SUBCLASSES OF ANALYTIC FUNCTIONS WITH RESPECT TO SYMMETRIC AND CONJUGATE POINTS

C. SELVARAJ AND N. VASANTHI

Abstract

In this paper, we introduce new subclasses of convex and starlike functions with respect to other points. The coefficient estimates for these classes are obtained.

1. Introduction

Let U be the class of functions which are analytic and univalent in the open unit disc $D=\{z:|z|<1\}$ given by

$$
w(z)=z+\sum_{k=1}^{n} b_{k} z^{k}
$$

and satisfying the conditions

$$
w(0)=0,|w(z)|<1, \quad z \in D .
$$

Let S denote the class of functions f which are analytic and univalent in D of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad z \in D . \tag{1.1}
\end{equation*}
$$

Also let S_{s}^{*} be the subclass of S consisting of functions given by (1.1) satisfying

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right\}>0, \quad z \in D .
$$

These functions are called starlike with respect to symmetric points and were introduced by Sakaguchi in 1959. Ashwah and Thomas in [2] introduced another class namely the class S_{c}^{*} consisting of functions starlike with respect to conjugate points.

[^0]Let S_{c}^{*} be the subclass of S consisting of functions given by (1.1) and satisfying the condition

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)+\overline{f(z)}}\right\}>0, \quad z \in D
$$

Motivated by S_{s}^{*}, many authors discussed the following class C_{s} of function convex with respect to symmetric points and its subclasses.

Let C_{s} be the subclass of S consisting of functions given by (1.1) and satisfying the condition

$$
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{(f(z)-f(-z))^{\prime}}\right\}>0, \quad z \in D
$$

In terms of subordination, Goel and Mehrok in 1982 introduced a subclass of S_{s}^{*} denoted by $S_{s}^{*}(A, B)$.

Let $S_{s}^{*}(A, B)$ be the class of functions of the form (1.1) and satisfying the condition

$$
\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}<\frac{1+A z}{1+B z}, \quad-1 \leq B<A \leq 1, z \in D .
$$

Also let $S_{c}^{*}(A, B)$ be the class of functions of the form (1.1) and satisfying the condition

$$
\frac{2 z f^{\prime}(z)}{(f(z)+\overline{f(z)})}<\frac{1+A z}{1+B z}, \quad-1 \leq B<A \leq 1, z \in D .
$$

Let $C_{s}(A, B)$ be the class of functions of the form (1.1) and satisfying the condition

$$
\frac{2\left(z f^{\prime}(z)\right)^{\prime}}{(f(z)-f(-z))^{\prime}}<\frac{1+A z}{1+B z}, \quad-1 \leq B<A \leq 1, z \in D .
$$

Also let $C_{c}(A, B)$ be the class of functions of the form (1.1) and satisfying the condition

$$
\frac{2\left(z f^{\prime}(z)\right)^{\prime}}{\left(f(z)+\overline{f(\bar{z}))^{\prime}}\right.}<\frac{1+A z}{1+B z}, \quad-1 \leq B<A \leq 1, z \in D .
$$

In this paper, we introduce the class $M_{s}(\alpha, A, B)$ consisting of analytic functions f of the form (1.1) and satisfying

$$
\begin{gathered}
\frac{2 z f^{\prime}(z)+2 \alpha z^{2} f^{\prime \prime}(z)}{(1-\alpha)(f(z)-f(-z))+\alpha z(f(z)-f(-z))^{\prime}}<\frac{1+A z}{1+B z}, \\
-1 \leq B<A \leq 1,0 \leq \alpha \leq 1, z \in D .
\end{gathered}
$$

We note that $M_{s}(0, A, B)=S_{s}^{*}(A, B)$ and $M_{s}(1, A, B)=C_{s}(A, B)$. Also introduce the class $M_{c}(\alpha, A, B)$ consisting of analytic functions f of the form (1.1) and satisfying

$$
\begin{gathered}
\frac{2 z f^{\prime}(z)+2 \alpha z^{2} f^{\prime \prime}(z)}{(1-\alpha)(f(z)+\overline{f(\bar{z})})+\alpha z\left(f(z)+\overline{f(\bar{z}))^{\prime}}\right.}<\frac{1+A z}{1+B z}, \\
-1 \leq B<A \leq 1,0 \leq \alpha \leq 1, z \in D .
\end{gathered}
$$

Note that $M_{c}(0, A, B)=S_{c}^{*}(A, B)$ and $M_{c}(1, A, B)=C_{c}(A, B)$.
By definition of subordination it follows that $f \in M_{s}(\alpha, A, B)$ if and only if

$$
\begin{equation*}
\frac{2 z f^{\prime}(z)+2 \alpha z^{2} f^{\prime \prime}(z)}{(1-\alpha)(f(z)-f(-z))+\alpha z(f(z)-f(-z))^{\prime}}=\frac{1+A w(z)}{1+B w(z)}=p(z), \quad w \in U \tag{1.2}
\end{equation*}
$$

and that $f \in M_{c}(\alpha, A, B)$ if and only if

$$
\begin{equation*}
\frac{2 z f^{\prime}(z)+2 \alpha z^{2} f^{\prime \prime}(z)}{(1-\alpha)(f(z)+\overline{f(\bar{z})})+\alpha z\left(f(z)+\overline{f(\bar{z}))^{\prime}}\right.}=\frac{1+A w(z)}{1+B w(z)}=p(z), \quad w \in U \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \tag{1.4}
\end{equation*}
$$

We study the classes $M_{s}(\alpha, A, B)$ and $M_{c}(\alpha, A, B)$, the coefficient estimates for functions belonging to these classes are obtained.

2. Preliminary result

We need the following lemma for proving our results.

Lemma 2.1.([3]) If $p(z)$ is given by (1.4) then

$$
\begin{equation*}
\left|p_{n}\right| \leq A-B, \quad n=1,2,3, \ldots \tag{2.1}
\end{equation*}
$$

3. Main result

We give the coefficient inequalities for the classes $M_{s}(\alpha, A, B)$ and $M_{c}(\alpha, A, B)$.

Theorem 3.1. Let $f \in M_{s}(\alpha, A, B)$. Then for $n \geq 1,0 \leq \alpha \leq 1$,

$$
\begin{align*}
\left|a_{2 n}\right| & \leq \frac{A-B}{2^{n} n!(1+(2 n-1) \alpha)} \prod_{j=1}^{n-1}(A-B+2 j) \tag{3.1}\\
\left|a_{2 n+1}\right| & \leq \frac{A-B}{2^{n} n!(1+2 n \alpha)} \prod_{j=1}^{n-1}(A-B+2 j) \tag{3.2}
\end{align*}
$$

Proof. From (1.2) and (1.4), we have

$$
\begin{aligned}
&\left(z+2 a_{2} z^{2}+3 a_{3} z^{3}+4 a_{4} z^{4}+5 a_{5} z^{5}+\cdots+2 n a_{2 n} z^{2 n}+\cdots\right) \\
&+\alpha\left(2 a_{2} z^{2}+6 a_{3} z^{3}+12 a_{4} z^{4}+20 a_{5} z^{5}+\cdots+(2 n-1) 2 n a_{2 n} z^{2 n}+\cdots\right) \\
&= {\left[(1-\alpha)\left(z+a_{3} z^{3}+a_{5} z^{5}+\cdots+a_{2 n-1} z^{2 n-1}+a_{2 n+1} z^{2 n+1}+\cdots\right)\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\alpha\left(z+3 a_{3} z^{3}+5 a_{5} z^{5}+\cdots+(2 n-1) a_{2 n-1} z^{2 n-1}+(2 n+1) a_{2 n+1} z^{2 n+1}+\cdots\right)\right] \\
& \cdot\left(1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+p_{4} z^{4}+\cdots+p_{2 n-1} z^{2 n-1}+p_{2 n} z^{2 n}+\cdots\right)
\end{aligned}
$$

Equating the coefficients of like powers of z, we have

$$
\begin{align*}
2(1+\alpha) a_{2} & =p_{1}, 2(1+2 \alpha) a_{3}=p_{2} \tag{3.3}\\
4(1+3 \alpha) a_{4} & =p_{3}+(1+2 \alpha) a_{3} p_{1} \\
4(1+4 \alpha) a_{5} & =p_{4}+(1+2 \alpha) a_{3} p_{2} \tag{3.4}\\
2 n(1+(2 n-1) \alpha) a_{2 n} & =p_{2 n-1}+(1+2 \alpha) a_{3} p_{2 n-3}+\cdots+(1+(2 n-2) \alpha) a_{2 n-1} p_{1} \tag{3.5}\\
(2 n+1)(1+2 n \alpha) a_{2 n+1} & =p_{2 n}+(1+2 \alpha) a_{3} p_{2 n-2}+\cdots+(1+(2 n-2) \alpha) a_{2 n-1} p_{2} \tag{3.6}
\end{align*}
$$

Using lemma 2.1 and (3.3), we get

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{A-B}{2(1+\alpha)}, \quad\left|a_{3}\right| \leq \frac{A-B}{2(1+2 \alpha)} \tag{3.7}
\end{equation*}
$$

Again by applying (3.6) and followed by Lemma 2.1, we get from (3.4)

$$
\left|a_{4}\right| \leq \frac{(A-B)(A-B+2)}{(2)(4)(1+3 \alpha)}, \quad\left|a_{5}\right| \leq \frac{(A-B)(A-B+2)}{(2)(4)(1+4 \alpha)}
$$

It follows that (3.1) and (3.2) hold for $n=1,2$. We prove (3.1) using induction.
Equation (3.5) in conjuction with lemma 2.1 yield

$$
\begin{equation*}
\left|a_{2 n}\right| \leq \frac{A-B}{2 n(1+(2 n-1) \alpha)}\left[1+\sum_{k=1}^{n-1}(1+2 k \alpha)\left|a_{2 k+1}\right|\right] \tag{3.8}
\end{equation*}
$$

We assume that (3.1) holds for $k=3,4, \ldots,(n-1)$. Then from (3.8), we obtain

$$
\begin{equation*}
\left|a_{2 n}\right| \leq \frac{A-B}{2 n(1+(2 n-1) \alpha)}\left[1+\sum_{k=1}^{n-1} \frac{A-B}{2^{k} k!} \prod_{j=1}^{k-1}(A-B+2 j)\right] \tag{3.9}
\end{equation*}
$$

In order to complete the proof, it is sufficient to show that

$$
\begin{align*}
& \frac{A-B}{2 m(1+(2 m-1) \alpha)}\left[1+\sum_{k=1}^{m-1} \frac{A-B}{2^{k} k!} \prod_{j=1}^{k-1}(A-B+2 j)\right] \\
& =\frac{A-B}{2^{m} m!(1+(2 m-1) \alpha)} \prod_{j=1}^{k-1}(A-B+2 j), \quad(m=3,4,5, \ldots, n) \tag{3.10}
\end{align*}
$$

(3.10) is valid for $m=3$.

Let us suppose that (3.10) is true for all $m, 3<m \leq(n-1)$. Then from (3.9)

$$
\frac{(A-B)}{2 n(1+(2 n-1) \alpha)}\left[1+\sum_{k=1}^{n-1} \frac{A-B}{2^{k} k!} \prod_{j=1}^{k-1}(A-B+2 j)\right]
$$

$$
\begin{aligned}
= & \left(\frac{n-1}{n}\right)\left(\frac{A-B}{2(n-1)(1+(2 n-1) \alpha)}\left(1+\sum_{k=1}^{n-2} \frac{A-B}{2^{k} k!} \prod_{j=1}^{k-1}(A-B+2 j)\right)\right) \\
& +\frac{(A-B)}{(2 n)(1+(2 n-1) \alpha)} \frac{(A-B)}{(n-1)!2^{n-1}} \prod_{j=1}^{n-2}(A-B+2 j) \\
= & \left(\frac{n-1}{n}\right) \frac{(A-B)}{2^{n-1}(n-1)!(1+(2 n-1) \alpha)} \prod_{j=1}^{n-2}(A-B+2 j) \\
& +\frac{(A-B)}{2 n(1+(2 n-1) \alpha)} \frac{(A-B)}{(n-1)!2^{n-1}} \prod_{j=1}^{n-2}(A-B+2 j) \\
= & \frac{(A-B)}{2 n(n-1)!2^{n-1}(1+(2 n-1) \alpha)} \prod_{j=1}^{n-2}(A-B+2 j)(A-B+2(n-1)) \\
= & \frac{(A-B)}{2^{n} n!(1+(2 n-1) \alpha)} \prod_{j=1}^{n-1}(A-B+2 j) .
\end{aligned}
$$

Thus (3.10) holds for $m=n$ and hence (3.1) follows. Similarly we can prove (3.2).

Theorem 3.2. Let $f \in M_{c}(\alpha, A, B)$. Then for $n \geq 1,0 \leq \alpha \leq 1$,

$$
\begin{align*}
\left|a_{2 n}\right| & \leq \frac{(A-B)}{(2 n-1)!(1+(2 n-1) \alpha)} \prod_{j=1}^{2 n-2}(A-B+j) \tag{3.11}\\
\left|a_{2 n+1}\right| & \leq \frac{(A-B)}{(2 n)!(1+2 n \alpha)} \prod_{j=1}^{2 n-1}(A-B+j) \tag{3.12}
\end{align*}
$$

Proof. From (1.3) and (1.4), we have

$$
\begin{aligned}
& \left(z+2 a_{2} z^{2}+3 a_{3} z^{3}+4 a_{4} z^{4}+5 a_{5} z^{5}+\cdots+2 n a_{2 n} z^{2 n}+\cdots\right) \\
& \quad+\alpha\left(2 a_{2} z^{2}+6 a_{3} z^{3}+12 a_{4} z^{4}+20 a_{5} z^{5}+\cdots+(2 n-1) 2 n a_{2 n} z^{2 n}+\cdots\right) \\
& =\left[(1-\alpha)\left(z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\cdots+a_{2 n} z^{2 n}+\cdots\right)\right. \\
& \left.\quad+\alpha\left(z+2 a_{2} z^{2}+3 a_{3} z^{3}+4 a_{4} z^{4}+5 a_{5} z^{5}+\cdots+2 n a_{2 n} z^{2 n}+\cdots\right)\right] \\
& \quad \cdot\left(1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+p_{4} z^{4}+\cdots+p_{2 n-1} z^{2 n-1}+\cdots\right)
\end{aligned}
$$

Equating the coefficients of like powers of z, we have

$$
\begin{align*}
(1+\alpha) a_{2} & =p_{1}, 2(1+2 \alpha) a_{3}=p_{2}+(1+\alpha) a_{2} p_{1}, \tag{3.13}\\
3(1+3 \alpha) a_{4} & =p_{3}+(1+\alpha) a_{2} p_{2}+(1+2 \alpha) a_{3} p_{1}, \tag{3.14}\\
4(1+4 \alpha) a_{5} & =p_{4}+(1+\alpha) a_{2} p_{3}+(1+2 \alpha) a_{3} p_{2}+(1+3 \alpha) a_{4} p_{1} \tag{3.15}\\
(2 n-1)(1+(2 n-1) \alpha) a_{2 n} & =p_{2 n-1}+(1+\alpha) a_{2} p_{2 n-2}+\cdots+(1+(2 n-2) \alpha) a_{2 n-1} p_{1} \tag{3.16}\\
2 n(1+2 n \alpha) a_{2 n+1} & =p_{2 n}+(1+\alpha) a_{2} p_{2 n-1}+\cdots+(1+(2 n-2) \alpha) a_{2 n} p_{1} \tag{3.17}
\end{align*}
$$

By using lemma 2.1 and (3.13), we get

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{(A-B)}{1+\alpha}, \quad\left|a_{3}\right| \leq \frac{(A-B)(A-B+1)}{2(1+2 \alpha)} \tag{3.18}
\end{equation*}
$$

Again by applying (3.18) and followed by Lemma 2.1, we get from (3.14) and (3.15), we have

$$
\begin{aligned}
& \left|a_{4}\right| \leq \frac{(A-B)(A-B+1)(A-B+2)}{(2)(3)(1+3 \alpha)} \\
& \left|a_{5}\right| \leq \frac{(A-B)^{2}+6(A-B)^{3}+11(A-B)^{2}+6(A-B)}{(2)(3)(4)(1+4 \alpha)}
\end{aligned}
$$

It follows that (3.11) hold for $n=1,2$. We now prove (3.11) using induction.
Equation (3.16) in conjuction with lemma 2.1 yield

$$
\begin{equation*}
\left|a_{2 n}\right| \leq \frac{(A-B)}{(2 n-1)(1+(2 n-1) \alpha)}\left[1+\sum_{k=1}^{n-1}\left|a_{2 k}\right|+\sum_{k=1}^{n-1}\left|a_{2 k+1}\right|\right] . \tag{3.19}
\end{equation*}
$$

We assume that (3.11) holds for $k=3,4, \ldots,(n-1)$. Then from (3.19), we obtain

$$
\begin{align*}
\left|a_{2 n}\right| \leq & \frac{(A-B)}{(2 n-1)(1+(2 n-1) \alpha)}\left[1+\sum_{k=1}^{n-1} \frac{(A-B)}{(2 k-1)!} \prod_{j=1}^{2 k-2}(A-B+j)\right. \\
& \left.+\sum_{k=1}^{n-1} \frac{(A-B)}{(2 k)!} \prod_{j=1}^{2 k-1}(A-B+j)\right] \tag{3.20}
\end{align*}
$$

In order to complete the proof, it is sufficient to show that

$$
\begin{gather*}
\frac{(A-B)}{(2 m-1)(1+(2 m-1) \alpha)}\left[1+\sum_{k=1}^{m-1} \frac{(A-B)}{2(k-1)!} \prod_{j=1}^{2 k-2}(A-B+j)+\sum_{k=1}^{m-1} \frac{(A-B)}{(2 k)!} \prod_{j=1}^{2 k-1}(A-B+j)\right] \\
=\frac{(A-B)}{(2 m-1)!(1+(2 m-1) \alpha)} \prod_{j=1}^{2 m-2}(A-B+j), \quad(m=3,4,5, \ldots, n) . \tag{3.21}
\end{gather*}
$$

(3.21) is valid for $m=3$.

Let us suppose that (3.21) is true for all $m, 3<m \leq(n-1)$. Then from (3.20)

$$
\begin{aligned}
& \frac{(A-B)}{(2 n-1)(1+(2 n-1) \alpha)}\left[1+\sum_{k=1}^{n-1} \frac{(A-B)}{(2 k-1)!} \prod_{j=1}^{2 k-2}(A-B+j)+\sum_{k=1}^{n-1} \frac{(A-B)}{(2 k)!} \prod_{j=1}^{2 k-1}(A-B+j)\right] \\
& =\frac{(2 n-3)}{(2 n-1)}\left(\frac { (A - B) } { (2 (n - 1) - 1) (1 + (2 n - 1) \alpha) } \left(1+\sum_{k=1}^{n-2} \frac{(A-B)}{(2 k-1)!} \prod_{j=1}^{2 k-2}(A-B+j)\right.\right. \\
& \left.\left.\quad+\sum_{k=1}^{n-2} \frac{(A-B)}{(2 k)!} \prod_{j=1}^{2 k-1}(A-B+j)\right)\right) \\
& \quad+\frac{(A-B)}{(2 n-1)(1+(2 n-1) \alpha)} \frac{(A-B)}{(2(n-1)!-1)} \prod_{j=1}^{2 n-4}(A-B+j)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{(A-B)}{(2 n-1)(1+(2 n-1) \alpha)} \frac{(A-B)}{2(n-1)!} \prod_{j=1}^{2 n-3}(A-B+j) \\
= & \frac{2 n-3}{(2 n-1)(1+(2 n-1) \alpha)} \frac{(A-B)}{(2(n-1)-1)!} \prod_{j=1}^{2 n-4}(A-B+j) \\
& +\frac{(A-B)}{(2 n-1)(1+(2 n-1) \alpha)} \frac{(A-B)}{(2(n-1)-1)!} \prod_{j=1}^{2 n-4}(A-B+j) \\
= & \frac{(A-B)}{(2 n-1)(1+(2 n-1) \alpha)(2(n-1)-1)!} \prod_{j=1}^{(2 n-1)(1+(2 n-1) \alpha)} \frac{(A-B)}{2(n-1)!} \prod_{j=1}^{2 n-3}(A-B+j) \\
& +\frac{(A-B)}{(2 n-1)(1+(2 n-1) \alpha)} \frac{(A-B)}{(2(n-1))!} \prod_{j=1}^{2 n-3}(A-B+j) \\
= & \frac{(A-B)}{(2 n-1)!(1+(2 n-1) \alpha)} \prod_{j=1}^{2 n-2}(A-B+j) .
\end{aligned}
$$

Thus (3.21) holds for $m=n$ and hence (3.11) follows. Similarly we can prove (3.12).
On specializing the values of α in Theorem 3.1 and Theorem 3.2, we get the following.

Remark 3.1. In Theorem 3.1, if we set $\alpha=0$, we get starlike functions with respect to symmetric points and if we set $\alpha=1$, we get convex functions with respect to symmetric points.

Remark 3.2. In Theorem 3.2, if we set $\alpha=0$, we get starlike functions with respect to conjugate points and if we set $\alpha=1$, we get convex functions with respect to conjugate points. For other values of α the transition is smooth.

References

[1] R. N. Das and P. Singh, On subclasses of schlicht mapping, Indian J. Pure Appl. Math., 8 (1977), 864-872.
[2] R. M. El-Ashwah and D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc., 2 (1987), 86-100.
[3] R. M. Goel and B. C. Mehrok, A subclass of starlike functions with respect to symmetric points, Tamkang J. Math., 13(1) (1982), 11-24.
[4] A. Janteng and S. A. F. M. Dahhar, A subclass of starlike functions with respect to conjugate points, Int. Mathematical Forum, 4 (2009), 1373-1377.
[5] A. Janteng and S. A. Halim, A subclass Quasi-convex functions with respect to symmetric points, Applied Mathematical Sciences, 3(2009), 551-556.
[6] A. Janteng and S. A. Halim, Coefficient estimates for a subclass of close-to-convex functions with respect to symmetric points, Int. J. Math. Analysis, 3(2009), 309-313.
[7] K. Sakaguchi, On certain univalent mapping, J. Math. Soc., Japan, 11 (1959), 72-75.
[8] C. Selvaraj and K. A. Selvakumaran, Fekete-Szegö problem for some subclasses of analytic functions, Far East Journal of Mathematical Sciences, 29(2008), 643-652.
[9] C. Selvaraj and N. Vasanthi, A subclass of α-Quasi-convex functions with respect to symmetric points, submitted.

Department of Mathematics, Presidency College, Chennai - 600 005, Tamil Nadu, India.
E-mail: pamc9439@yahoo.co.in
Department of Mathematics, Presidency College, Chennai - 600 005, Tamil Nadu, India.
E-mail: svvsaagar@yahoo.co.in

[^0]: Corresponding author: N. Vasanthi.
 Received October 13, 2009.
 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Analytic, univalent, starlike with respect to symmetric points, coefficient estimates.

