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APPROXIMATION OF FUNCTIONS OF CLASS Li p(α,r ), (r ≥ 1),

BY (N , pn)(E ,1) SUMMABILITY MEANS OF FOURIER SERIES

SHYAM LAL AND ABHISHEK MISHRA

Abstract. In this paper, two new theorems on degree of approximation of a function f ∈

Li p(α,r ), (r ≥ 1), have been established. A new technique is applied to find the estimate.

1. Introduction

Chandra [1], Qureshi [6, 7], Khan [3] Mohapatra and Russell [5], Sahney and Rao [8] have

determined the degree pf approximation of functions of the class Li pα and Li p(α,r ), 0 <α≤

1, r ≥ 1. Most of these results are not satisfactory for α = 1 in the sense that the estimates

for r > 1 and α = 1 are not of O(n−1). Therefore this deficiency for determine the degree of

approximation has motivated to investigate the degree of approximation using generalized

Minkowski inequality considering cases 0 < α < 1 and α = 1 separately. It is important to

note that till now no work seems to have been done to obtain the degree of approximation

of a function f ∈ Li p(α,r ) class by product summabiliy means of the form (N , pn)(E ,1). In

an attempt to make an advance study in this direction, in this paper, the estimates of degree

of approximation of the function f ∈ Li p(α,r ) class by (N , pn)(E ,1) means of Fourier series

have been determined. This estimate is new, better and sharper than all previously known

estimates.

2. Definitions and Notations

Let f (x) be a 2π-periodic function, Lebesgue integrable on [0,2π] and belonging to Li p(α,r ),

(r ≥ 1) class. The Fourier series of f (x) is given by

f (x) =
1

2
a0 +

∞
∑

n=1

(an cos nx +bn sin nx)=
1

2
a0 +

∞
∑

n=1

An(x) (2.1)
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with partial sums sn( f ; x).

A function f (x) is said to belong to the class Li pα if

∣

∣ f (x + t )− f (x)
∣

∣=O(|t |α) f or 0 <α≤ 1.

f (x) is said to belong to the class Li p(α,r ) for 0 <α≤ 1, r ≥ 1 if

{
∫2π

o

∣

∣ f (x + t )− f (x)
∣

∣

r
d x

}1/r

=O(|t |α) (def 5.38 of McFadden [4]).

We define the norm ‖ ‖r by
∥

∥ f
∥

∥

r =
1

2π

{

∫2π
0

∣

∣ f (x)
∣

∣

r
dr

}1/r
,r ≥ 1,

and the degree of approximation En( f ) be given by

En( f ) = mi n
∥

∥f − tn

∥

∥

r

where tn(x) =
1

2
a0 +

n
∑

ν=1

(aνcosνx +bν sinνx) is nt h degree trigonometric polynomial (Zyg-

mund [10], p.114) .

Let
∞
∑

n=0

un be an infinite series having nt h partial sum sn =

n
∑

ν=0

uν. Let {pn} be a sequence

of constants, real of complex valued and let

Pn = p0 +p1 +p2 +·· ·+pn , p0 > 0, Pn 6= 0,

and define t N
n by t N

n =
1

Pn

n
∑

k=0

pn−k sk =
1

Pn

n
∑

k=0

pk sn−k . The {t N
n } is defined as the sequence of

Nörlund means of sequence {sn} generated by the sequence of constants {pn}. If t N
n → s when

n →∞, we say that
∞
∑

n=0

un is summable by Nörlund means or summable (N , pn) to the sum s.

Let E (1)
n =

1

2n

n
∑

k=0

(

n

k

)

sk . If E (1)
n → s as n →∞, then

∞
∑

n=0

un is said to be summable to s by

the Euler Method (E,1). (Hardy [2]).

The (N , pn) transform of (E ,1) transform defines the (N , pn)(E ,1) transform t NE
n of the

partial sum sn of the series
∞
∑

n=0

un by

t NE
n =

1

Pn

n
∑

k=0

pn−k E (1)
k

=
1

Pn

n
∑

k=0

pn−k
1

2k

ν
∑

k=0

(

k

ν

)

sν

=
1

Pn

n
∑

k=0

pk
1

2n−k

n−k
∑

ν=0

(

n −k

ν

)

sν.

If t NE
n → s as n →∞,

∞
∑

n=0

un is said to be summable (N , pn)(E ,1) to s. If the method of summa-

bility (N , pn) is superimposed on (E ,1) method of summabilty, (N , pn)(E ,1) summability is

obtained.
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We write, φ(x, t )= f (x + t )+ f (x − t )−2 f (x),

(N E )n(t )=
1

2πPn

n
∑

k=0

pk

cosn−k
(

t
2

)

sin(n −k +1)
(

t
2

)

sin
(

t
2

) .

3. Theorems

We prove the following theorems:

Theorem 1. Let (N , pn) be a regular Nörlund method defined by a positive sequence {pn} such

that
n
∑

k=0

∣

∣∆pk

∣

∣=O

(

Pn

(n +1)

)

. (3.1)

Let f : R → R is 2π-periodic, Lebesgue integrable on [0,2π] and belonging to the class

Li p(α,r ), (r ≥ 1), then its degree of approximation by (N , pn)(E ,1) means

t NE
n =

1

Pn

n
∑

k=0

pk
1

2n−k

n−k
∑

ν=0

(

n −k

ν

)

sν

of the Fourier series (2.1) satisfies for n = 0,1,2,3, . . .

∥

∥t NE
n − f

∥

∥

r =

{

O ((n +1)−α) ,0 <α< 1

O
(

log(n+1)
(n+1)

)

, α= 1.

Theorem 2. Let (N , pn) be a regular Nörlund method generated by a positive monotonic se-

quence {pn} satisfying

(n +1)pn =O(Pn), (3.2)

Then the degree of approximation of f ∈ Li p(α,r ), r ≥ 1 by (N , pn)(E ,1) means t NE
n of its

Fourier series (2.1) is given by

∥

∥t NE
n − f

∥

∥

r =

{

O ((n +1)−α) ,0 <α< 1

O
(

log(n+1)
(n+1)

)

, α= 1.

4. Lemmas

We need following lemmas for the proof of our theorem.

Lemma 4.1. (N E )n(t )=O(n +1), f or 0 < t ≤ π
(n+1)

.

Proof. For 0 < t ≤ π
(n+1) , sin nt ≤ nt , and sin(t /2) ≥ (t /π), we have

|(N E )n(t )| =

∣

∣

∣

∣

∣

1

2πPn

n
∑

k=0

pk

cosn−k
(

t
2

)

sin(n −k +1)
(

t
2

)

sin
(

t
2

)

∣

∣

∣

∣

∣
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≤
1

2πPn

n
∑

k=0

pk
(n −k +1)

t /π

=
(n +1)

4Pn

n
∑

k=0

pk

= O(n +1).

Lemma 4.2. (N E )n(t ) =O
(

1
(n+1)t 2

)

, f or π
(n+1) < t ≤π.

Proof. For π
(n+1)

< t ≤π using sin(t /2) ≥ (t /π), |sinnt | ≤ 1 and Abel’s lemma, we have

|(N E )n(t )| =

∣

∣

∣

∣

∣

1

2πPn

n
∑

k=0

pk

cosn−k
(

t
2

)

sin(n −k +1)
(

t
2

)

sin
(

t
2

)

∣

∣

∣

∣

∣

≤
1

2t Pn

n
∑

k=0

∣

∣

∣

∣

pk cosn−k

(

t

2

)

sin(n −k +1)

(

t

2

)
∣

∣

∣

∣

≤
1

2t Pn

[

n−1
∑

k=0

∣

∣

(

pk −pk+1

)
∣

∣

k
∑

r=0

cosk−r

(

t

2

)

sin(k − r +1)

(

t

2

)

+pn

n
∑

k=0

cosn−k

(

t

2

)

sin(n −k +1)

(

t

2

)

]

≤
1

2t 2Pn

[

n−1
∑

k=0

∣

∣∆pk

∣

∣+
∣

∣pn

∣

∣

]

≤
1

2t 2Pn

n
∑

k=0

∣

∣∆pk

∣

∣=O

(

1

(n +1)t 2

)

.

Lemma 4.3. If f ∈ Li p(α,r ), 0 <α≤ 1, r ≥ 1, then

[
∫2π

0

∣

∣φ(x, t )
∣

∣

r
d x

]1/r

=O
(

|t |α
)

Proof. Clearly,

∣

∣φ(x, t )
∣

∣ =
∣

∣ f (x + t )+ f (x − t )−2 f (x)
∣

∣

≤
∣

∣ f (x + t )− f (x)
∣

∣+
∣

∣ f (x − t )− f (x)
∣

∣ .

Then, using Minkowski’s inequality, we have

[
∫2π

0

∣

∣φ(x, t )
∣

∣

r
d x

]

1
r

≤

[
∫2π

0

{∣

∣ f (x + t )− f (x)
∣

∣+
∣

∣ f (x − t )− f (x)
∣

∣

}r
d x

]

1
r

≤

[
∫2π

0

∣

∣ f (x + t )− f (x)
∣

∣

r
d x

]

1
r

+

[
∫2π

0

∣

∣ f (x − t )− f (x)
∣

∣

r
d x

]

1
r

= O(|t |α)+O(|t |α) =O(|t |α).
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5. Proof of Theorem 1

Follwing Titchmarsh [9], sn( f ; x) of Fourier series (2.1) is given by

sn( f ; x)− f (x) =
1

2π

∫π

0
φ(x, t )

sin(n +1/2) t

sin(t /2)
d t

Denoting (E ,1) means of sn( f ; x) by E (1)
n ( f ; x), we have

1

2n

n
∑

k=o

(

n

k

)

{sn( f ; x)− f (x)} =
1

2n+1π

∫π

0

φ(x, t )

sin(t /2)

n
∑

k=o

(

n

k

)

sin

(

k +
1

2

)

t d t

1

2n

n
∑

k=o

(

n

k

)

sn( f ; x)− f (x) =
1

2n+1π

∫π

0

φ(x, t )

sin(t /2)
Im

{

n
∑

k=o

(

n

k

)

e i
(

k+ 1
2

)

t

}

d t

or, E (1)
n ( f ; x)− f (x) =

1

2n+1π

∫π

0

φ(x, t )

sin(t /2)
Im

{

e i t /2
n
∑

k=o

(

n

k

)

e i kt

}

d t

=
1

2n+1π

∫π

0

φ(x, t )

sin(t /2)
Im

{

e i t /2(1+e i t )n
}

d t

=
1

2n+1π

∫π

0

φ(x, t )

sin(t /2)
Im

{

2n cosn

(

t

2

)

e i (n+1)t /2

}

d t

=
1

2π

∫π

0
φ(x, t )

cosn
(

t
2

)

sin(n +1)
(

t
2

)

sin(t /2)
d t .

(N , pn) means of E (1)
n ( f ; x) i.e. t NE

n ( f ; x) is given by

1

Pn

n
∑

k=o

pk

{

E (1)
n ( f ; x)− f (x)

}

=
1

Pn

n
∑

k=o

pk

{

1

2π

∫π

0
φ(x, t )

cosn−k
(

t
2

)

sin(n −k +1)
(

t
2

)

sin(t /2)
d t

}

t NE
n ( f ; x)− f (x) =

1

2πPn

n
∑

k=o

pk

∫π

0
φ(x, t )

cosn−k
(

t
2

)

sin(n −k +1)
(

t
2

)

sin(t /2)
d t

=

∫π

0
φ(x, t )(N E )n(t )d t .

Using Lemma (4.3), generalized Minkowski inequality ([10, pp. 18-19]), we shall obtain

the proof of this theorem in a quite different method as following:

∥

∥t NE
n − f

∥

∥

r =

[
∫2π

0

∣

∣t NE
n ( f ; x)− f (x)

∣

∣

r
d x

]

1
r

=

[
∫2π

0

∣

∣

∣

∣

∫π

0
φ(x, t )(N E )n(t )d t

∣

∣

∣

∣

r

d x

]1/r

≤

∫π

0

{
∫2π

0

∣

∣φ(x, t )
∣

∣

r
d x

}1/r

|(N E )n(t )|d t

=

∫π

0
O(tα) |(N E )n(t )|d t
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= O

(
∫ π

(n+1)

0
(tα)(N E )n(t )d t

)

+O

(

∫π

π
(n+1)

(tα)(N E )n(t )d t

)

= I1 + I2. (5.1)

Applying Lemma (4.1), we have

|I1| ≤ O

(
∫ π

(n+1)

0
tα(n +1)d t

)

= O
(

(n +1)−α
)

. (5.2)

Now, by Lemma (4.2), we get

|I2| ≤ O

(

∫π

π
(n+1)

tα

(n +1)t 2
d t

)

= O

[

(

1

(n +1)

)
∫π

π
(n+1)

tα−2d t

]

=







O
[(

1
(n+1)

)

(

1
1−α

)

(

πα−1

(n+1)α−1 −πα−1
)]

,0 <α< 1

O
(

log(n+1)
(n+1)

)

, α= 1.

=

{

O ((n +1)−α) ,0 <α< 1

O
(

log(n+1)
(n+1)

)

, α= 1.
(5.3)

Combining equations (5.1) to (5.3), we have

∥

∥t NE
n − f

∥

∥

r =

{

O ((n +1)−α) ,0 <α< 1

O
(

log(n+1)
(n+1)

)

, α= 1.

This completes the proof of Theorem (1).

6. Proof of Theorem 2

Following the proof of Theorem (1), we have

∥

∥t NE
n − f

∥

∥

r = O

(
∫ π

(n+1)

0
(tα)(N E )n(t )d t

)

+O

(

∫π

π
(n+1)

(tα)(N E )n(t )d t

)

= I ′1 + I ′2 say (6.1)

By Lemma (4.1) and similar to proof of Theorem (1),

I ′1 =O
(

(n +1)−α
)

. (6.2)
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Under the condition (3.2) of Theorem (2) on {pn}, by Lemma (4.2),

(N E )n(t ) =
1

2t 2Pn

n
∑

k=0

∣

∣∆pk

∣

∣

Now assuming condition (3.1)(we may consider Pn

n+1
increasing in n) and take k = k(n)

such that pk = min{p j : 0 ≤ j ≤n}. Hence (n +1)pk ≤Pn . Now for k ≤m ≤n

pm ≤

m
∑

j=k+1

|p j −p j−1|+ |pk | ≤C

(

Pm

m +1

)

+

(

Pn

n +1

)

≤C

(

Pn

n +1

)

=O

(

Pn

n +1

)

Similarly for 0 ≤m ≤ k

pm ≤

k−1
∑

j=m

|p j −p j+1|+ |pk | ≤C

(

Pk

k +1

)

+

(

Pn

n +1

)

≤C

(

Pn

n +1

)

=O

(

Pn

n +1

)

Thus the condition
n
∑

k=0

∣

∣∆pk

∣

∣=O

(

Pn

(n +1)

)

implies (n +1)pn =O(Pn).

Therefore (N E )n(t ) =O
(

Pn

(n+1)t 2

)

for π
(n+1)

< t ≤π and I ′2 is same as I2 of Theorem(1).

Hence, under the condition of Theorem(2) on {pn},

∥

∥t NE
n − f

∥

∥

r =

{

O ((n +1)−α) ,0 <α< 1

O
(

log(n+1)
(n+1)

)

, α= 1.

This completes the proof of Theorem (3.2).

7. Applications

Following corollary can be derived from Theorem (1):

Corollary 7.1. If we take pn =
1

n+1 then the degree of approximation of a function f ∈ Li p(α,r )

by (N , 1
n+1 )(E ,1) means

t HE
n =

1

log(n +1)

n
∑

k=0

1

k +1

1

2n−k

n−k
∑

ν=0

(

n −k

k

)

sν

of the series (2.1) is given by

∥

∥t HE
n − f

∥

∥

r =

{

O ((n +1)−α) ,0<α< 1

O
(

log(n+1)
(n+1)

)

, α= 1.

Corollary 7.2. If pn = 1 ∀ n ≥ 1 then degree of approximation of a function f ∈ Li p(α,r ) by

(C ,1)(E ,1) means

tCE
n =

1

n +1

n
∑

k=0

1

2n−k

n−k
∑

ν=0

(

n −k

k

)

sν

is given by
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∥

∥tCE
n − f

∥

∥

r =

{

O ((n +1)−α) ,0 <α< 1

O
(

log(n+1)
(n+1)

)

, α= 1.
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