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JUST EXCELLENCE AND VERY EXCELLENCE IN GRAPHS

WITH RESPECT TO STRONG DOMINATION

C. V. R. HARINARAYANAN, C. Y. PONNAPPAN, S. P. SUBBIAH,
R. SUNDARESWARAN AND V. SWAMINATHAN

Abstract. A graph G is said to be excellent with respect to strong domination if each u ∈ V (G),

belongs to some γs-set of G. G is said to be just excellent with respect to strong domination if

each u ∈ V (G) is contained in a unique γs-set of G. A graph G which is excellent with respect

to strong domination is said to be very excellent with respect to strong domination if there is

a γs-set D of G such that to each vertex u ∈ V − D, there exists a vertex v ∈ D such that

(D − {v}) ∪ {u} is a γs-set of G. In this paper we study these two classes of graphs. A strong

very excellent graph is said to be rigid very excellent with respect to strong domination if the

following condition is satisfied. Let D be a very excellent γs-set of G. To each u 6∈ D, let

E(u, D) = {v ∈ D : (D − {v}) ∪ {u} is a γs-set of G}. If |E(u, D)| = 1 for all u 6∈ D then D is

said to be a rigid very excellent γs-set of G. If G has at least one rigid very excellent γs-set of G

then G is said to be a rigid very excellent graph with respect to strong domination (or) a strong

rigid very excellent graph. Some results regarding strong very excellent graphs are obtained.

Introduction

Prof. N. Sridharan and M. Yamuna have introduced the concepts of just excellence
and very excellence in graphs. A graph G is said to be excellent if given any vertex u,

there is a γ-set of G containing u. A graph G is said to be just excellent if for each vertex
u ∈ V , there is a unique γ-set of G containing u. A graph G is very excellent if G is
excellent and if there is a γ-set S of G such that to each vertex u ∈ V − S, there exists
a vertex v ∈ S such that (S − {v}) ∪ {u} is a γ-set of G. A γ-set S of G satisfying this

property is called a very excellent γ-set of G.

Prof. E. Sampathkumar and Pushpalatha have introduced the concept of Strong
(weak) domination. A subset D of V (G) is called a strong dominating set if for every
vertex v ∈ V − D, there exists u ∈ D such that uv ∈ E(G) and deg u ≥ deg v. A strong

dominating set of minimum cardinality is called a minimum strong dominating set and
its cardinality is called the strong domination number. The strong domination number
is denoted by γs and a minimum strong dominating set is called a γs-set.

A subset D of V (G) is called a weak dominating set of G if for every vertex v ∈ V −D,

there exists u ∈ D such that uv ∈ E(G) and deg u ≤ deg v. A weak dominating set of
minimum cardinality is called a minimum weak dominating set and its cardinality is
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called the weak domination number. The weak domination number is denoted by γw and
a minimum weak dominating set is called a γw-set.

Definition 1. A graph G is said to be strong excellent γs-excellent, if for a given
vertex u of G there exists a γs-set of G containing u.

Definition 2. A graph G is said to be strong just excellent (or) shortly γs-just
excellent if for every u ∈ V , there is a unique γs-set containing u.

Definition 3. A graph G is said to be strong very excellent (or) shortly γs-very
excellent if there is a γs-set S of G such that to each vertex u 6∈ S, there exists v ∈ S

with (S − {v}) ∪ {u} a γs-set of G. A γs-set S of G satisfying this property is called a

very excellent γs-set of G.

Definition 4. A graph G is said to be strong rigid very excellet (or) shortly γs-rigid
very excellent, if G is strong very excellent and for any very excellent γs-set D of G and
for any u 6∈ D there exists a unique v ∈ D such that (D − {v}) ∪ {u} is a γs-set.

Definition 5. Let u and v belong to V (G). Then degs(u) = |Ns(u)| where Ns(u) =
{v ∈ V : uv ∈ E(G), deg v ≥ deg u}. Similarly Nw(u) is defined as Nw(u) = {v ∈ V :
uv ∈ E(G), deg v ≤ deg u}. dw(u) is defined as dw(u) = |Nw(u)|. u is said to be a
strong isolate if Ns(u) = φ. Similarly a weak isolate can be defined.

Definition 6. δs(G) = min
u∈V

(ds(u)), ∆s(G) = max
u∈V

(ds(u)), δw(G) = min
u∈V

(dw(u)) and

∆w(G) = max
u∈V

(dw(u)).

Definition 7. If D is a γs-set of G, then PNw[u, D] = {v ∈ V (G) : v is strongly
dominated by u and v is not strong dominated by D − {u}} = Nw[u] − Nw[D − {u}].
PNw(u, D) is defined as Nw(u) − Nw[D − {u}]. Note that u ∈ PNw[u, D] and u 6∈
PNw(u, D).

Example 1. Any γ-excellent regular graph is γs-excellent.

Example 2. Any double star Kr,r is γs-rigid excellent but not γ-rigid excellent.

Example 3. Kn is γs-very excellent.

Example 4. G = is γs-very excellent, since {1, 2, 3, 4} is a γs-set.
{1, 3, 4, 5}, {1, 2, 4, 6}, {1, 2, 3, 7} are γs-sets. G is not γ-very excellent.

Example 5. G = This is γ-just excellent but not γs-just excellent.
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Example 6. G = is γs-just excellent, since {1, 3, 6}, {5, 8, 9} and
{2, 4, 7} are γs-sets.

1. Just Excellent Graphs

Observation 1. If G is γs-just excellent and G 6= Kn then Nw[u] 6= Nw[v] for any

u, v ∈ V (G), where {Nw[u] = {{u} ∪ {v ∈ V : uv ∈ E(G); d(u) ≥ d(v)}}.

Proof. Since G is γs-just excellent, there exists a unique γs-set say D containing u.

Suppose there exists a v ∈ V (G) such that Nw[u] = Nw[v]. Then (S − {u}) ∪ {u} is a
γs-set. Since G 6= Kn and since any non-regular graph with a vertex of degree (n − 1)
is not γs-rigid excellent, |S| > 1. Therefore, every vertex of S − {u} lies in at least two

γs-excellent sets namely S and (S − {u}) ∪ {v} contradicting the γs-rigid excellence of
G. Hence the observation.

Observation 2. If G is γs-excellent then δs(u) ≥ n
γs(G) − 1.

Proof. Let us assume that V = S1 ∪ S2 ∪ · · · ∪ Sm where each Si is a γs-set. Let
m ≥ 2. Let u ∈ Sj . Since each Si is a γs-set, u is strongly dominated by some point

v ∈ Si, i 6= j. Hence δs(u) ≥ m − 1 = n
γS(G) − 1. If m = 1 the V is a γs-set. Hence G is

totally disconnected. Therefore, δs(u) = 0 = n
n
− 1 = n

γs(G) − 1.

Observation 3. If G 6= K2 and G 6= Kn and if G is γs-just excellent then δs(u) ≥ 2
(In particular any tree 6= K2 is not γs-just excellent).

Proof. Let G 6= K2, G 6= Kn. Let δs(u) = 1 for some u ∈ V (G). Let Ns(u) = {v}.
Since G is just excellent there exists a γs-set D of G, containing u. If v ∈ D, then there

are two γs-sets containing v, since D and (D − {u}) ∪ {v} are two γs-sets containing v.
Therefore, v 6∈ D, since G 6= K2, |D| ≥ 2. Therefore, (D − {u}) ∪ {v} is a γs-set or G

and hence every element of D−{u} is contained in at least two γs-sets, a contradiction.

Lemma 1. Every γs-just excellent graph G 6= Kn is connected.

Proof. If G is not connected, by hypothesis, one of the connected components say G1

of G contains more than one vertex. Since G is γs-just excellent, G1 is γs-just excellent

and G1 is connected, γs(G1) < |V (G1)|. Since G1 is γs-just excellent, G1 has at least
two γs-sets. Let S1, S2 be two γs-sets of G1. Let D be a γs-set of G − G1. Then both

D ∪ S1 and D ∪ S2 are γs-set of G containing D, a contradiction to the fact that G is
γs-just excellent. Hence G is connected.

Lemma 2. If G is strong just excellent and G 6= Kn, then G has no strong isolates.
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Proof. Since G is strong just excellent and G 6= Kn, by the above lemma, G is

connected. Then γs(G) < |V (G)|. Therefore G has at least two γs-sets. If G has a

strong isolate, then this belongs to every γs-set, a contradiction. Hence G has no strong

isolates.

Definition 8. Let D be a subset of V . Then 〈D〉, called the induced subgraph of

G, is defined as the subgraph with vertex set D and two vertices in this subgraph are

adjacent if they are adjacent in G.

Lemma 3. If G 6= Kn and G is γs-just excellent then |PNw(u, D)| ≥ 2 for all u ∈ D,

where D is a γs-set of G, and u is not a strong isolate of 〈D〉.

Proof. Let D be a γs-set of G. If PNw(u, D) = φ, then (D − {u}) ∪ {w} is

also a γs-set of G, for any w in Ns(u). (Note that Ns(u) 6= φ as G has no strong

isolates). If D = {u} then, G = Kn a contradiction. Therefore, D−{u} contains a point

and hence every point in D − {u} is contained in at least two γs-sets, namely D and

(D−{u})∪{w}, a contradiction since G is strong just excellent. Suppose |PNw(u, D)| =

1. Let PNw(u, D) = {w}.

Then (D−{u})∪{w} is a γs-set (since u is not a strong isolate of 〈D〉). Noting that

D has at least two points we get that every vertex in (D−{u}) is in at least two γs-sets,

namely D and (D − {u}) ∪ {w}, a contradiction. Hence the theorem.

Remark 1. If G is γs-just excellent and if S is a γs-set of G, then a vertex in V − S

may be strong dominated by more than one vertex of S. For example, in Example 6, the

vertex 2 is strong dominated by two vertices of the γs-set {1, 3, 6}.

Theorem 1. Let G 6= Kn be just excellent. Let γs(G) = k. Then ∆w(G) ≤ n − k.

Proof. Let u ∈ V (G). Let S be a γs-set of G which contains u. |PNw(V − S)| ≥ 1

for all v ∈ S. Therefore, u is not strong adjacent to any point in
⋃

v 6=u,v∈S PNw(v, S).

Therefore, dw(u) ≤ (n − 1) − (k − 1) = n − k. Therefore, ∆w(G) ≤ n − k.

Definition 9. The strong domatic number of G, denoted by ds(G) is defined as the

maximum cardinality of partition of V into strong dominating sets of G. Note that since

V is a strong dominating set ds(G) ≥ 1.

Lemma 4. The graph G is just excellent if and only if all of the following conditions

hold.

1. γs(G) divides n.

2. G has exactly n
γs(G) distinct γs-sets.

3. ds(G) = n
γs(G) .

Proof. Let G be just excellent. Let S1, S2, S3, . . . , Sm be the collection of distinct

γs-sets of G. Then S1, S2, S3, . . . , Sm is a partition of V into m γs-sets. Therefore
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mγs(G) = n. Therefore (1) and (2) follows. Since S1, S2, S3, . . . , Sm provide a domatic
partition with m = n

γs(G) we get that ds(G) = n
γs(G) .

Conversely assume that G satisfies conditions 1-3. Then mγs(G) = n. Since ds(G) =
n

γs(G) = m, there exists a decomposition of V (G) into m strong dominating sets of

G, say S1, S2, S3, . . . , Sm. Then |Si| ≥ γs. Therefore n =
∑m

i=1 |Si| ≥ mγs. There-

fore mγs(G) =
∑i=1

m |Si| ≥ mγs. Therefore each Si is a γs-set. By hypothesis G has
exactly n

γs(G) distinct γs-sets. That is G has exactly m distinct γs-sets. Therefore,
S1, S2, S3, . . . , Sm are precisely m distinct γs-sets. Also each vertex belongs to exactly
one Si (since {S1, S2, S3, . . . , Sm} is a partition of V ). Therefore, G is γs-just excellent.

Theorem 2. Let u ∈ V . Let D be the unique γs-set containing u. Let t be the

number of strong isloates of 〈D〉.

Then dw(u) ≤

{

n − 2γs + 2t − 1 if u is not a strong isolate of D

n − 2γs + 2t − 3 if u is a strong isolate of D

Proof. For any non-strong isolate v of D, |PNw(v, D)| ≥ 2. Also, if v ∈ D and if
x ∈ PNw(v, D) then u does not strong dominate x.

Therefore dw(u) ≤

{

(n − 1) − 2(γs − 1 − t) + t if u is not a strong isolate,
(n − 1) − 2[γs − 1 − (t − 1)] + (t − 1) if u is a strong isolate.

Therefore dw(u) ≤

{

n − 2γs + 3t + 1 if u is not a strong isolate,

n − 2γs + 3t − 2 if u is a strong isolate.

Corollary 1. If D has no strong isolates then dw(u) ≤ n − 2γs + 1.

Theorem 3. Let G 6= Kn be just excellent. Then γs(G) ≤ n
3 .

Proof. Suppose ds(G) = 2. Then V = S1∪S2 where S1 and S2 are distince γs-sets of
G. For any u ∈ S1, PNw(u, S1) ⊆ S2. Suppose for some u ∈ S1, |PNw(u, S1)| ≥ 2. Then
|S2| ≥ |S1| + 1. But 2γs = |S1| + |S2| ≥ 2|S1| + 1 ≥ 2γs + 1, a contradiction. Therefore,
every point of S1 is a strong isolate of S1. Similarly every point of S2 is a strong isolate
of S2. Suppose |PNw(u, S1)| ≥ 2 for some point u ∈ S1, by the above argument we get
that 2γs ≥ γs + 1, a contradiction. Therefore, |PNw(u, S1)| = 1 for u ∈ S1. Similarly
this result is true for S2 also.

Let S1 = {u1, u2, u3, . . . , uk}, S2 = {v1, v2, v3, . . . , vk}. Without loss of generality let
{vi} = PNw(ui, S1). Then d(ui) > d(vi). If d(ui) = d(vi) then (S1 −{ui})∪{vi} is a γs-
set and so, every point of (S1−{ui}) lies in two γs-sets namely S1 and (S1−{ui})∪{vi},
a contradiction.

Suppose ui and uj are adjacent, as ui and uj are strong isolates, d(ui) > d(uj) and
d(uj) > d(ui), a contradiction. Therefore, ui and uj are not adjacent. That is 〈S1〉
is totally disconnected. The same is true for S2 also. Let u1, u2, . . . , uk be such that
d(u1) ≤ d(u2) ≤ · · · ≤ d(uk). We have d(u1) > d(v1). Also d(v1) > d(us) for some s > 1
(where {us} = PHw(v1, S2)). Therefore, d(u1) < d(us) < d(v1) < d(u1), a contradiction.
Therefore ds(G) ≥ 3. Since n = γs(G)ds(G), we get that γs(G) = n

ds(G) ≤ n
3 .
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Remark 2. For C3n, γs(C3n) = n and C3n is γs-just excellent.

Definition 10. Let u ∈ V (G). A subset S of minimum cardinality such that S

strong dominates G − {u} is called a γu
s (G, u) set of G.

Definition 11. u ∈ V is said to be a γs level vertex of G, if γu
s (G, u) = γs(G). u is

said to be a γs-non-level vertex of G, if γu
s (G, u) = γs(G) − 1.

Example 7. G : G − 2 :

Example 8. G : G − 6 :

In Example 7, {2, 3, 4} and {3, 4, 5} are subsets of V of minimum cardinality which

dominate G − {2}. Therefore γ2
s(G, 2) = 3. 2 is a γs-non level vertex of G. In Example

8 γs(G) = γ8
s (G, 8) = 5. Therefore 8 is a γs-level vertex.

Theorem 4. Let G be a γs-just excellent graph, G 6= Kn. Then every vertex u is a

γs-level vertex and γs(G − {u}) = γs(G).

Proof. If G = Kn, the theorem is obviously true. Let G 6= Kn and G 6= Kn. Let u

be a vertex in G. Since G is γs-just excellent, there exists a γs-set S of G not containing

u. Clearly S strong dominates G−{u}. Therefore, γs(G−{u}) ≤ |S| ≤ γs(G). Suppose

γs(G − {u}) < γs(G). Let T be a γs-set of G − {u}. Then T ∪ {v} is a γs-set for G,

for every v ∈ Ns[u]. Ns[u] contains at least two points, since u is not a strong isolate.

Therefore, there exists a point in Ns[u] different from u which strong dominates u. Let

v ∈ Ns(u). Then T ∪{v} and T ∪{u} are γs-sets containing T . Therefore, every element

of T is contained in at least two rs-sets of G, a contradiction to γs-just excellence of G.

Therefore, γs(G − {u}) = γs(G).

Suppose γu
s (G, u) < γs(G). Let S ⊆ V be a γu

s (G, u)-set of G. If u ∈ S, then S is

γs-set of G, a contradiction. Therefore, u 6∈ S. Therefore S is a strong dominating set for

G−u. Therefore, γs(G−{u}) ≤ |S| < γs(G), a contradiction. Since γs(G−{u}) = γs(G),

γu
s (G, {u}) = γs(G). Hence the theorem.

2. Strong Very Just Excellent Graphs

We recall the definition of strong very excellent (or) γs-very excellent graphs.
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A strong excellent graph G is said to be strong very excellent if there is a γs-set S of G

such that to each vertex u ∈ V −S, there exists a vertex v in S such that (S−{v})∪{u}

is a γs-set of G. A γs-set of G satisfying the above property is called very just excellent

γs-set of G.

In first example, the graph is strong very just excellent and {1, 2, 3, 4} is a very just

excellent γs-set. In second example {1, 3}, {2, 3}, {2, 4} is very excellent and {2, 3} is

very just excellent γs-set.

Theorem 5. Pn is γs-very excellent if and only if n = 2 or n = 4.

Proof. It has already been proved in [2] that Pn is γs-excellent if and only if n =

2 or n ≡ 1 (mod 3). P2, P4 are obviously γs-very excellent. Consider a path Pn :

v1, v2, v3, . . . , vn where n = 3k+1, k ≥ 2. Let S be any γs-set for Pn. Then at least γs−2

vertices are isolated in 〈S〉. To each u ∈ S, let PNw(u) = {v ∈ V (Pn) : Ns(v)∩S = {u}}.

Suppose |PNw(u)| = 2 for some u ∈ S. Let vi be the point in S such that |PNw(vi)| = 2,

2 ≤ i ≤ 3k (Note that d(u) ≤ 2 for all u ∈ V (Pn)).

Subcase(1):

Suppose i = 2. Since v1 is strongly dominated only by v2 in S, S−{v2}∪{vj}, j 6= 1

is not a strong dominating set. Also (S−{v2})∪{v1} is also not a strong dominating set.

(For, since v1, v3 ∈ PNw(v2). v3 is a weak private neighbour of v2. Since v2 is dropped

the newly introduced point v1 must dominate v3 strongly which is not true since v1 is not

even adjacent to v3). This contradicts the fact that S is a strong very excellent γs-set.

By similar reasoning would prove for i 6= 3k.

Subcase(2):

Let 2 < i < 3k. It is enough, if we prove for 2 < i < 3k+1
2 (a similar reasoning

would prove for 3k > 1 > 3k+1
2 ). As |PNw(vi)| = 2, vi−1, vi+1 ∈ PNw(vi). vi+2 6∈ S

(for if vi+2 ∈ S, then vi+1 is not in the weak private neighbour of vi+2, a contradiction.)

Clearly vi+3 ∈ S. If vi+3 is an isolate in 〈S〉, then (S − {vi+3}) ∪ {vi+1} does not

strong dominate vi+3. Then for inclusion of vi+1 in S, there exists no point in S whose

deletion will result in a γs-set. Therefore, vi+3 is not an isolate in 〈S〉. Therefore,

vi+4 ∈ S. Since n = 3k + 1, i + 3 and i + 4 cannot be the last two points of the path.

Therefore, i + 4 ≤ n − 1 and vi+5 ∈ PNw(vi+4). Let Q1 denote v1, v2, . . . , vi−2 path

and Q2 denote vi+6, vi+7, . . . , vn. (Any one of the paths Q1 or Q2 may be empty). Then
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(S−{vi, vi+3, vi+4}) dominates the vertices of Q1 and Q2. As n ≥ 10, Q1 6= φ or Q2 6= φ.
|Q1 ∪ Q2| = n − 7 = 3k + 1 − 7 = 3k − 6 ≡ 0(mod3).

|S − {vi, vi+3, vi+4}| = k − 2. And so no vertex in Q1 is adjacent to any vertex in
Q2, {vi, vi+3, vi+4} does not dominate any vertex in Q1 ∪ Q2. The set S ∩ Q1 strong
dominates Q1 and S ∩ Q2 strong dominates Q2. So

|S ∩ Q1| =
⌈ |Q1|

3

⌉

; |S ∩ Q2| =
⌈ |Q2|

3

⌉

.

|S ∩ (Q1 ∪ Q2)| = k − 2 =
3k + 1 − 7

3
=

∣

∣

∣

Q1 ∪ Q2

3

∣

∣

∣
.

We have |S∩Q1|+|S∩Q2| = |S∩{(Q1∪Q2)}| = |Q1∪Q2|
3 . That is, |S∩Q1|+|S∩Q2| =

|Q1∪Q2|
3 . That is,

⌈

|Q1|
3

⌉

+
⌈

|Q2|
3

⌉

= |Q1∪Q2|
3 . Suppose |Q1| and |Q2| are not both divisible

by 3. Let |Q1| = 3l+1 or 3l+2. Let |Q2| = 3m+2 or 3m+1 (note that since |Q1|+ |Q2|
is divisible by 3, |Q1| = 3l + 1 and |Q2| = 3m + 2 or |Q1| = 3l + 2 and |Q2| = 3m + 1).

Therefore,
⌈

|Q1|
3

⌉

+
⌈

|Q2|
3

⌉

= l+1+m+1 = l+m+2. |Q1∪Q2|
3 = 3l+1+3m+2

3 = l+m+1,

a contradiction.

Suppose |Q1| is not divisible by 3 and |Q2| is divisible by 3. Let |Q1| = 3l+1 or 3l+2

and |Q2| = 3m.
⌈

|Q1|
3

⌉

+
⌈

|Q2|
3

⌉

= l + 1 + m + 1. |Q1∪Q2|
3 = 3l+1+3m

3 or 3l+3m+2
3 is not

an integer, a contradiction. Similarly |Q1| is divisible by 3 and |Q2| is not divisible by 3
is also not true. Therefore, |Q1| and |Q2| are divisible by 3. If Q1 6= φ then v2 ∈ S and
v1, v3 ∈ PNw(v2). Then (S − {w}) ∪ {v1} is not a strong dominating set for any w ∈ S.

If Q2 6= φ, then as |Q2| is divisible by 3, we get that i + 4 or i + 10 or · · · or i + 3t + 1,
(t ≥ 2) will be the last but one point of the path Pn. Therefore, i + 3t + 2 belongs to S.
That is, vn−1 belongs to S and vn−2, vn ∈ PNw(vn−1).

In the case for the inclusion of vn ∈ S, there exists no point in S whose deletion will

result in a γs-set, a contradiction. Therefore, if S is a strong very excellent set, then

|PNw(u)| ≤ 1 (1)

for every u ∈ S. Let n ≥ 13. Let P ′ be the v1 − v10 path and P ′′ be the v11 − vn path.
If S ∩ P ′ does not strong dominate any of the vertices of P ′′, then S ∩ P ′′ is a γs-set for

P ′′. As |p′′| ≡ 0(mod 3) and {vj : j = 3t, 4 ≤ t ≤ k} is the unique γs-set for P ′′. It
follows that vn−1 ∈ S and therefore, |PNw(vn−1)| = 2, a contradiction to (1). If S ∩ P ′

dominates a vertex of P ′′, then v10 ∈ S. Hence |S ∩ P ′| = 4. If v11 ∈ PNw(v10), then
S∩P ′ is a γs-set for v1−v11 path. Then PNw(u) = 2 for at least two points in S∩P ′′, a

contradiction to (1). If v11 6∈ PNw(v10), then v12 ∈ S and S ∩P ′′. Therefore, S contains
vn−1 and |PNw(vn−1)| = 2, a contradiction to (1).

If n = 10, then the γs-sets are S1 = {v2, v5, v8, v10}, S2 = {v2, v5, v8, v9}, S3 =

{v1, v3, v6, v9}, S4 = {v2, v5, v7, v9}, S5 = {v2, v4, v7, v9}. In S1 and S2, |PNw(v5)| = 2.
In S3, |PNw(v3)| = |PNw(v6)| = 2. In S5, the inclusion of v1 does not result in a
γs-set for the deletion of any element of S5. Therefore, P10 is not γs-very excellent.
If n = 7, then the γs-sets are S1 = {v2, v5, v7}, S2 = {v2, v5, v6}, S3 = {v1, v3, v6},
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S4 = {v2, v3, v6}, S5 = {v2, v4, v6}. It can be verified that none of these is a γs-very

excellent set. Therefore, P7 is not a strong very excellent. Therefore, the only γs-very

excellent paths are P2 and P4.

Theorem 6. A graph is γs-very excellent if and only if there exists a γs-set D of G

such that to each u 6∈ D there exist v ∈ D such that PNw(v, D) ⊆ Nw[u].

Proof. Suppose D satisfies this proterty, then clearly D is a very excellent γs-set of
G. Conversely suppose G is γs-very excellent. Let D be a very excellent γs-set of G.

Let u 6∈ D. Then there exists a v ∈ D such that (D − {v}) ∪ {u} is a γs-set of G. As

(D−{v}) does not strong dominate any vertex of PNw[v, D], and as (D−{v})∪{u} is a

γs-set, u strong dominates PNw[v, D]. That is PNw[v, D] ⊆ Nw[u]. Hence the theorem.
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