8] have studied algebraic derivation in the setting of C^{*}-algebra. I. N. Herstein [5] has given the sufficient condition for an inner derivation to be algebraic on an associative algebra.

Key words and phrases. Elementary operators, algebraic operators. derivations, generalized derivations.

Sanjay Kumar [9] has obtained a necessary and sufficient condition for an inner derivation to be algebraic on a separable Hilbert space by using spectral properties of inner derivation. For further work on this topic see $[2,3,6,7,8]$ and references therein.

Theorem 1.1 ([5]). If $a \in A$ is algebraic then δ_{A} is algebraic.
Theorem 1.2 ([9]). Let T be a bounded linear operator on a separable Hilbert space H. Then δ_{T} is algebraic if and only if T is algebraic.

2. Main results

In this section we shall give a necessary condition for an elementary operator to be algebraic, and then a necessary and sufficient condition for a generalized derivation to be algebraic.

First we shall give some simple results about algebraic operators.
Proposition 2.1. Let $B(E)$ be the algebra of all bounded linear operators on a Banach space E.
(a) If T is algebraic then T^{2} is algebraic.
(b) If T_{1} and T_{2} are algebraic and $T_{1} T_{2}=T_{2} T_{1}$ then
(i) $T_{1}+T_{2}$ is algebraic.
(ii) $T_{1} T_{2}$ is algebraic.
(c) If T is algebraic then T^{n} is algebraic.

Proof. (a) Suppose T is algebraic then $p(T)=0$ for some nonzero polynomial p i.e. $\sum_{i=0}^{k} a_{i} T^{i}=$ 0 . Let degree of p be odd i.e. $k=2 m+1$.

$$
\begin{aligned}
& \text { Now } \sum_{i=0}^{2 m+1} a_{i} T^{i}=0 \text { i.e. } a_{0} I+a_{1} T+a_{2} T^{2}+\cdots+a_{2 m+1} T^{2 m+1}=0 \\
\Longrightarrow & \left(a_{0} I+a_{2} T^{2}+a_{4} T^{4}+\cdots+a_{2 m} T^{2 m}\right)+\left(a_{1} T+a_{3} T^{3}+\cdots+a_{2 m+1} T^{2 m+1}\right)=0 \\
\Longrightarrow & \left(a_{0} I+a_{2} T^{2}+a_{4} T^{4}+\cdots+a_{2 m} T^{2 m}\right)=-\left(a_{1} T+a_{3} T^{3}+\cdots+a_{2 m+1} T^{2 m+1}\right)
\end{aligned}
$$

It is easy to see by squaring both sides we get a nonzero polynomial q such that $q\left(T^{2}\right)=0$.
If $n=2 m$, result follows similarly.
(b)(i) Let T_{1} and T_{2} be algebraic of degree m and n respectively. Suppose $p\left(T_{1}\right)=\sum_{i=0}^{m} a_{i} T_{1}^{i}=0$ and $q\left(T_{2}\right)=\sum_{i=0}^{n} b_{i} T_{2}^{i}=0$.

Now $p\left(T_{1}\right)=\sum_{i=0}^{m} a_{i} T_{1}^{i}=0$
$\Longrightarrow T_{1}^{m}=-1 / a_{m}\left(a_{0} I+a_{1} T+a_{2} T^{2}+\cdots+a_{m-1} T_{1}^{m-1}\right)$.

Thus any power power of T_{1} can be expressed as a linear combination of I, T_{1}, T_{1}^{2}, \ldots, T_{1}^{m-1}. Similarly any power of T_{2} can be expressed as a linear combination of I, T_{2}, T_{2}^{2}, \ldots, T_{2}^{n-1}. Now

$$
\left(T_{1}+T_{2}\right)^{k}=\sum_{i=0}^{k}\binom{k}{i} T_{1}^{k-i} T_{2}^{i} \quad\left(\because T_{1} T_{2}=T_{2} T_{1}\right)=\sum_{p=0}^{m-1} \sum_{q=0}^{n-1} a_{p q} T_{1}^{p} T_{2}^{q},
$$

where $a_{p q}$ are suitable constants.
Suppose r is a polynomial of degree mn i.e. $r(x)=\sum_{k=0}^{m n} c_{k} x^{k}$.
Now

$$
\sum_{k=0}^{m n} c_{k}\left(T_{1}+T_{2}\right)^{k}=\sum_{k=0}^{m n} c_{k} \sum_{p=0}^{m-1} \sum_{q=0}^{n-1} a_{p q}^{(k)} T_{1}^{p} T_{2}^{q}
$$

here $a_{p q}^{(k)}$ are suitable constants for $0 \leq k \leq m n$.

$$
\sum_{k=0}^{m n} c_{k}\left(T_{1}+T_{2}\right)^{k}=\sum_{p=0}^{m-1} \sum_{q=0}^{n-1}\left(\sum_{k=0}^{m n} a_{p q}^{(k)} c_{k}\right) T_{1}^{p} T_{2}^{q}
$$

Suppose $\sum_{k=0}^{m n} a_{p q}^{(k)} c_{k}=0$ for each $0 \leq p \leq m-1$ and $0 \leq q \leq n-1$.
Since number of homogeneous equations is $m n$ and number of constants is $m n+1$, which are treated as variable here. It follows that there is a nonzero solution in c_{k} 's. Therefore there exist a polynomial r such that $r\left(T_{1}+T_{2}\right)=0$.
(ii) Since $T_{1} \pm T_{2}$ is algebraic, $\left(T_{1} \pm T_{2}\right)^{2}$ is algebraic by (a). Therefore $T_{1} T_{2}=1 / 4\left(\left(T_{1}+T_{2}\right)^{2}+\right.$ $\left.\left(T_{1}-T_{2}\right)^{2}\right)$ is algebraic.
(c) By using result $\mathrm{b}(\mathrm{ii})$, it is easy to see that T^{n} is algebraic if T is algebraic.

Remark 2.1. It is easy to see that if $T_{1} T_{2} \neq T_{2} T_{1}$ then $T_{1}+T_{2}$ and $T_{1} T_{2}$ may not be algebraic.
Theorem 2.1. Let $A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ and $B=\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ be commuting families of elements in $B(E)$. Then the elementary operator $R_{A, B}=\sum_{i=1}^{n} A_{i} X B_{i}$ is algebraic if A_{i} and B_{i} are algebraic for each $1 \leq i \leq n$.

Proof. First we shall prove it for $n=1$.
Let $R_{A_{1}, B_{1}}(X)=A_{1} X B_{1}$, where A_{1} and B_{1} are algebraic. Suppose $p\left(A_{1}\right)=\sum_{i=0}^{m} a_{i} A_{1}^{i}=0$, $a_{m} \neq 0$. Then

$$
A_{1}^{m}=-\frac{1}{a_{m}}\left(a_{0} I+a_{1} A_{1}+a_{2} A_{1}^{2}+\cdots+a_{m-1} A_{1}^{m-1}\right) .
$$

It is easy to see that every power of A_{1} can be expressed as a linear combination of $\mathrm{I}, A_{1}, A_{1}^{2}, \ldots$, A_{1}^{m-1}. Similarly, suppose $q\left(B_{1}\right)=\sum_{i=0}^{n} b_{i} B_{1}^{i}=0, b_{n} \neq 0$. Then $B_{1}^{n}=-1 / b_{n}\left(b_{0} I+b_{1} B_{1}+b_{2} B_{1}^{2}+\right.$
$\cdots+b_{n-1} B_{1}^{n-1}$). Therefore, every power of B_{1} can be expressed as a linear combination of I, $B_{1}, B_{1}^{2}, \ldots, B_{1}^{n-1}$. Now

$$
\begin{aligned}
R^{k}(X) & =A_{1}^{k} X B_{1}^{k} \\
& =\left(\sum_{i=1}^{m} a_{i} A_{1}^{i}\right) X\left(\sum_{j=1}^{n} b_{j} B_{1}^{j}\right) \\
& =\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} r_{i j} A_{1}^{i} X B_{1}^{j}
\end{aligned}
$$

where $r_{i j}$ are suitable constants for $0 \leq i \leq m-1,0 \leq j \leq n-1$.
Let $r(x)=\sum_{i=0}^{m n} c_{k} x^{k}$, then $r(R)=\sum_{i=0}^{m n} c_{k} R^{k}$. Now

$$
\begin{aligned}
r(R)(X) & =\sum_{k=0}^{m n} c_{k} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} r_{i j}^{(k)} A_{1}^{i} X B_{1}^{j} \\
& =\sum_{i=0}^{m-1} \sum_{j=0}^{n-1}\left(\sum_{k=0}^{m n} r_{i j}^{(k)} c_{k}\right) A_{1}^{i} X B_{1}^{j},
\end{aligned}
$$

where $r_{i j}^{(k)}$ are suitable constants for $0 \leq k \leq m n$.
Now assume $\sum_{k=0}^{m n} r_{i j}^{(k)} c_{k}$ for each $0 \leq i \leq m-1$ and $0 \leq j \leq n-1$. Thus we have a system of homogeneous equation with $m n$ equations and $m n+1$ constants c_{k} which are treated as variables. Therefore there exists a nonzero solution in c_{k} 's and hence $r(R)=0$.

Now suppose statement is true for $n=m$.
For $n=m+1$, let

$$
\begin{aligned}
R(X) & =\sum_{i=1}^{m+1} A_{i} X B_{i} \\
& =\sum_{i=1}^{m} A_{i} X B_{i}+A_{m+1} X B_{m+1} \\
& =R^{\prime}(X)+M_{A_{m+1}, B_{m+1}}
\end{aligned}
$$

here $R^{\prime}(X)=\sum_{i=1}^{m} A_{i} X B_{i}$. But $R^{\prime} M_{A_{m+1} \cdot B_{m+1}}=M_{A_{m+1}, B_{m+1}} R^{\prime}$ because A and B one commuting families. Therefore by Theorem $2.1 \mathrm{~b}(\mathrm{i})$ there exists a nonzero polynomial r such that $r(R)=0$.

Corollary 2.1. (i) If R is an algebraic elementary operator then R^{n} is algebraic.
(ii) If R_{1} and R_{2} are algebraic with $R_{1} R_{2}=R_{2} R_{1}$ then $R_{1} R_{2}$ is algebraic.

Now we shall state a formula for $n^{t h}$ iterate of a generalized derivation which can be proved easily by using method of induction.

Lemma 2.1. Let $\delta_{A, B}$ be generalized derivation on $B(E)$ into itself then

$$
\delta_{A, B}^{n}(X)=\sum_{k=0}^{n}\left((-1)^{n}\binom{n}{k}\right) A^{n-k} X B^{k} .
$$

Theorem 2.2. The generalized derivation $\delta_{A, B}$ is algebraic if and only if A and B are algebraic.
Proof. Let A and B are algebraic, then $\sum_{k=0}^{n}\left((-1)^{n}\binom{n}{k}\right) A^{n-k} X B^{k}$ is algebraic by Theorem 2.1 because generalized derivation is a particular case of elementary operator of length 2.

Conversely, suppose $\delta_{A, B}$ is algebraic i.e. there exists a non-zero polynomial p of degree n such that $p\left(\delta_{A, B}\right)=\sum_{k=0}^{n} c_{k} \delta_{A, B}^{k}=0$. We have $\delta_{A, B}^{k}(X)=\sum_{i=0}^{n}\left((-1)^{i}\binom{k}{i}\right) A^{k-i} X B^{i}$. By consequence of Hahn-Banach theorem there exists a linear functional f such that $f(x) \neq 0$ for each nonzero x in E. Let $f \otimes x$ be a rank one operator on E defined by $(f \otimes x)(y)=f(y) x, x \in E$.

Now

$$
\begin{aligned}
\delta_{A, B}^{k}(f \otimes x) & =\sum_{i=0}^{k}\left((-1)^{i}\binom{k}{i}\right) A^{k-i}(f \otimes x) B^{k}, \\
\delta_{A, B}^{k}(f \otimes x)(x) & =\sum_{i=0}^{k}\left((-1)^{i}\binom{k}{i}\right) f\left(B^{i} x\right) A^{k-i} x
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i=0}^{n} c_{k} \delta_{A, B}^{k}(f \otimes x)(x) & =\sum_{i=0}^{n} c_{k} \sum_{i=0}^{k}\left((-1)^{i}\binom{k}{i}\right)\left(f\left(B^{i} x\right) A^{k-i} x\right. \\
& =\sum_{j=0}^{n}\left(b_{j} A^{j}\right)(x),
\end{aligned}
$$

where $b_{j}=\sum_{k=j}^{n}(-1)^{k}\binom{k}{j} c_{k} f\left(B^{k-j} x\right)$. In particular $b_{n}=(-1)^{n} c_{n} f(x) \neq 0$.
Since $\sum_{k=0}^{n} c_{k} \delta_{A, B}^{k}(X)=0$ for all $X \in B(E)$, it follows that $\sum_{j=0}^{n} b_{j} A^{j}=0$ i.e. A is algebraic. Further since an operator T is algebraic if and only if its transpose T^{t} is algebraic, it follows that $\delta_{A, B}$ is algebraic if and only if $\delta_{B, A}$ is algebraic.Thus by using same method as above we get B is algebraic.

Theorem 2.3. If the elementary operator $M_{A, B}$ is algebraic then either A or B is algebraic.
Proof. Let $p\left(M_{A, B}\right)=\sum_{k=0}^{n} a_{k} M_{A, B}^{k}=0, a_{n} \neq 0$. Then $\sum_{k=0}^{n} a_{k} M_{A, B}^{k}(X)=\sum_{k=0}^{n} a_{k} A^{k} X B^{k}=0$ for all $X \in B(E)$.

Now suppose B is not algebraic. Therefore B is not nilpotent. Then there exists some nonzero vector $x \in E$ such that $B^{n}(x) \neq 0$. Now by using method similar as in proof of above theorem we get A is algebraic.

Example 2.1. Let $B=I$, then $M_{A, B}(X)=A X B=A X$. Now $M_{A, B}$ is algebraic if and only if A is algebraic. If A is not algebraic then $M_{A, B}$ is not algebraic though $B=I$ is algebraic. This shows that converse of Theorem 2.1 is not true.

Acknowledgements

The author is grateful to Prof. Nand Lal for his helpful suggestions and discussions.

References

[1] S. A. Amitsure, Derivations in simple ring, Proc. London. Math. Soc., 7(1975), 87-112.
[2] C. Apostol and L. Fialkow, Structural property of elementary operators, Canad. J. Math., 38(1986), 1485-1524.
[3] B. Aupetit, A Primer on Spectral Theory, Universitytext, Springer Verlag, NewYork/Berlin, 1990.
[4] L. A. Fialkow, Structural properties of elementary operators, Elementary operators and applications (Editor. Martin Mathieu), 44-113, World Scintific, 1992.
[5] I. N. Herstein, Ring with Involution, Chicago Lectures in Math., The University of Chicago Press, Chicago/London, 1976.
[6] V. K. Kharchenko, Differential Identities of prime rings, Algebra and Logic, 17(1978), 33-39.
[7] W. S. Matrindale III and C. R. Miers, On iterates of derivations of prime rings, Pacific J. Math., 104(1983), 179-190.
[8] C. R. Miers and J. Philips, Algebraic inner derivations on operator algebras, Canad. J. Math., 35 no. 4 (1983), 710-723.
[9] Sanjay Kumar, Polynomial compactness and induced derivations, Ph.D. Thesis, BHU, 1994.

Department of Mathematics, SGR PG College, Dobhi, Janpur-222149, India.
E-mail: gptbhu@yahoo.com

