APPROXIMATION OF FUNCTIONS OF CLASS $\operatorname{Lip}(\alpha, r),(r \geq 1)$, BY $\left(N, p_{n}\right)(E, 1)$ SUMMABILITY MEANS OF FOURIER SERIES

SHYAM LAL AND ABHISHEK MISHRA

Abstract

In this paper, two new theorems on degree of approximation of a function $f \in$ $\operatorname{Lip}(\alpha, r),(r \geq 1)$, have been established. A new technique is applied to find the estimate.

1. Introduction

Chandra [1], Qureshi [6, 7], Khan [3] Mohapatra and Russell [5], Sahney and Rao [8] have determined the degree pf approximation of functions of the class Lip α and $\operatorname{Lip}(\alpha, r), 0<\alpha \leq$ $1, r \geq 1$. Most of these results are not satisfactory for $\alpha=1$ in the sense that the estimates for $r>1$ and $\alpha=1$ are not of $O\left(n^{-1}\right)$. Therefore this deficiency for determine the degree of approximation has motivated to investigate the degree of approximation using generalized Minkowski inequality considering cases $0<\alpha<1$ and $\alpha=1$ separately. It is important to note that till now no work seems to have been done to obtain the degree of approximation of a function $f \in \operatorname{Lip}(\alpha, r)$ class by product summabiliy means of the form $\left(N, p_{n}\right)(E, 1)$. In an attempt to make an advance study in this direction, in this paper, the estimates of degree of approximation of the function $f \in \operatorname{Lip}(\alpha, r)$ class by $\left(N, p_{n}\right)(E, 1)$ means of Fourier series have been determined. This estimate is new, better and sharper than all previously known estimates.

2. Definitions and Notations

Let $f(x)$ be a 2π-periodic function, Lebesgue integrable on $[0,2 \pi]$ and belonging to $\operatorname{Lip}(\alpha, r)$, ($r \geq 1$) class. The Fourier series of $f(x)$ is given by

$$
\begin{equation*}
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} A_{n}(x) \tag{2.1}
\end{equation*}
$$

Received March 25, 2011, accepted December 24, 2013.
2010 Mathematics Subject Classification. 42B05, 42B08.
Key words and phrases. Trigonometric approximation, Fourier series, regular (N, p_{n}) means, ($E, 1$) means and $\left(N, p_{n}\right)(E, 1)$ summability means and generalized Minkowski inequality.
Corresponding author: Shyam Lal.
with partial sums $s_{n}(f ; x)$.
A function $f(x)$ is said to belong to the class Lip α if

$$
|f(x+t)-f(x)|=O\left(|t|^{\alpha}\right) \text { for } 0<\alpha \leq 1 \text {. }
$$

$f(x)$ is said to belong to the class $\operatorname{Lip}(\alpha, r)$ for $0<\alpha \leq 1, r \geq 1$ if

$$
\left\{\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right\}^{1 / r}=O\left(|t|^{\alpha}\right) \quad \text { (def } 5.38 \text { of McFadden [4]). }
$$

We define the norm $\left\|\|_{r}\right.$ by $\| f \|_{r}=\frac{1}{2 \pi}\left\{\int_{0}^{2 \pi}|f(x)|^{r} d r\right\}^{1 / r}, r \geq 1$,
and the degree of approximation $E_{n}(f)$ be given by

$$
E_{n}(f)=\min \left\|f-t_{n}\right\|_{r}
$$

where $t_{n}(x)=\frac{1}{2} a_{0}+\sum_{v=1}^{n}\left(a_{v} \cos v x+b_{v} \sin v x\right)$ is $n^{\text {th }}$ degree trigonometric polynomial (Zygmund [10], p.114).

Let $\sum_{n=0}^{\infty} u_{n}$ be an infinite series having $n^{\text {th }}$ partial sum $s_{n}=\sum_{v=0}^{n} u_{v}$. Let $\left\{p_{n}\right\}$ be a sequence of constants, real of complex valued and let

$$
P_{n}=p_{0}+p_{1}+p_{2}+\cdots+p_{n}, p_{0}>0, P_{n} \neq 0,
$$

and define t_{n}^{N} by $t_{n}^{N}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} s_{k}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} s_{n-k}$. The $\left\{t_{n}^{N}\right\}$ is defined as the sequence of Nörlund means of sequence $\left\{s_{n}\right\}$ generated by the sequence of constants $\left\{p_{n}\right\}$. If $t_{n}^{N} \rightarrow s$ when $n \rightarrow \infty$, we say that $\sum_{n=0}^{\infty} u_{n}$ is summable by Nörlund means or summable $\left(N, p_{n}\right)$ to the sum s.

Let $E_{n}^{(1)}=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} s_{k}$. If $E_{n}^{(1)} \rightarrow s$ as $n \rightarrow \infty$, then $\sum_{n=0}^{\infty} u_{n}$ is said to be summable to s by the Euler Method (E,1). (Hardy [2]).

The $\left(N, p_{n}\right)$ transform of $(E, 1)$ transform defines the $\left(N, p_{n}\right)(E, 1)$ transform $t_{n}^{N E}$ of the partial sum s_{n} of the series $\sum_{n=0}^{\infty} u_{n}$ by

$$
\begin{aligned}
t_{n}^{N E} & =\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} E_{k}^{(1)}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} \frac{1}{2^{k}} \sum_{k=0}^{v}\binom{k}{v} s_{v} \\
& =\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} \frac{1}{2^{n-k}} \sum_{v=0}^{n-k}\binom{n-k}{v} s_{v} .
\end{aligned}
$$

If $t_{n}^{N E} \rightarrow s$ as $n \rightarrow \infty, \sum_{n=0}^{\infty} u_{n}$ is said to be summable $\left(N, p_{n}\right)(E, 1)$ to s. If the method of summability $\left(N, p_{n}\right)$ is superimposed on $(E, 1)$ method of summabilty, $\left(N, p_{n}\right)(E, 1)$ summability is obtained.

We write, $\phi(x, t)=f(x+t)+f(x-t)-2 f(x)$,

$$
(N E)_{n}(t)=\frac{1}{2 \pi P_{n}} \sum_{k=0}^{n} p_{k} \frac{\cos ^{n-k}\left(\frac{t}{2}\right) \sin (n-k+1)\left(\frac{t}{2}\right)}{\sin \left(\frac{t}{2}\right)}
$$

3. Theorems

We prove the following theorems:
Theorem 1. Let $\left(N, p_{n}\right)$ be a regular Nörlund method defined by a positive sequence $\left\{p_{n}\right\}$ such that

$$
\begin{equation*}
\sum_{k=0}^{n}\left|\Delta p_{k}\right|=O\left(\frac{P_{n}}{(n+1)}\right) \tag{3.1}
\end{equation*}
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ is 2π-periodic, Lebesgue integrable on $[0,2 \pi]$ and belonging to the class Lip $(\alpha, r),(r \geq 1)$, then its degree of approximation by $\left(N, p_{n}\right)(E, 1)$ means

$$
t_{n}^{N E}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} \frac{1}{2^{n-k}} \sum_{v=0}^{n-k}\binom{n-k}{v} s_{v}
$$

of the Fourier series (2.1) satisfies for $n=0,1,2,3, \ldots$

$$
\left\|t_{n}^{N E}-f\right\|_{r}= \begin{cases}O\left((n+1)^{-\alpha}\right), & 0<\alpha<1 \\ O\left(\frac{\log (n+1)}{(n+1)}\right), & \alpha=1\end{cases}
$$

Theorem 2. Let $\left(N, p_{n}\right)$ be a regular Nörlund method generated by a positive monotonic sequence $\left\{p_{n}\right\}$ satisfying

$$
\begin{equation*}
(n+1) p_{n}=O\left(P_{n}\right) \tag{3.2}
\end{equation*}
$$

Then the degree of approximation of $f \in \operatorname{Lip}(\alpha, r), r \geq 1$ by $\left(N, p_{n}\right)(E, 1)$ means $t_{n}^{N E}$ of its Fourier series (2.1) is given by

$$
\left\|t_{n}^{N E}-f\right\|_{r}=\left\{\begin{array}{l}
O\left((n+1)^{-\alpha}\right), 0<\alpha<1 \\
O\left(\frac{\log (n+1)}{(n+1)}\right), \quad \alpha=1
\end{array}\right.
$$

4. Lemmas

We need following lemmas for the proof of our theorem.
Lemma 4.1. $(N E)_{n}(t)=O(n+1)$, for $0<t \leq \frac{\pi}{(n+1)}$.
Proof. For $0<t \leq \frac{\pi}{(n+1)}, \sin n t \leq n t$, and $\sin (t / 2) \geq(t / \pi)$, we have

$$
\left|(N E)_{n}(t)\right|=\left|\frac{1}{2 \pi P_{n}} \sum_{k=0}^{n} p_{k} \frac{\cos ^{n-k}\left(\frac{t}{2}\right) \sin (n-k+1)\left(\frac{t}{2}\right)}{\sin \left(\frac{t}{2}\right)}\right|
$$

$$
\begin{aligned}
& \leq \frac{1}{2 \pi P_{n}} \sum_{k=0}^{n} p_{k} \frac{(n-k+1)}{t / \pi} \\
& =\frac{(n+1)}{4 P_{n}} \sum_{k=0}^{n} p_{k} \\
& =O(n+1) .
\end{aligned}
$$

Lemma 4.2. $(N E)_{n}(t)=O\left(\frac{1}{(n+1) t^{2}}\right)$, for $\frac{\pi}{(n+1)}<t \leq \pi$.
Proof. For $\frac{\pi}{(n+1)}<t \leq \pi$ using $\sin (t / 2) \geq(t / \pi),|\sin n t| \leq 1$ and Abel's lemma, we have

$$
\begin{aligned}
\left|(N E)_{n}(t)\right|= & \left|\frac{1}{2 \pi P_{n}} \sum_{k=0}^{n} p_{k} \frac{\cos ^{n-k}\left(\frac{t}{2}\right) \sin (n-k+1)\left(\frac{t}{2}\right)}{\sin \left(\frac{t}{2}\right)}\right| \\
\leq & \frac{1}{2 t P_{n}} \sum_{k=0}^{n}\left|p_{k} \cos ^{n-k}\left(\frac{t}{2}\right) \sin (n-k+1)\left(\frac{t}{2}\right)\right| \\
\leq & \frac{1}{2 t P_{n}}\left[\sum_{k=0}^{n-1}\left|\left(p_{k}-p_{k+1}\right)\right| \sum_{r=0}^{k} \cos ^{k-r}\left(\frac{t}{2}\right) \sin (k-r+1)\left(\frac{t}{2}\right)\right. \\
& \left.\quad+p_{n} \sum_{k=0}^{n} \cos ^{n-k}\left(\frac{t}{2}\right) \sin (n-k+1)\left(\frac{t}{2}\right)\right] \\
\leq & \frac{1}{2 t^{2} P_{n}}\left[\sum_{k=0}^{n-1}\left|\Delta p_{k}\right|+\left|p_{n}\right|\right] \\
\leq & \frac{1}{2 t^{2} P_{n}} \sum_{k=0}^{n}\left|\Delta p_{k}\right|=O\left(\frac{1}{(n+1) t^{2}}\right) .
\end{aligned}
$$

Lemma 4.3. If $f \in \operatorname{Lip}(\alpha, r), 0<\alpha \leq 1, r \geq 1$, then

$$
\left[\int_{0}^{2 \pi}|\phi(x, t)|^{r} d x\right]^{1 / r}=O\left(|t|^{\alpha}\right)
$$

Proof. Clearly,

$$
\begin{aligned}
|\phi(x, t)| & =|f(x+t)+f(x-t)-2 f(x)| \\
& \leq|f(x+t)-f(x)|+|f(x-t)-f(x)|
\end{aligned}
$$

Then, using Minkowski's inequality, we have

$$
\begin{aligned}
{\left[\int_{0}^{2 \pi}|\phi(x, t)|^{r} d x\right]^{\frac{1}{r}} } & \leq\left[\int_{0}^{2 \pi}\{|f(x+t)-f(x)|+|f(x-t)-f(x)|\}^{r} d x\right]^{\frac{1}{r}} \\
& \leq\left[\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right]^{\frac{1}{r}}+\left[\int_{0}^{2 \pi}|f(x-t)-f(x)|^{r} d x\right]^{\frac{1}{r}} \\
& =O\left(|t|^{\alpha}\right)+O\left(|t|^{\alpha}\right)=O\left(|t|^{\alpha}\right) .
\end{aligned}
$$

5. Proof of Theorem 1

Follwing Titchmarsh [9], $s_{n}(f ; x)$ of Fourier series (2.1) is given by

$$
s_{n}(f ; x)-f(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \phi(x, t) \frac{\sin (n+1 / 2) t}{\sin (t / 2)} d t
$$

Denoting $(E, 1)$ means of $s_{n}(f ; x)$ by $E_{n}^{(1)}(f ; x)$, we have

$$
\begin{aligned}
\frac{1}{2^{n}} \sum_{k=o}^{n}\binom{n}{k}\left\{s_{n}(f ; x)-f(x)\right\} & =\frac{1}{2^{n+1} \pi} \int_{0}^{\pi} \frac{\phi(x, t)}{\sin (t / 2)} \sum_{k=o}^{n}\binom{n}{k} \sin \left(k+\frac{1}{2}\right) t d t \\
\frac{1}{2^{n}} \sum_{k=o}^{n}\binom{n}{k} s_{n}(f ; x)-f(x) & =\frac{1}{2^{n+1} \pi} \int_{0}^{\pi} \frac{\phi(x, t)}{\sin (t / 2)} \operatorname{Im}\left\{\sum_{k=o}^{n}\binom{n}{k} e^{i\left(k+\frac{1}{2}\right) t}\right\} d t \\
o r, E_{n}^{(1)}(f ; x)-f(x) & =\frac{1}{2^{n+1} \pi} \int_{0}^{\pi} \frac{\phi(x, t)}{\sin (t / 2)} \operatorname{Im}\left\{e^{i t / 2} \sum_{k=o}^{n}\binom{n}{k} e^{i k t}\right\} d t \\
& =\frac{1}{2^{n+1} \pi} \int_{0}^{\pi} \frac{\phi(x, t)}{\sin (t / 2)} \operatorname{Im}\left\{e^{i t / 2}\left(1+e^{i t}\right)^{n}\right\} d t \\
& =\frac{1}{2^{n+1} \pi} \int_{0}^{\pi} \frac{\phi(x, t)}{\sin (t / 2)} \operatorname{Im}\left\{2^{n} \cos ^{n}\left(\frac{t}{2}\right) e^{i(n+1) t / 2}\right\} d t \\
& =\frac{1}{2 \pi} \int_{0}^{\pi} \phi(x, t) \frac{\cos ^{n}\left(\frac{t}{2}\right) \sin (n+1)\left(\frac{t}{2}\right)}{\sin (t / 2)} d t
\end{aligned}
$$

$\left(N, p_{n}\right)$ means of $E_{n}^{(1)}(f ; x)$ i.e. $t_{n}^{N E}(f ; x)$ is given by

$$
\begin{aligned}
\frac{1}{P_{n}} \sum_{k=o}^{n} p_{k}\left\{E_{n}^{(1)}(f ; x)-f(x)\right\} & =\frac{1}{P_{n}} \sum_{k=o}^{n} p_{k}\left\{\frac{1}{2 \pi} \int_{0}^{\pi} \phi(x, t) \frac{\cos ^{n-k}\left(\frac{t}{2}\right) \sin (n-k+1)\left(\frac{t}{2}\right)}{\sin (t / 2)} d t\right\} \\
t_{n}^{N E}(f ; x)-f(x) & =\frac{1}{2 \pi P_{n}} \sum_{k=o}^{n} p_{k} \int_{0}^{\pi} \phi(x, t) \frac{\cos ^{n-k}\left(\frac{t}{2}\right) \sin (n-k+1)\left(\frac{t}{2}\right)}{\sin (t / 2)} d t \\
& =\int_{0}^{\pi} \phi(x, t)(N E)_{n}(t) d t
\end{aligned}
$$

Using Lemma (4.3), generalized Minkowski inequality ([10, pp. 18-19]), we shall obtain the proof of this theorem in a quite different method as following:

$$
\begin{aligned}
\left\|t_{n}^{N E}-f\right\|_{r} & =\left[\int_{0}^{2 \pi}\left|t_{n}^{N E}(f ; x)-f(x)\right|^{r} d x\right]^{\frac{1}{r}} \\
& =\left[\int_{0}^{2 \pi}\left|\int_{0}^{\pi} \phi(x, t)(N E) n(t) d t\right|^{r} d x\right]^{1 / r} \\
& \leq \int_{0}^{\pi}\left\{\int_{0}^{2 \pi}|\phi(x, t)|^{r} d x\right\}^{1 / r}\left|(N E)_{n}(t)\right| d t \\
& =\int_{0}^{\pi} O\left(t^{\alpha}\right)\left|(N E)_{n}(t)\right| d t
\end{aligned}
$$

$$
\begin{align*}
& =O\left(\int_{0}^{\frac{\pi}{(n+1)}}\left(t^{\alpha}\right)(N E)_{n}(t) d t\right)+O\left(\int_{\frac{\pi}{(n+1)}}^{\pi}\left(t^{\alpha}\right)(N E)_{n}(t) d t\right) \\
& =I_{1}+I_{2} \tag{5.1}
\end{align*}
$$

Applying Lemma (4.1), we have

$$
\begin{align*}
\left|I_{1}\right| & \leq O\left(\int_{0}^{\frac{\pi}{(n+1)}} t^{\alpha}(n+1) d t\right) \\
& =O\left((n+1)^{-\alpha}\right) . \tag{5.2}
\end{align*}
$$

Now, by Lemma (4.2), we get

$$
\begin{align*}
\left|I_{2}\right| & \leq O\left(\int_{\frac{\pi}{(n+1)}}^{\pi} \frac{t^{\alpha}}{(n+1) t^{2}} d t\right) \\
& =O\left[\left(\frac{1}{(n+1)}\right) \int_{\frac{\pi}{(n+1)}}^{\pi} t^{\alpha-2} d t\right] \\
& = \begin{cases}O\left[\left(\frac{1}{(n+1)}\right)\left(\frac{1}{1-\alpha}\right)\left(\frac{\pi^{\alpha-1}}{(n+1)^{\alpha-1}}-\pi^{\alpha-1}\right)\right], 0<\alpha<1 \\
O\left(\frac{\log (n+1)}{(n+1)}\right), & \alpha=1 .\end{cases} \\
& = \begin{cases}O\left((n+1)^{-\alpha}\right), 0<\alpha<1 \\
O\left(\frac{\log (n+1)}{(n+1)}\right), & \alpha=1 .\end{cases} \tag{5.3}
\end{align*}
$$

Combining equations (5.1) to (5.3), we have

$$
\left\|t_{n}^{N E}-f\right\|_{r}=\left\{\begin{array}{l}
O\left((n+1)^{-\alpha}\right), 0<\alpha<1 \\
O\left(\frac{\log (n+1)}{(n+1)}\right), \quad \alpha=1 .
\end{array}\right.
$$

This completes the proof of Theorem (1).

6. Proof of Theorem 2

Following the proof of Theorem (1), we have

$$
\begin{align*}
\left\|t_{n}^{N E}-f\right\|_{r} & =O\left(\int_{0}^{\frac{\pi}{(n+1)}}\left(t^{\alpha}\right)(N E)_{n}(t) d t\right)+O\left(\int_{\frac{\pi}{(n+1)}}^{\pi}\left(t^{\alpha}\right)(N E)_{n}(t) d t\right) \\
& =I_{1}^{\prime}+I_{2}^{\prime} \text { say } \tag{6.1}
\end{align*}
$$

By Lemma (4.1) and similar to proof of Theorem (1),

$$
\begin{equation*}
I_{1}^{\prime}=O\left((n+1)^{-\alpha}\right) . \tag{6.2}
\end{equation*}
$$

Under the condition (3.2) of Theorem (2) on $\left\{p_{n}\right\}$, by Lemma (4.2),

$$
(N E)_{n}(t)=\frac{1}{2 t^{2} P_{n}} \sum_{k=0}^{n}\left|\Delta p_{k}\right|
$$

Now assuming condition (3.1)(we may consider $\frac{P_{n}}{n+1}$ increasing in n) and take $k=k(n)$ such that $p_{k}=\min \left\{p_{j}: 0 \leq j \leq n\right\}$. Hence $(n+1) p_{k} \leq P_{n}$. Now for $k \leq m \leq n$

$$
p_{m} \leq \sum_{j=k+1}^{m}\left|p_{j}-p_{j-1}\right|+\left|p_{k}\right| \leq C\left(\frac{P_{m}}{m+1}\right)+\left(\frac{P_{n}}{n+1}\right) \leq C\left(\frac{P_{n}}{n+1}\right)=O\left(\frac{P_{n}}{n+1}\right)
$$

Similarly for $0 \leq m \leq k$

$$
p_{m} \leq \sum_{j=m}^{k-1}\left|p_{j}-p_{j+1}\right|+\left|p_{k}\right| \leq C\left(\frac{P_{k}}{k+1}\right)+\left(\frac{P_{n}}{n+1}\right) \leq C\left(\frac{P_{n}}{n+1}\right)=O\left(\frac{P_{n}}{n+1}\right)
$$

Thus the condition $\sum_{k=0}^{n}\left|\Delta p_{k}\right|=O\left(\frac{P_{n}}{(n+1)}\right)$ implies $(n+1) p_{n}=O\left(P_{n}\right)$.
Therefore $(N E)_{n}(t)=O\left(\frac{P_{n}}{(n+1) t^{2}}\right)$ for $\frac{\pi}{(n+1)}<t \leq \pi$ and I_{2}^{\prime} is same as I_{2} of Theorem(1).
Hence, under the condition of Theorem(2) on $\left\{p_{n}\right\}$,

$$
\left\|t_{n}^{N E}-f\right\|_{r}= \begin{cases}O\left((n+1)^{-\alpha}\right), 0<\alpha<1 \\ O\left(\frac{\log (n+1)}{(n+1)}\right), \quad \alpha=1\end{cases}
$$

This completes the proof of Theorem (3.2).

7. Applications

Following corollary can be derived from Theorem (1):
Corollary 7.1. If we take $p_{n}=\frac{1}{n+1}$ then the degree of approximation of a function $f \in \operatorname{Lip}(\alpha, r)$ by $\left(N, \frac{1}{n+1}\right)(E, 1)$ means

$$
t_{n}^{H E}=\frac{1}{\log (n+1)} \sum_{k=0}^{n} \frac{1}{k+1} \frac{1}{2^{n-k}} \sum_{v=0}^{n-k}\binom{n-k}{k} s_{v}
$$

of the series (2.1) is given by

$$
\left\|t_{n}^{H E}-f\right\|_{r}=\left\{\begin{array}{l}
O\left((n+1)^{-\alpha}\right), 0<\alpha<1 \\
O\left(\frac{\log (n+1)}{(n+1)}\right), \quad \alpha=1
\end{array}\right.
$$

Corollary 7.2. If $p_{n}=1 \forall n \geq 1$ then degree of approximation of a function $f \in \operatorname{Lip}(\alpha, r)$ by $(C, 1)(E, 1)$ means

$$
t_{n}^{C E}=\frac{1}{n+1} \sum_{k=0}^{n} \frac{1}{2^{n-k}} \sum_{v=0}^{n-k}\binom{n-k}{k} s_{v}
$$

is given by

$$
\left\|t_{n}^{C E}-f\right\|_{r}= \begin{cases}O\left((n+1)^{-\alpha}\right), 0<\alpha<1 \\ O\left(\frac{\log (n+1)}{(n+1)}\right), & \alpha=1\end{cases}
$$

References

[1] P. Chandra, Approximation by Norlund operators, Mat. Vestnik, 38 (1986), 263-269.
[2] G. H. Hardy, Divergent Series, first edition, Oxford Press, p.70, 1949.
[3] H. H. Khan, On degree of approximation of functions belonging to class Lip(α, p), Indian J. Pure Appl. Math., 5(1974), no.2, 132-136.
[4] L. McFaddin, Absolute Nörlund summability, Duke Math. J., 9(1942), 168-207.
[5] R. N. Mohapatra and D. C. Russell, Some direct and inverse theorems in approximation of functions, J. Austral. Math. Soc. (Ser. A), 34 (1983), 143-154.
[6] K. Qureshi, On degree of approximation of a periodic function f by almost Nörlund means, Tamkang J. Math., 12(1981), no.1, 35-38.
[7] K. Qureshi, On degree of approximation of functions belonging to the class Lipa, Indian J. Pure App. Math, 13(1982), no.8, 898-903.
[8] B. N. Sahney and V. Rao, Error bounds in the approximation of functions, Bull. Austral. Math. Soc., 6(1972), 11-18.
[9] E. C. Titchmarsh, The Theory of functions, Second Edition, Oxford University Press, 1939.
[10] A. Zygmund, Trigonometric Series, 2nd rev.ed., I, Cambridge Univ. Press, Cambridge, 1968.

Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi-221005, India.
E-mail: shyam_lal@rediffmail.com
Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi-221005, India.
E-mail: abhigal.bhu@gmail.com

