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ON APPROXIMATE SOLUTIONS OF A CERTAIN HYPERBOLIC

PARTIAL DIFFERENTIAL EQUATION

B. G. PACHPATTE

Abstract. In this paper we study approximate solutions of a certain hyperbolic partial

differential equation with the given initial boundary conditions. A variant of a certain

fundamental integral inequality with explicit estimate is used to establish the results. The

discrete analogues of the main results are also given.

1. Introduction

Let Rn denotes the real n-dimensional Euclidean space with appropriate norm denoted

by |.|. We denote by R+ = [0,∞) the given subset of R , the set of real numbers. The par-

tial derivatives of a function z(x, y) for x, y ∈ R+ with respect to x, y and x y are denoted by

D1z(x, y), D2z(x, y) and D2D1z(x, y) = D1D2z(x, y) and ′ denotes the derivative. Let C (A,B )

denotes the class of continuous functions from the set A to the set B . Recently, in [8] the

author studied some basic qualitative properties of solutions of the initial boundary value

problem (IBVP for short) for the hyperbolic equation

D2D1u
(

x, y
)

= f
(

x, y,u
(

x, y
)

,D1u
(

x, y
))

, (1.1)

with the given initial boundary conditions

u (x.0) =α(x) ,u
(

0, y
)

=β
(

y
)

,u (0,0) = 0, (1.2)

for x, y ∈ R+, where f ∈C
(

R2
+×Rn ×Rn ,Rn

)

,α,β ∈C (R+,Rn) . In the literature there are many

papers dealing with the qualitative properties of solutions of equations of the forms (1.1)−(1.2)

by using different techniques, see [1, 2, 3, 10] and the references cited therein.

In the present paper, we offer the conditions for the error evaluation of approximate so-

lutions of equation (1.1) by establishing new bounds and the convergence properties of so-

lutions of approximate problems. The main tool employed in the analysis is based on the
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application of a variant of an integral inequality with explicit estimate due to the present au-

thor given in [5]. The results on the discrete analogues of IBVP (1.1)−(1.2) are also given. A

particular feature of our approach is that it present conditions under which we can offer some

of the important qualitative properties of solutions of IBVP (1.1)−(1.2) in a simple and unified

way.

2. Main results

We require the following variant of the integral inequality established by the present au-

thor and given in [5, Theorem 2.3.1, part a2] (see also [8, p.42]).

Lemma 1. Let u
(

x, y
)

, a
(

x, y
)

,b
(

x, y
)

,e
(

x, y
)

∈ C
(

R2
+,R+

)

;e
(

x, y
)

be nondecreasing in each

variable x, y ∈ R+, and

u
(

x, y
)

≤ e
(

x, y
)

+

∫y

0
a (x, t) u (x, t)d t +

∫x

0

∫y

0
b (s, t)u (s, t)d t d s, (2.1)

for x, y ∈ R+, then

u
(

x, y
)

≤ e
(

x, y
)

H
(

x, y
)

exp

(
∫x

0

∫y

0
b (s, t) H (s, t)d t d s

)

, (2.2)

for x, y ∈ R+, where

H
(

x, y
)

= exp

(
∫y

0
a (x,τ)dτ

)

. (2.3)

Let u
(

x, y
)

∈C
(

R2
+,Rn

)

, D2D1u(x, y) exists and satisfies the inequality

∣

∣D2D1u
(

x, y
)

− f
(

x, y,u
(

x, y
)

,D1u
(

x, y
))∣

∣≤ ε,

for a given constant ε ≥ 0, where it is supposed that (1.2) holds. Then we call u(x, y) the ε-

approximate solution with respect to the equation (1.1).

Our main result given in the following theorem estimates the difference between the two

approximate solutions of equation (1.1).

Theorem 1. Suppose that the function f in equation (1.1) satisfies the condition

∣

∣ f
(

x, y, z, w
)

− f
(

x, y, z̄, w̄
)
∣

∣≤ p
(

x, y
)

[|z − z̄|+ |w − w̄ |] , (2.4)

where p ∈C
(

R2
+,R+

)

. Let ui (x, y)(i = 1,2) for x, y ∈ R+ be respectively, εi -approximate solutions

of equation (1.1) with

ui (x,0) =αi (x) ,ui

(

0, y
)

=βi

(

y
)

,ui (0,0) = 0, (2.5)
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where αi ,βi ∈C (R+,Rn) and

∣

∣α1 (x)−α2 (x)+β1

(

y
)

−β2

(

y
)
∣

∣+
∣

∣α′
1 (x)−α′

2 (x)
∣

∣≤ δ, (2.6)

where δ≥ 0 is a constant. Then

∣

∣u1

(

x, y
)

−u2

(

x, y
)∣

∣+
∣

∣D1u1

(

x, y
)

−D1u2

(

x, y
)∣

∣

≤ r
(

x, y
)

G
(

x, y
)

exp

(
∫x

0

∫y

0
p (s, t)G (s, t)d t d s

)

, (2.7)

for x, y ∈ R+, where

r
(

x, y
)

= δ+ (ε1 +ε2)
(

y +x y
)

, (2.8)

G
(

x, y
)

= exp

(
∫y

0
p (x,τ)dτ

)

. (2.9)

Proof. Since ui (x, y)(i = 1,2) for x, y ∈ R+ are respectively, εi -approximate solutions of equa-

tion (1.1) with (2.5), we have

∣

∣D2D1ui

(

x, y
)

− f
(

x, y,ui

(

x, y
)

,D1ui

(

x, y
))

∣

∣≤ εi . (2.10)

Keeping x fixed in (2.10), setting y = t and integrating both sides over t from 0 to y , we observe

that

εi y ≥

∫y

0

∣

∣D2D1ui (x, t )− f (x, t ,ui (x, t) ,D1ui (x, t))
∣

∣d t

≥

∣

∣

∣

∣

∫y

0

{

D2D1ui (x, t)− f (x, t ,ui (x, t ) ,D1ui (x, t ))
}

d t

∣

∣

∣

∣

=

∣

∣

∣

∣

D1ui

(

x, y
)

−α′
i (x)−

∫y

0
f
(

x, t ,ui (x, t ) ,D1ui

(

x, y
))

d t

∣

∣

∣

∣

. (2.11)

From (2.11) and using the elementary inequalities

|v − z| ≤ |v |+ |z| , |v |− |z| ≤ |v − z| , (2.12)

we observe that

(ε1 +ε2) y ≥

∣

∣

∣

∣

D1u1

(

x, y
)

−α′
1 (x)−

∫y

0
f

(

x, t ,u1 (x, t) ,D1u1

(

x, y
))

d t

∣

∣

∣

∣

+

∣

∣

∣

∣

D1u2

(

x, y
)

−α′
2 (x)−

∫y

0
f
(

x, t ,u2 (x, t) ,D1u2

(

x, y
))

d t

∣

∣

∣

∣

≥

∣

∣

∣

∣

{

D1u1

(

x, y
)

−α′
1 (x)−

∫y

0
f

(

x, t ,u1 (x, t) ,D1u1

(

x, y
))

d t

}

−

{

D1u2

(

x, y
)

−α′
2 (x)−

∫y

0
f
(

x, t ,u2 (x, t ) ,D1u2

(

x, y
))

d t

}∣

∣

∣

∣
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≥
∣

∣D1u1

(

x, y
)

−D1u2

(

x, y
)∣

∣−
∣

∣α′
1 (x)−α′

2 (x)
∣

∣

−

∫y

0

∣

∣ f
(

x, t ,u1 (x, t) ,D1u1

(

x, y
))

− f
(

x, t ,u2 (x, t) ,D1u2

(

x, y
))∣

∣d t . (2.13)

Keeping y fixed in (2.11), setting x = s and integrating both sides over s from 0 to x, we have

εi x y ≥

∫x

0

∣

∣

∣

∣

D1ui

(

s, y
)

−α′
i (s)−

∫y

0
f

(

s, t ,ui (s, t) ,D1ui

(

s, y
))

d t

∣

∣

∣

∣

d s

≥

∣

∣

∣

∣

∫x

0

{

D1ui

(

s, y
)

−α′
i (s)−

∫y

0
f

(

s, t ,ui (s, t) ,D1ui

(

s, y
))

d t

}

d s

∣

∣

∣

∣

=

∣

∣

∣

∣

ui

(

x, y
)

−αi (x)−βi

(

y
)

−

∫x

0

∫y

0
f
(

s, t ,ui (s, t) ,D1ui

(

s, y
))

d td s

∣

∣

∣

∣

. (2.14)

From (2.14) and using the elementary inequalities in (2.12), we observe that

(ε1 +ε2) x y ≥

∣

∣

∣

∣

u1

(

x, y
)

−
[

α1 (x)+β1

(

y
)]

−

∫x

0

∫y

0
f (s, t ,u1 (s, t) ,D1u1 (s, t))d t d s

∣

∣

∣

∣

+

∣

∣

∣

∣

u2

(

x, y
)

−
[

α2 (x)+β2

(

y
)]

−

∫x

0

∫y

0
f (s, t ,u2 (s, t) ,D1u2 (s, t))d t d s

∣

∣

∣

∣

≥

∣

∣

∣

∣

{

u1

(

x, y
)

−
[

α1 (x)+β1

(

y
)]

−

∫x

0

∫y

0
f (s, t ,u1 (s, t) ,D1u1 (s, t))d t d s

}

−

{

u2

(

x, y
)

−
[

α2 (x)+β2

(

y
)]

−

∫x

0

∫y

0
f (s, t ,u2 (s, t) ,D1u2 (s, t))d t d s

}∣

∣

∣

∣

≥
∣

∣u1

(

x, y
)

−u2

(

x, y
)∣

∣−
∣

∣

[

α1 (x)+β1

(

y
)]

−
[

α2 (x)+β2

(

y
)]∣

∣

−

∫x

0

∫y

0

∣

∣ f (s, t ,u1 (s, t) ,D1u1 (s, t))− f (s, t ,u2 (s, t) ,D1u2 (s, t))
∣

∣d t d s. (2.15)

Let w
(

x, y
)

=
∣

∣u1

(

x, y
)

−u2

(

x, y
)∣

∣+
∣

∣D1u1

(

x, y
)

−D1u2

(

x, y
)∣

∣ for x, y ∈ R+. From (2.13), (2.15)

and using the hypotheses, we observe that

w
(

x, y
)

≤ (ε1 +ε2)
(

y +x y
)

+
∣

∣

[

α1 (x)+β1

(

y
)]

−
[

α2 (x)+β2

(

y
)]∣

∣

+
∣

∣α′
1 (x)−α′

2 (x)
∣

∣+

∫y

0
p (x, t) w (x, t)d t +

∫x

0

∫y

0
p (s, t) w (s, t)d t d s

≤ r
(

x, y
)

+

∫y

0
p (x, t) w (x, t )d t +

∫x

0

∫y

0
p (s, t) w (s, t)d t d s, (2.16)

where r (x, y) is given by (2.8). Clearly r (x, y) is nonnegative and nondecreasing in each vari-

able x, y ∈ R+. Now an application of Lemma 1 to (2.16) yields (2.7). �

Remark 1. We note that the estimate obtained in (2.7) yields, not only the bound on the

difference between the two approximate solutions of equation (1.1) with (2.5), but also the

bound on the difference between their derivatives with respect to the first variable. If u1(x, y)

is a solution of equation (1.1) with (2.5) (when i = 1), then we have ε1 = 0 and from (2.7)

we see that u2

(

x, y
)

→ u1

(

x, y
)

as ε2 → 0 and δ → 0. Moreover, if we put (i ) ε1 = ε2 = 0 and
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α1 (x) =α2 (x) ,β1

(

y
)

=β2

(

y
)

, for x, y ∈ R+ in (2.7), then the uniqueness of solutions of equa-

tion (1.1) is established and (i i )ε1 = ε2 = 0 in (2.7), then we get the bound which shows the

dependency of solutions of equation (1.1) on given initial boundary values.

Now consider the IBVP (1.1)−(1.2) together with the following IBVP:

D2D1v
(

x, y
)

= f̄
(

x, y, v
(

x, y
)

,D1v
(

x, y
))

, (2.17)

v (x,0) = ᾱ (x) , v
(

0, y
)

= β̄
(

y
)

, v (0,0)= 0, (2.18)

where f̄ ∈C
(

R2
+×Rn ×Rn ,Rn

)

; ᾱ, β̄ ∈C (R+,Rn) .

In the next theorem we provide conditions concerning the closeness of solutions of IBVP

(1.1)−(1.2) and IBVP (2.17)−(2.18).

Theorem 2. Suppose that the function f in equation (1.1) satisfies the condition (2.4) and there

exist constants ε̄≥ 0, δ̄≥ 0 such that

∣

∣ f
(

x, y, z, w
)

− f̄
(

x, y, z, w
)
∣

∣ ≤ ε̄, (2.19)
∣

∣α(x)− ᾱ (x)+β
(

y
)

− β̄
(

y
)∣

∣+
∣

∣α′ (x)− ᾱ′ (x)
∣

∣ ≤ δ̄, (2.20)

where f ,α,β and f̄ , ᾱ, β̄ are as in IBVP (1.1)−(1.2) and IBVP (2.17)−(2.18). Let u(x, y) and

v(x, y) be respectively the solutions of IBVP (1.1)−(1.2) and IBVP (2.17)−(2.18) for x, y ∈ R+.

Then

∣

∣u
(

x, y
)

−v
(

x, y
)∣

∣+
∣

∣D1u
(

x, y
)

−D1v
(

x, y
)∣

∣

≤ q
(

x, y
)

G
(

x, y
)

exp

(
∫x

0

∫y

0
p (s, t)G (s, t)d t d s

)

, (2.21)

for x, y ∈ R+, where

q
(

x, y
)

= δ̄+ ε̄
(

y +x y
)

, (2.22)

and G(x, y) is given by (2.9).

Proof. Let z
(

x, y
)

=
∣

∣u
(

x, y
)

−v
(

x, y
)∣

∣+
∣

∣D1u
(

x, y
)

−D1v
(

x, y
)∣

∣ for x, y ∈ R+. Using the facts

that u(x, y), v(x, y) are the solutions of IBVP (1.1)−(1.2), IBVP (2.17)−(2.18) and hypotheses,

we observe that

z
(

x, y
)

≤
∣

∣α(x)− ᾱ(x)+β
(

y
)

− β̄
(

y
)∣

∣+
∣

∣α′ (x)− ᾱ′ (x)
∣

∣

+

∫y

0

∣

∣ f (x, t ,u (x, t) ,D1u (x, t))− f (x, t , v (x, t) ,D1v (x, t))
∣

∣d t

+

∫y

0

∣

∣ f (x, t , v (x, t) ,D1v (x, t))− f̄ (x, t , v (x, t) ,D1v (x, t))
∣

∣d t
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+

∫x

0

∫y

0

∣

∣ f (s, t ,u (s, t) ,D1u (s, t))− f (s, t , v (s, t) ,D1v (s, t))
∣

∣d t d s

+

∫x

0

∫y

0

∣

∣ f (s, t , v (s, t) ,D1v (s, t))− f̄ (s, t , v (s, t) ,D1v (s, t))
∣

∣d t d s

≤ δ̄+

∫y

0
p (x, t) z (x, t)d t +

∫y

0
ε̄d t +

∫x

0

∫y

0
p (s, t) z (s, t)d t d s +

∫x

0

∫y

0
ε̄d t d s

= q
(

x, y
)

+

∫y

0
p (x, t ) z (x, t)d t +

∫x

0

∫y

0
p (s, t) z (s, t)d t d s, (2.23)

where q(x, y) is given by (2.22). Clearly q(x, y) is nonnegative and nondecreasing in each

variable x, y ∈ R+. Now an application of Lemma 1 to (2.23) yields (2.21).

Remark 2. We note that the result given in Theorem 2 relates the solutions of IBVP (1.1)−(1.2)

and IBVP (2.17)−(2.18) in the sence that if f is close to f̄ ; α(x),β
(

y
)

are close to ᾱ (x), β̄
(

y
)

and

α′ (x) is close to ᾱ′ (x) for x, y ∈ R+, then the solutions of IBVP (1.1)−(1.2) and IBVP (2.17)−(2.18)

are also close together.

Next, consider the IBVP (1.1)−(1.2) and sequence of IBVPs:

D2D1u
(

x, y
)

= fk

(

x, y,u
(

x, y
)

,D1u
(

x, y
))

, (2.24)

u (x,0) = αk (x) ,u
(

0, y
)

=βk

(

y
)

,u (0,0)= 0, (2.25)

for x, y ∈ R+ and k = 1,2, . . ., where fk ∈C
(

R2
+×Rn ×Rn ,Rn

)

,αk ,βk ∈C (R+,Rn) .

As a consequence of Theorem 2, the following corollary holds.

Corollary. Suppose that the function f in equation (1.1) satisfies the condition (2.4) and there

exist constants ε̄k ≥ 0, δ̄k ≥ 0 such that

∣

∣ f
(

x, y, z, w
)

− fk

(

x, y, z, w
)∣

∣≤ ε̄k , (2.26)
∣

∣αk (x)−α(x)+βk

(

y
)

−β
(

y
)
∣

∣+
∣

∣α′
k (x)−α′ (x)

∣

∣≤ δ̄k , (2.27)

with ε̄k → 0 and δ̄k → 0 as k →∞, where f ,α,β and fk ,αk ,βk are as in IBVP (1.1)−(1.2) and

IBVPs (2.24)−(2.25). If uk (x, y)(k = 1,2, . . .) and u(x, y) are respectively the solutions of IBVPs

(2.24)−(2.25) and IBVP (1.1)−(1.2) for x, y ∈ R+, then uk

(

x, y
)

→ u
(

x, y
)

for x, y ∈ R+ as k →∞.

Proof. For k = 1,2, . . ., the conditions of Theorem 2 hold. As an application of Theorem 2

yields
∣

∣uk

(

x, y
)

−u
(

x, y
)∣

∣≤ q̄
(

x, y
)

G
(

x, y
)

exp

(
∫x

0

∫y

0
p (s, t)G (s, t)d t d s

)

, (2.28)

for x, y ∈ R+ and k = 1,2, . . ., where

q̄
(

x, y
)

= δ̄k + ε̄k

(

y +x y
)

. (2.29)

The required result follows from (2.28).
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Remark 3. We note that the Corollary provides sufficient conditions that ensures, solutions

of IBVPs (2.24)−(2.25) will converge to the solution of IBVP (1.1)−(1.2).

3. Discrete analogues

Let N0 = {0,1,2, . . .} be a given subset of R and D(A,B ), denotes the class of discrete

functions from the set A to the set B . For functions z(m) and w (m,n) for m,n ∈ N0, we de-

fine the operators ∆,∆1,∆2 by ∆z (m)= z (m +1)− z (m) , ∆1w (m,n) = w (m +1,n)−w (m,n) ,

∆2w (m,n) = w (m,n +1)− w (m,n) , and ∆2∆1w (m,n) = ∆2 (∆1w (m,n)) . We use the usual

conventions that empty sums and products are taken to be 0 and 1 respectively. We now ex-

plore in brief our idea to obtain results similar to those given above concerning the discrete

analogue of IBVP (1.1)−(1.2) which can be written as

∆2∆1u (m,n) = f (m,n,u (m,n) ,∆1u (m,n)) , (3.1)

u (m,0) = α(m) ,u (0,n) =β (n) ,u (0,0) = 0, (3.2)

for m,n ∈ N0, where f ∈ D
(

N 2
0 ×Rn ×Rn ,Rn

)

,α,β ∈ D (N0,Rn) . In this section we formulate

in brief the discrete analogues of Lemma 1 and Theorems 1 and 2, whose proofs can be com-

pleted by following the idea used to prove the above results and closely looking at the similar

results given in [6,9].

Let u ∈ D
(

N 2
0 ,Rn

)

and ∆2∆1u (m,n) for m,n ∈ N0 exists and satisfies the inequality

∣

∣∆2∆1u (m,n)− f (m,n,u (m,n) ,∆1u (m,n))
∣

∣≤ ε, (3.3)

for a given constant ε ≥ 0, where it is supposed that (3.2) holds. Then we call u(m,n) an ε-

approximate solution to the equation (3.1).

Lemma 2. Let u (m,n) , a (m,n) ,b (m,n) ,e (m,n) ∈ D
(

N 2
0 ,R+

)

; e(m,n) be nondecreasing in

each variable m,n ∈ N0 and

u (m,n) ≤ e (m,n)+
n−1
∑

t=0

a (m, t )u (m, t)+
m−1
∑

s=0

n−1
∑

t=0

b (s, t)u (s, t) , (3.4)

for m,n ∈ N0, then

u (m,n) ≤ e (m,n) H̄ (m,n)
m−1
∏

s=0

[

1+
n−1
∑

t=0

b (s, t) H̄ (s, t)

]

, (3.5)

for m,n ∈ N0, where

H̄ (m,n) =
n−1
∏

t1=0

[1+a (m, t1)] . (3.6)
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Theorem 3. Suppose that the function f in equation (1.1) satisfies the condition

∣

∣ f (m,n, z, w)− f (m,n, z̄, w̄)
∣

∣≤ p (m,n) [|z − z̄|+ |w − w̄|] , (3.7)

where p ∈ D
(

N 2
0 ,R+

)

. Let ui (m,n)(i = 1,2) for m,n ∈ N0 be respectively εi -approximate solu-

tions of equation (3.1) with

ui (m,0) =αi (m) ,ui (0,n)=βi (n) ,ui (0,0) = 0, (3.8)

where αi ,βi ∈ D (N0,Rn) and

∣

∣α1 (m)−α2 (m)+β1 (n)−β2 (n)
∣

∣+|∆α1 (m)−∆α2 (m)| ≤ δ, (3.9)

where δ≥ 0 is a constant. Then

|u1 (m,n)−u2 (m,n)|+ |∆1u1 (m,n)−∆1u2 (m,n)| (3.10)

≤ a (m,n)Ḡ (m,n)
m−1
∏

s=0

[

1+
n−1
∑

t=0

p (s, t)Ḡ (s, t)

]

, (3.11)

for m,n ∈ N0, where

a (m,n) =δ+ (ε1 +ε2)(n +mn) , (3.12)

and

Ḡ (m,n) =
n−1
∏

t1=0

[

1+p (m, t1)
]

. (3.13)

Next, we consider the IBVP (3.1)−(3.2) together with the following IBVP:

∆2∆1v (m,n) = f̄ (m,n, v (m,n) ,∆1v (m,n)) , (3.14)

v (m,0) = ᾱ (m) , v (0,n) = β̄ (n) , v (0,0)= 0, (3.15)

where f̄ ∈ D
(

N 2
0 ×Rn ×Rn ,Rn

)

, ᾱ, β̄ ∈ D (N0,Rn) .

Theorem 4. Suppose that the function f in equation (3.1) satisfies the condition (3.7) and there

esist constants ε̄≥ 0, δ̄≥ 0 such that

∣

∣ f (m,n, z, w)− f̄ (m,n, z, w)
∣

∣ ≤ ε̄, (3.16)
∣

∣α(m)− ᾱ(m)+β (n)− β̄ (n)
∣

∣+|∆α(m)−∆ᾱ(m)| ≤ δ̄, (3.17)

where f ,α,β and f̄ , ᾱ, β̄ are as in IBVP (3.1)−(3.2) and IBVP (3.14)−(3.15). Let u(m,n) and

v(m,n) be respectively the solutions of IBVP (3.1)−(3.2) and IBVP (3.14)−(3.15) for m,n ∈ N0.

Then

|u (m,n)−v (m,n)|+ |∆1u (m,n)−∆1v (m,n)|
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≤ b (m,n)Ḡ (m,n)
m−1
∏

s=0

[

1+
n−1
∑

t=0

p (s, t)Ḡ (s, t)

]

, (3.18)

for m,n ∈ N0, where

b (m,n) = δ̄+ ε̄ (n +mn) , (3.19)

and Ḡ (m,n) is given by (3.13).

Remark 4. We note that the idea used in this paper can be extended to study the approximate

solutions of the following hyperbolic equations

D2D1u
(

x, y
)

= f
(

x, y,u
(

x, y
)

,D2u
(

x, y
))

, (3.20)

D2D1u
(

x, y
)

= f
(

x, y,u
(

x, y
)

,D1u
(

x, y
)

,D2D1u
(

x, y
))

, (3.21)

D2D1u
(

x, y
)

= f
(

x, y,u
(

x, y
)

,D2u
(

x, y
)

,D2D1u
(

x, y
))

, (3.22)

D2D1u
(

x, y
)

= f
(

x, y,u
(

x, y
)

,D2D1u
(

x, y
)

,Eu
(

x, y
))

, (3.23)

with

Eu
(

x, y
)

=

∫x

0

∫y

0
g

(

x, y,σ,τ,u (σ,τ) ,D2D1u (σ,τ)
)

dτdσ, (3.24)

for x, y ∈ R+, with the given initial boundary conditions in (1.2), and their discrete analogues

by making use of the suitable variants of the inequalities given in Lemmas 1 and 2 (see also

[4, 5, 6, 7]). The details of the formulations of such results are very close to those given above

with suitable modifications. Here we omit the details.

References

[1] A. Alexiewicz and W. Orlicz, Some remarks on the existence and uniqueness of solutions of the hyperbolic

equation ∂2z
∂x∂y

= f
(

x, y, z, ∂z
∂x

, ∂z
∂y

)

, Studia Math., 15(1956), 201–215.

[2] L. Byszewski, Existence and uniqueness of solutions of nonlocal problems for hyperbolic equation uxt =

F (x, t ,u,ux ) , J. Appl. Math. Stochastic Analysis, 3(1990), 163–168.

[3] J. Kisynski and A. Pelczar, Comparison of solutions and successive approximations in the theory of equation
∂2z
∂x∂y

= f
(

x, y, z, ∂z
∂x

, ∂z
∂y

)

, Dissertations Mathematicae, 76(1970), 1–77.

[4] B. G. Pachpatte, Inequalities for Finite Difference Equations, Marcel Dekker Inc., New York, 2002.

[5] B. G. Pachpatte, Integral and Finite Difference Inequalities and Applications, North-Holland Mathematics

Studies, Vol. 205, Elsevier Science B.V., Amsterdam, 2006

[6] B. G. Pachpatte, On a certain finite difference equation in two independent variables, Bul. Inst. Polit. Iaşi
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