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SUBCLASSES OF ANALYTIC FUNCTIONS WITH RESPECT

TO SYMMETRIC AND CONJUGATE POINTS

C. SELVARAJ AND N. VASANTHI

Abstract. In this paper, we introduce new subclasses of convex and starlike functions

with respect to other points. The coefficient estimates for these classes are obtained.

1. Introduction

Let U be the class of functions which are analytic and univalent in the open unit disc

D = {z : |z| < 1} given by

w (z)= z +
n
∑

k=1

bk zk

and satisfying the conditions

w (0)= 0, |w (z)| < 1, z ∈ D.

Let S denote the class of functions f which are analytic and univalent in D of the form

f (z) = z +
∞
∑

n=2

an zn , z ∈ D. (1.1)

Also let S∗
s be the subclass of S consisting of functions given by (1.1) satisfying

Re

{

z f ′(z)

f (z)− f (−z)

}

> 0, z ∈ D.

These functions are called starlike with respect to symmetric points and were introduced by

Sakaguchi in 1959. Ashwah and Thomas in [2] introduced another class namely the class S∗
c

consisting of functions starlike with respect to conjugate points.

Corresponding author: N. Vasanthi.
Received October 13, 2009.
2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Analytic, univalent, starlike with respect to symmetric points, coefficient esti-

mates.

87

http://dx.doi.org/10.5556/j.tkjm.42.2011.87-94


88 C. SELVARAJ AND N. VASANTHI

Let S∗
c be the subclass of S consisting of functions given by (1.1) and satisfying the condi-

tion

Re

{

z f ′(z)

f (z)+ f (z)

}

> 0, z ∈ D.

Motivated by S∗
s , many authors discussed the following class Cs of function convex with

respect to symmetric points and its subclasses.

Let Cs be the subclass of S consisting of functions given by (1.1) and satisfying the condi-

tion

Re

{

(z f ′(z))′

( f (z)− f (−z))′

}

> 0, z ∈ D.

In terms of subordination, Goel and Mehrok in 1982 introduced a subclass of S∗
s denoted

by S∗
s (A,B ).

Let S∗
s (A,B ) be the class of functions of the form (1.1) and satisfying the condition

2z f ′(z)

f (z)− f (−z)
≺

1+ Az

1+B z
, −1 ≤ B < A ≤ 1, z ∈ D.

Also let S∗
c (A,B ) be the class of functions of the form (1.1) and satisfying the condition

2z f ′(z)

( f (z)+ f (z))
≺

1+ Az

1+B z
, −1 ≤ B < A ≤ 1, z ∈ D.

Let Cs (A,B ) be the class of functions of the form (1.1) and satisfying the condition

2(z f ′(z))′

( f (z)− f (−z))′
≺

1+ Az

1+B z
, −1 ≤B < A ≤ 1, z ∈ D.

Also let Cc (A,B ) be the class of functions of the form (1.1) and satisfying the condition

2(z f ′(z))′

( f (z)+ f (z))′
≺

1+ Az

1+B z
, −1 ≤B < A ≤ 1, z ∈ D.

In this paper, we introduce the class Ms (α, A,B ) consisting of analytic functions f of the form

(1.1) and satisfying

2z f ′(z)+2αz2 f ′′(z)

(1−α)( f (z)− f (−z))+αz( f (z)− f (−z))′
≺

1+ Az

1+B z
,

−1 ≤ B < A ≤ 1,0 ≤α≤ 1, z ∈ D.

We note that Ms(0, A,B ) = S∗
s (A,B ) and Ms(1, A,B ) =Cs (A,B ). Also introduce the class Mc (α, A,B )

consisting of analytic functions f of the form (1.1) and satisfying

2z f ′(z)+2αz2 f ′′(z)

(1−α)( f (z)+ f (z))+αz( f (z)+ f (z))′
≺

1+ Az

1+B z
,

−1 ≤ B < A ≤ 1,0 ≤α≤ 1, z ∈ D.
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Note that Mc (0, A,B ) = S∗
c (A,B ) and Mc(1, A,B ) =Cc (A,B ).

By definition of subordination it follows that f ∈ Ms(α, A,B ) if and only if

2z f ′(z)+2αz2 f ′′(z)

(1−α)( f (z)− f (−z))+αz( f (z)− f (−z))′
=

1+ Aw (z)

1+B w (z)
= p(z), w ∈U (1.2)

and that f ∈ Mc (α, A,B ) if and only if

2z f ′(z)+2αz2 f ′′(z)

(1−α)( f (z)+ f (z))+αz( f (z)+ f (z))′
=

1+ Aw (z)

1+B w (z)
= p(z), w ∈U (1.3)

where

p(z) = 1+
∞
∑

n=1

pn zn (1.4)

We study the classes Ms (α, A,B ) and Mc (α, A,B ), the coefficient estimates for functions

belonging to these classes are obtained.

2. Preliminary result

We need the following lemma for proving our results.

Lemma 2.1.([3]) If p(z) is given by (1.4) then

|pn | ≤ A−B , n = 1,2,3, . . . (2.1)

3. Main result

We give the coefficient inequalities for the classes Ms(α, A,B ) and Mc(α, A,B ).

Theorem 3.1. Let f ∈ Ms (α, A,B ). Then for n ≥ 1, 0 ≤α≤ 1,

|a2n| ≤
A−B

2nn!(1+ (2n −1)α)

n−1
∏

j=1

(A−B +2 j ), (3.1)

|a2n+1| ≤
A−B

2nn!(1+2nα)

n−1
∏

j=1

(A−B +2 j ). (3.2)

Proof. From (1.2) and (1.4), we have

(z +2a2z2
+3a3z3

+4a4z4
+5a5z5

+·· ·+2na2n z2n
+·· · )

+α(2a2z2
+6a3z3

+12a4z4
+20a5z5

+·· ·+ (2n −1)2na2n z2n
+·· · )

=
[

(1−α)(z +a3 z3
+a5z5

+·· ·+a2n−1z2n−1
+a2n+1z2n+1

+·· · )
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+α(z +3a3z3
+5a5z5

+·· ·+ (2n −1)a2n−1z2n−1
+ (2n +1)a2n+1z2n+1

+·· ·)
]

· (1+p1z +p2z2
+p3z3

+p4z4
+·· ·+p2n−1z2n−1

+p2n z2n
+·· · )

Equating the coefficients of like powers of z, we have

2(1+α)a2 = p1, 2(1+2α)a3 = p2 (3.3)

4(1+3α)a4 = p3 + (1+2α)a3 p1

4(1+4α)a5 = p4 + (1+2α)a3 p2 (3.4)

2n(1+ (2n −1)α)a2n = p2n−1 + (1+2α)a3 p2n−3 +·· ·+ (1+ (2n −2)α)a2n−1 p1 (3.5)

(2n +1)(1+2nα)a2n+1 = p2n + (1+2α)a3p2n−2 +·· ·+ (1+ (2n −2)α)a2n−1 p2 (3.6)

Using lemma 2.1 and (3.3), we get

|a2| ≤
A−B

2(1+α)
, |a3| ≤

A−B

2(1+2α)
. (3.7)

Again by applying (3.6) and followed by Lemma 2.1, we get from (3.4)

|a4| ≤
(A−B )(A−B +2)

(2)(4)(1+3α)
, |a5| ≤

(A−B )(A−B +2)

(2)(4)(1+4α)
.

It follows that (3.1) and (3.2) hold for n = 1,2. We prove (3.1) using induction.

Equation (3.5) in conjuction with lemma 2.1 yield

|a2n | ≤
A−B

2n(1+ (2n −1)α)

[

1+
n−1
∑

k=1

(1+2kα)|a2k+1|

]

. (3.8)

We assume that (3.1) holds for k = 3,4, . . . , (n −1). Then from (3.8), we obtain

|a2n| ≤
A−B

2n(1+ (2n −1)α)

[

1+
n−1
∑

k=1

A−B

2k k !

k−1
∏

j=1

(A−B +2 j )

]

. (3.9)

In order to complete the proof, it is sufficient to show that

A−B

2m(1+ (2m −1)α)

[

1+
m−1
∑

k=1

A−B

2k k !

k−1
∏

j=1

(A−B +2 j )

]

=
A−B

2mm!(1+ (2m −1)α)

k−1
∏

j=1

(A−B +2 j ), (m = 3,4,5, . . . ,n). (3.10)

(3.10) is valid for m = 3.

Let us suppose that (3.10) is true for all m, 3 < m ≤ (n −1). Then from (3.9)

(A−B )

2n(1+ (2n −1)α)

[

1+
n−1
∑

k=1

A−B

2k k !

k−1
∏

j=1

(A−B +2 j )

]
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=

(

n −1

n

)

(

A−B

2(n −1)(1+ (2n −1)α)

(

1+
n−2
∑

k=1

A−B

2k k !

k−1
∏

j=1

(A−B +2 j )

))

+
(A−B )

(2n)(1+ (2n −1)α)

(A−B )

(n −1)!2n−1

n−2
∏

j=1

(A−B +2 j )

=

(

n −1

n

)

(A−B )

2n−1(n −1)!(1+ (2n −1)α)

n−2
∏

j=1

(A−B +2 j )

+
(A−B )

2n(1+ (2n −1)α)

(A−B )

(n −1)!2n−1

n−2
∏

j=1

(A−B +2 j )

=
(A−B )

2n(n −1)!2n−1(1+ (2n −1)α)

n−2
∏

j=1

(A−B +2 j )(A−B +2(n −1))

=
(A−B )

2nn!(1+ (2n −1)α)

n−1
∏

j=1

(A−B +2 j ).

Thus (3.10) holds for m = n and hence (3.1) follows. Similarly we can prove (3.2). �

Theorem 3.2. Let f ∈ Mc (α, A,B ). Then for n ≥ 1, 0 ≤α≤ 1,

|a2n| ≤
(A−B )

(2n −1)!(1+ (2n −1)α)

2n−2
∏

j=1

(A−B + j ), (3.11)

|a2n+1| ≤
(A−B )

(2n)!(1+2nα)

2n−1
∏

j=1

(A−B + j ). (3.12)

Proof. From (1.3) and (1.4), we have

(z +2a2z2
+3a3z3

+4a4z4
+5a5z5

+·· ·+2na2n z2n
+·· · )

+α(2a2z2
+6a3z3

+12a4z4
+20a5z5

+·· ·+ (2n −1)2na2n z2n
+·· · )

=
[

(1−α)(z +a2z2
+a3z3

+a4z4
+a5z5

+·· ·+a2n z2n
+·· · )

+α(z +2a2z2
+3a3z3

+4a4z4
+5a5z5

+·· ·+2na2n z2n
+·· · )

]

· (1+p1z +p2z2
+p3z3

+p4z4
+·· ·+p2n−1z2n−1

+·· · )

Equating the coefficients of like powers of z, we have

(1+α)a2 = p1, 2(1+2α)a3 = p2 + (1+α)a2p1, (3.13)

3(1+3α)a4 = p3 + (1+α)a2p2 + (1+2α)a3p1, (3.14)

4(1+4α)a5 = p4 + (1+α)a2p3 + (1+2α)a3p2 + (1+3α)a4 p1 (3.15)

(2n −1)(1+ (2n −1)α)a2n = p2n−1 + (1+α)a2p2n−2 +·· ·+ (1+ (2n −2)α)a2n−1 p1 (3.16)

2n(1+2nα)a2n+1 = p2n + (1+α)a2 p2n−1 +·· ·+ (1+ (2n −2)α)a2n p1 (3.17)
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By using lemma 2.1 and (3.13), we get

|a2| ≤
(A−B )

1+α

, |a3| ≤
(A−B )(A−B +1)

2(1+2α)
. (3.18)

Again by applying (3.18) and followed by Lemma 2.1, we get from (3.14) and (3.15), we have

|a4| ≤
(A−B )(A−B +1)(A−B +2)

(2)(3)(1+3α)
,

|a5| ≤
(A−B )2 +6(A−B )3 +11(A−B )2 +6(A−B )

(2)(3)(4)(1+4α)
.

It follows that (3.11) hold for n = 1,2. We now prove (3.11) using induction.

Equation (3.16) in conjuction with lemma 2.1 yield

|a2n| ≤
(A−B )

(2n −1)(1+ (2n −1)α)

[

1+
n−1
∑

k=1

|a2k |+

n−1
∑

k=1

|a2k+1|

]

. (3.19)

We assume that (3.11) holds for k = 3,4, . . . , (n −1). Then from (3.19), we obtain

|a2n| ≤
(A−B )

(2n −1)(1+ (2n −1)α)

[

1+
n−1
∑

k=1

(A−B )

(2k −1)!

2k−2
∏

j=1

(A−B + j )

+

n−1
∑

k=1

(A−B )

(2k)!

2k−1
∏

j=1

(A−B + j )

]

. (3.20)

In order to complete the proof, it is sufficient to show that

(A−B )

(2m −1)(1+ (2m −1)α)

[

1+
m−1
∑

k=1

(A−B )

2(k −1)!

2k−2
∏

j=1

(A−B + j )+
m−1
∑

k=1

(A−B )

(2k)!

2k−1
∏

j=1

(A−B + j )

]

=
(A−B )

(2m −1)!(1+ (2m −1)α)

2m−2
∏

j=1

(A−B + j ), (m = 3,4,5, . . . ,n). (3.21)

(3.21) is valid for m = 3.

Let us suppose that (3.21) is true for all m, 3 < m ≤ (n −1). Then from (3.20)

(A−B )

(2n −1)(1+ (2n −1)α)

[

1+
n−1
∑

k=1

(A−B )

(2k −1)!

2k−2
∏

j=1

(A−B + j )+
n−1
∑

k=1

(A−B )

(2k)!

2k−1
∏

j=1

(A−B + j )

]

=
(2n −3)

(2n −1)

(

(A−B )

(2(n −1)−1)(1+ (2n −1)α)

(

1+
n−2
∑

k=1

(A−B )

(2k −1)!

2k−2
∏

j=1

(A−B + j )

+

n−2
∑

k=1

(A−B )

(2k)!

2k−1
∏

j=1

(A−B + j )

))

+
(A−B )

(2n −1)(1+ (2n −1)α)

(A−B )

(2(n −1)!−1)

2n−4
∏

j=1

(A−B + j )
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+
(A−B )

(2n −1)(1+ (2n −1)α)

(A−B )

2(n −1)!

2n−3
∏

j=1

(A−B + j )

=
2n −3

(2n −1)(1+ (2n −1)α)

(A−B )

(2(n −1)−1)!

2n−4
∏

j=1

(A−B + j )

+
(A−B )

(2n −1)(1+ (2n −1)α)

(A−B )

(2(n −1)−1)!

2n−4
∏

j=1

(A−B + j )

+
(A−B )

(2n −1)(1+ (2n −1)α)

(A−B )

2(n −1)!

2n−3
∏

j=1

(A−B + j )

=
(A−B )

(2n −1)(1+ (2n −1)α)(2(n −1)−1)!

2n−4
∏

j=1

(A−B + j )(A−B +2n −3)

+
(A−B )

(2n −1)(1+ (2n −1)α)

(A−B )

(2(n −1))!

2n−3
∏

j=1

(A−B + j )

=
(A−B )

(2n −1)!(1+ (2n −1)α)

2n−2
∏

j=1

(A−B + j ).

Thus (3.21) holds for m = n and hence (3.11) follows. Similarly we can prove (3.12). �

On specializing the values of α in Theorem 3.1 and Theorem 3.2, we get the following.

Remark 3.1. In Theorem 3.1, if we set α= 0, we get starlike functions with respect to symmet-

ric points and if we set α= 1, we get convex functions with respect to symmetric points.

Remark 3.2. In Theorem 3.2, if we setα = 0, we get starlike functions with respect to conjugate

points and if we set α= 1, we get convex functions with respect to conjugate points. For other

values of α the transition is smooth.
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