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INVERSE PROBLEMS FOR DIFFERENTIAL EQUATIONS ON

THE HALF-LINE HAVING A SINGULARITY IN AN INTERIOR POINT

A. FEDOSEEV

Abstract. Arbitrary order ordinary differential equations on the half-line having a non-

integrable singularity inside are studied under additional matching conditions for solu-

tions at the singular point. We construct special fundamental systems of solutions for this

class of differential equations, study their asymptotical, analytical and structural proper-

ties and the behavior of the corresponding Stokes multipliers. These fundamental sys-

tems of solutions are used in spectral analysis of differential operators with singularities.

We study the inverse problem of recovering differential equation from the given Weyl-

Yurko matrix and prove the corresponding uniqueness theorem.

1. Introduction

Let us consider the differential equation

ℓy(x) := y (n)(x)+
n−2∑

j=0

( ν j

(x −a)n− j
+q j (x)

)
y ( j )(x) =λy(x), x > 0 (1)

with a non-integrable singularity in an interior point 0 < a < ∞. Here q j (x) are complex-

valued functions, and ν j are complex numbers. Let µ1, . . . ,µn be the roots of the characteristic

polynomial

∆(µ)=
n∑

j=0

ν j

j−1∏

k=0

(µ−k), νn = 1, νn−1 = 0.

Using the Viète’s formulas one gets µ1 + . . .+µn = n(n − 1)/2. For definiteness, let n = 2m,

µk −µ j 6= sn, s ∈Z; ℜµ1 < . . . <ℜµn , µk 6= 0,1,2, . . . ,n −3 (the other cases require minor modi-

fications). Denote θ =ℜ(µn−µ1), θ j =n−1−θ− j . We shall assume that q j (x)|x−a|θ j ∈ L(0,T )

and q j (x) ∈ L(T,∞) for j = 0,n −2, and some T > a.

The paper deals with the differential equation (1) under additional matching conditions

at the singular point x = a. We consider in some sense general matching conditions defined

by a transition matrix

A = [ak j ]k , j=1,n,
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which connects solutions of equation (1) near the singular point. Differential equations with

singularities inside the interval appear in different branches of mathematics and in applica-

tions. A wide class of differential equations with turning points inside the interval can be

reduced to (1). Such problems produce different matching conditions defined by different

matrices A. So it is actual to study differential equations with arbitrary defined matching

conditions. In this paper we construct special fundamental systems of solutions for the dif-

ferential equation (1) and study their asymptotical, analytic and structural properties. These

fundamental systems of solutions are used in spectral analysis of differential operators with

singularities inside the interval. In particular, we introduce and study the Weyl-Yurko solu-

tions and the Weyl-Yurko matrix for equation (1) and prove the uniqueness theorem of recov-

ering the operator ℓ from the given Weyl-Yurko matrix. For this purpose we use and develop

ideas from [1].

We note that for higher-order differential equations with integrable coefficients, direct

and inverse problems of spectral analysis and corresponding fundamental systems of solu-

tions have been studied fairly completely (see [2]-[5] and the references therein). Uniqueness

theorem for the equation (1) on the compact interval was proved in [6]. Some aspects of the

spectral theory for equation (1) in the case of n = 2 were investigated in [7]-[8].

Let λ= ρn . Take numbers c j 0, j = 1,n from the condition

n∏

j=1

c j 0 =
(

det[µν−1
j ] j ,ν=1,n

)−1
, (2)

and consider the functions C j (x,λ) = (x −a)µ j Ĉ j (x,λ), j = 1,n, where

Ĉ j (x,λ) =
∞∑

k=0

c j k

(
ρ(x −a)

)nk
, c j k = c j 0

( k∏

s=1

∆(µ j + sn)
)−1

.

Here and in the sequel, zµ = eµ(ln|z|+i argz), arg z ∈ (−π,π]. For each fixed x, the functions

C (ν)
j

(x,λ) are entire in λ of order 1/n. For x > a and x < a the functions C j (x,λ) satisfy the

equation

ℓ0 y(x) := y (n)(x)+
n−2∑

j=0

ν j

(x −a)n− j
y ( j )(x) =λy(x),

and for |ρ(x −a)| ≤ 1,

|Ĉ j (x,λ)| ≤C , |Ĉ (ν)
j

(x,λ)| ≤C |ρ|n|x −a|n−ν, ν= 1,n −1. (3)

Here and below, one and the same symbol C denotes various positive constants in estimates.

In view of (2) and Liouville’s formula for the Wronskian, we have

det[C (ν−1)
j

(x,λ)] j ,ν=1,n ≡ 1. (4)
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Denote

C∗
j (x,λ) =det[C (ν)

k
(x,λ)]

k=1,n\n− j+1

ν=0,n−2
, g (x, t ,λ) =

n∑

j=1

(−1)n− j C j (x,λ)C∗
n− j+1(t ,λ),

where k = 1,n \ n− j +1 means k = 1, . . . ,n− j ,n− j +2, . . . ,n. The function g (x, t ,λ) is Green’s

function for the Cauchy problem ℓ0 y −λy = f (x), y (ν)(a) = 0, ν = 0,n −1. It follows from (3)

that for |ρ(x −a)| ≤ 1, ν= 0,n −1,

|C (ν)
j

(x,λ)| ≤C |(x −a)µ j−ν|, |C∗
n− j+1(x,λ)| ≤C |(x −a)n−1−µ j |. (5)

Now we construct the functions s j (x,λ), j = 1,n from the following system of integral equa-

tions for x > a and x < a:

s(ν)
j

(x,λ) =C (ν)
j

(x,λ)−

∫x

a

∂ν

∂xν
g (x, t ,λ)

(n−2∑

p=0

qp (t )s
(p)

j
(t ,λ)

)
d t , ν= 0,n −1. (6)

By (3) and (5), system (6) has a unique solution, and s j (x,λ) = (x −a)µ j ŝ j (x,λ), where

|ŝ(ν)
j

(x,λ)−Ĉ (ν)
j

(x,λ)| ≤ C |x −a|θ−νε(x), |ρ(x −a)| ≤ 1, ν= 0,n −1,

ε(x) :=
n−2∑

s=0

∣∣∣
∫x

a
(t −a)θs qs(t )d t

∣∣∣.

In particular, this yields for |ρ(x −a)| ≤ 1,

|ŝ j (x,λ)| ≤C , |ŝ(ν)
j

(x,λ)| ≤C
(
|ρ|n |x −a|n−ν+|x −a|θ−νε(x)

)
, ν= 1,n −1,

|s(ν)
j

(x,λ)| ≤C |(x −a)µ j −ν|, ν= 0,n −1.

(7)

For each fixed x, the functions s(ν)
j

(x,λ) are entire in λ of order 1/n. For x > a and x < a the

functions s j (x,λ) satisfy equation (1). Taking (4) into account we get

det[s(ν−1)
j

(x,λ)] j ,ν=1,n ≡ 1, (8)

and consequently, the functions s j (x,λ), j = 1,n, form a fundamental system of solutions of

equation (1). We will call s j (x,λ) the Bessel-type solutions for equation (1).

Let s j ,−(x,λ), x > a, be the Bessel-type solutions for the equation

y (n)
− (x)+

n−2∑

j=0

( ν j

(x −a)n− j
+ (−1) j q j (2a −x)

)
y ( j )
− (x) =λy−(x). (9)

Then the functions sR
j

(x,λ) := s j ,−(2a −x,λ), x < a, are solutions of equation (1). Clearly,

sR
j (x,λ) = e−iπµ j s j (x,λ), x < a. (10)
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Denote Sk0
=

{
ρ : argρ ∈

(k0π
n , (k0+1)π

n

)}
. In each sector Sk0

the roots Rk , k = 1,n, of the

equation Rn −1 = 0 can be numbered in such a way that

ℜ(ρR1) <ℜ(ρR2) < . . .<ℜ(ρRn), ρ ∈ Sk0
.

Clearly, Rk = e
iπωk

n , where ωk is a permutation of the numbers 0,1, . . . ,n − 1. In the sequel,

R
µ

k
:= e

iπµωk
n . It was shown in [1] that in each sector Sk0

, there exists a fundamental system

of solutions {yk (x,ρ)}k=1,n, x > a, ρ ∈ Sk0
of the differential equation (1) having the following

properties.

1. For each x > a and sufficiently large ρ∗ > 0, the functions y (ν)
k

(x,ρ), ν = 0,n −1, are ana-

lytic with respect to ρ for ρ ∈ Sk0
, |ρ| ≥ ρ∗, are continuous for ρ ∈ Sk0

, |ρ| ≥ ρ∗, and

|y (ν)
k

(x,ρ)(ρRk)−νe−ρRk(x−a)
−1| ≤C

(
|ρ(x −a)|−1

+|ρ|−δ0
)
, (11)

for x > a, ρ ∈ Sk0
, |ρ(x −a)| ≥ 1, where δ0 := min(1,θ).

2. As |ρ|→∞,

det[y (ν−1)
k

(x,ρ)]k ,ν=1,n = ρm(n−1)
Ω

(
1+O(ρ−δ0 )

)
, x > a (12)

where Ω := det[Rν−1
k

]k ,ν=1,n 6= 0.

3. The relation

yk(x,ρ) =
n∑

j=1

b+
k j (ρ)s j (x,λ), x > a (13)

holds, where

b+
k j (ρ)=β0

j R
µ j

k
ρµ j

(
1+O(ρ−δ0 )

)
, |ρ|→∞, (14)

and
n∏

j=1

β0
j =

(
det[R

µ j

k
]k , j=1,n

)−1
Ω. (15)

We note that the most important and non-trivial fact here is the asymptotical formula

(14) for the Stokes multipliers b+
k j

(ρ). We will call yk (x,ρ) the Birkhoff-type solutions for equa-

tion (1).

Let yk ,−(x,ρ), x > a, be the Birkhoff-type solutions for (9). Then the following functions

yk (x,ρ) := yk ,−(2a − x,ρ), x < a, are solutions of (1). Symmetrically to (13), we have

yk (x,ρ)=
n∑

j=1

b−
k j (ρ)sR

j (x,λ), x < a, (16)

where

b−
k j (ρ)=β0

j R
µ j

k
ρµ j

(
1+O(ρ−δ0 )

)
, |ρ|→∞, (17)
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with the same constants β0
j

as in (14). Since µ1+ . . .+µn = n(n−1)/2, it follows from (14), (15)

and (17) that

det[b±

k j
(ρ)]k , j=1,n =ρm(n−1)

Ω
(
1+O(ρ−δ0 )

)
, |ρ|→∞. (18)

By virtue of (10) and (16),

yk (x,ρ)=
n∑

j=1

B−
k j (ρ)s j (x,λ), x < a, (19)

where

B−
k j (ρ)= b−

k j (ρ)e−iπµ j . (20)

It follows from (13) and (19) that

s j (x,λ) =
n∑

k=1

d+
j k (ρ)yk(x,ρ), x > a, (21)

s j (x,λ) =
n∑

k=1

D−
j k (ρ)yk(x,ρ), x < a, (22)

where

D−
j k (ρ)= d−

j k (ρ)e iπµ j . (23)

and [d±

j k
(ρ)] j ,k=1,n =

(
[b±

k j
(ρ)]k , j=1,n

)−1
. Using (14) and (17) we infer

d±

j k (ρ)= (β0
j )−1ρ−µ j

(
d j k +O(ρ−δ0 )

)
, |ρ|→∞, (24)

where [d j k ] j ,k=1,n =
(
[R

µ j

k
]k , j=1,n

)−1
. We rewrite (11) as follows

y (ν)
k

(x,ρ)= (ρRk)νeρRk(x−a)[1]a , x > a, ρ ∈ Sk0
, |ρ(x −a)| ≥ 1, (25)

where [1]a = 1+O
(
|ρ(x −a)|−1+|ρ|−δ0

)
for |ρ(x −a)| ≥ 1, |ρ|→∞ uniformly in x (i.e. f (x,ρ)=

[1]a means | f (x,ρ)−1| ≤C
(
|ρ(x −a)|−1 +|ρ|−δ0

)
for |ρ(x −a)| ≥ 1). Similarly,

y (ν)
k

(x,ρ)= (−ρRk)νeρRk(a−x)[1]a , x < a, ρ ∈ Sk0
, |ρ(x −a)| ≥ 1, (26)

In particular, (26) yields

det[y (ν−1)
k

(x,ρ)]k ,ν=1,n = (−1)mρm(n−1)
Ω

(
1+O(ρ−δ0 )

)
, x < a. (27)

Let a matrix A = [ak j ]k , j=1,n, det A 6= 0, be given, where ak j are complex numbers. We

introduce the functions {σ j (x,λ)} j=1,n , x ∈ J±, where J± := {x : ±(x −a) > 0}, by the formula

σ j (x,λ) =

{
s j (x,λ), x ∈ J−,
∑n

k=1
ak j sk (x,λ), x ∈ J+.

(28)
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For each fixed x 6= a, the functions σ(ν)
j

(x,λ), ν= 0,n −1, are entire in λ of order 1/n. For x ∈ J−

and x ∈ J+, the functions σ j (x,λ) satisfy the differential equation (1), and according to (8),

det[σ(ν−1)
j

(x,λ)] j ,ν=1,n ≡

{
1, x ∈ J−,

det A, x ∈ J+.
(29)

The fundamental system of solutions {σ j (x,λ)} will be used for matching together solutions

at the singular point x = a. More precisely, we shall say that a solution y(x,λ) of equation

(1) satisfies the matching condition generated by the transition matrix A, if y(x,λ) can be

represented in the form

y(x,λ)=
n∑

j=1

χ j (λ)σ j (x,λ) for all x ∈ J−∪ J+,

where the coefficients χ j (λ) do not depend on x.

Using (13), (19), (21), (22) and (28) we get

yk(x,ρ) =
n∑

j=1

B±

k j (ρ)σ j (x,λ), σ j (x,λ) =
n∑

k=1

D±

j k (ρ)yk(x,ρ) x ∈ J±, (30)

where B−
k j

(ρ), D−
j k

(ρ) are defined by (20) and (23),

D+
j k (ρ)=

n∑

s=1

as j d+
sk (ρ), (31)

and B+
k j

(ρ) can be found from the linear system

b+
kl (ρ)=

n∑

j=1

B+
k j (ρ)al j ,

i.e. [B+
k j

(ρ)]k , j=1,n = [b+
k j

(ρ)]k , j=1,n(AT )−1, where T denotes the transposition. Clearly,

[D±

j k
(ρ)] j ,k=1,n =

(
[B±

k j
(ρ)]k , j=1,n

)−1
, (32)

det[B−
k j (ρ)]k , j=1,n = (−1)m det[b−

k j (ρ)]k , j=1,n, det[B+
k j (ρ)]k , j=1,n =

det[b+
k j

(ρ)]k , j=1,n

det A
. (33)

For definiteness, in the sequel we confine ourselves to the most important particular case

when ak j = 0 for k < j . Let ϕ j (x,λ), j = 1,n, be solutions of equation (1) satisfying the initial

conditions

ϕ(ν−1)
j

(0,λ) =δ jν, j ,ν= 1,n (34)

(δ jν is the Kronecker delta) and also the matching condition generated by the transition ma-

trix A.
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Theorem 1. (i1) For each fixed x 6= a, the functions ϕ(ν)
j

(x,λ), ν = 0,n −1, are entire in λ of

order 1/n, and

det[ϕ(ν−1)
j

(x,λ)] j ,ν=1,n ≡

{
1, x ∈ J−,

det A, x ∈ J+.
(35)

(i2) For |ρ(x − a)| ≥ 1, ρ ∈ Sk0
, ν = 0,n −1, j = 1,n, |ρ| → ∞, the following asymptotical

formulas are valid

ϕ(ν)
j

(x,λ) =
1

n

n∑

k=1

(−ρRk)ν+1− j e−ρRkx [1]a , x ∈ J−, (36)

ϕ(ν)
j

(x,λ) =
1

n

n∑

l ,k=1

(−ρRk )1− j (ρRl )ν
(
ξ0

kl +O(ρ−δ1 )
)
e−ρRka eρRl (x−a)[1]a , x ∈ J+

where δ1 := min(1,min
l

ℜ(µl+1 −µl )), and

ξ0
k j =

n∑

s=1

assR
µs

k
ds j e−iπµs . (37)

Proof. Since the functions ϕ j (x,λ) satisfy the matching conditions, the following representa-

tion holds

ϕ j (x,λ) =
n∑

s=1

χ j s (λ)σs (x,λ), x ∈ J−∪ J+. (38)

According to the initial conditions (34), the coefficients χ j s (λ) can be found from the linear

systems
n∑

s=1

χ j s (λ)σ(ν−1)
s (0,λ) =δ jν, ν= 1,n, (39)

for each j = 1,n. In view of (29), the determinant of (39) is equal to 1. Solving (39) by Cramer’s

rule we obtain that the functions χ j s (λ) are entire in λ of order 1/n, and det[χ j s(λ)] j ,s=1,n ≡ 1.

Together with (38) and (29) this yields (i1).

Applying the fundamental system of solutions {yk (x,ρ)}k=1,n we expand ϕ j (x,λ) for x ∈

J+ and x ∈ J− separately:

ϕ j (x,λ) =
n∑

k=1

A±

j k
(ρ)yk(x,λ), x ∈ J±. (40)

Using the initial conditions (34) we calculate

n∑

k=1

A−
j k (ρ)y (ν−1)

k
(0,ρ) = δ jν, j ,ν= 1,n,

Hence, by virtue of (26) and (27),

A−
j k (ρ) = (−ρ)1− j e−ρRka

(
α j k +O(ρ−δ0 )

)
,
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where the numbers α j k can be found from the linear systems

n∑

k=1

α j k Rν−1
k = δ jν, ν= 1,n

for each j = 1,n. It is easy to verify that α j k = R
1− j

k
/n, and consequently,

A−
j k (ρ)=

1

n
(−ρRk )1− j e−ρRka

(
1+O(ρ−δ0 )

)
. (41)

Substituting (41) and (26) into (40), we arrive at (36).

In order to calculate A+
j k

(ρ) we use the matching condition generated by the transition

matrix A. Substituting (30) into (40) we get

ϕ j (x,λ) =
n∑

s=1

σs (x,λ)
n∑

k=1

A±

j k
(ρ)B±

ks
(ρ), x ∈ J±.

Taking (38) into account, we infer

n∑

k=1

A+
j k (ρ)B+

ks(ρ) =
n∑

k=1

A−
j k (ρ)B−

ks(ρ).

According to (32), the last equality yields

A±

j k
(ρ)=

n∑

s=1

A∓
j s (ρ)ξ±

sk
(ρ), (42)

where

ξ±
sk

(ρ)=
n∑

l=1

B∓

sl
(ρ)D±

lk
(ρ). (43)

Thus, [ξ±
k j

(ρ)]k , j=1,n = [B∓

k j
(ρ)]k , j=1,n[D±

j k
(ρ)] j ,k=1,n, and

[ξ−k j (ρ)]k , j=1,n =
(
[ξ+k j (ρ)]k , j=1,n

)−1
.

Together with (32) and (33) this yields

det[ξ+k j (ρ)]k , j=1,n = (−1)m det A det[b−
k j (ρ)]k , j=1,n

(
det[b+

k j (ρ)]k , j=1,n

)−1
,

and, in view of (18)

det[ξ+k j (ρ)]k , j=1,n = (−1)m det A
(
1+O(ρ−δ0 )

)
, |ρ|→∞. (44)

By virtue of (17) and (20),

B−
k j (ρ)=β0

j R
µ j

k
e−iπµ jρµ j

(
1+O(ρδ0 )

)
, |ρ|→∞. (45)
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It follows from (24) and (31) that

D+
j k (ρ)= (β0

j )−1a j jρ
−µ j

(
d j k +O(ρ−δ0 )+O(ρ−ℜ(µ j+1−µ j ))

)
, |ρ|→∞. (46)

Substituting (45) and (46) into (43) we calculate

ξ+sk = ξ0
sk +O(ρ−δ1 ), |ρ|→∞, (47)

where the numbers ξ0
sk

are defined by (37). Moreover, (44) and (47) imply

det[ξ0
k j ]k , j=1,n = (−1)m det A. (48)

Using (41), (42) and (47) we deduce

A+
j k (ρ)=

1

n

n∑

s=1

(−ρRs)1− j e−ρRs a
(
ξ0

sk +O(ρ−δ1 )
)
, |ρ|→∞, (49)

hence (40) and (25) yield (1). Theorem 1 is proved. ���

Denote

ξ0
s = det[ξ0

k j ]
j=n−s+1,n

k=1,s
, s = 1,n.

In particular, according to (48), ξ0
n = (−1)m det A 6= 0.

We shall assume that

ξ0
s 6= 0, s = 1,n −1. (50)

Condition (50) is called the regularity condition for matching.

We introduce the functions

∆ j (ρ)= det[yk (0,ρ), . . . , y
( j−1)

k
(0,ρ),ξ+k j+1(ρ), . . . ,ξ+kn(ρ)]T

k=1,n
, j = 1,n −1,

∆n(ρ)= det[y (ν−1)
k

(0,ρ)]k ,ν=1,n.
(51)

It is clear that

∆ j (ρ)=
∑

1≤s1<...<sn≤n

det[ξ+sp k ]
k= j+1,n;p=1,n− j

det[y (ν−1)
sp

(0,ρ))]
p,ν=1, j

. (52)

Substituting (26) and (47) into (52) we get for |ρ|→∞, ρ ∈ Sk0
, j = 1,n −1:

∆ j (ρ)= (−ρ)1+...+( j−1)eρ(Rn+...+Rn− j+1)a
(
∆

0
j (ρ)+O(ρ−δ1 )

)
(53)

where

∆
0
j (ρ) = ∆ j ,0+∆ j ,1eρ(Rn− j−Rn− j+1)a ,

∆ j ,0 = d0 det[ξ0
sk ]

s=1,n− j ;k= j+1,n
, d0 6= 0,

∆ j ,1 = d1 det[ξ0
sk ]

s=1,n− j−1,n− j+1;k= j+1,n
,

d0 and d1 some constants that do not depend on ρ. By the regularity condition for matching,

we have ∆ j ,0 6= 0. Using (53), by the well-known methods (see, for example, [9]), one can

obtain the following assertion.
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Theorem 2. Let {ρl j } be the zeros of ∆ j (ρ). Denote Gδ, j := {ρ : |ρ−ρl j | ≥δ}. Then

|∆ j (ρ)| ≥Cδ

∣∣∣ρ j ( j−1)/2eρ(Rn+...+Rn− j+1)a
∣∣∣, ρ ∈ Sk0

∪Gδ, j , |ρ|→∞. (54)

We now introduce the functions Φ j (x,λ), j = 1,n, which are solutions of equation (1)

with the conditions

Φ
(ν−1)
j

(0,λ) = δν j , ν= 1, j , Φ j (x,λ) =O(eρR j x ), x →∞, j = 1,n, ρ ∈ Sk0
, (55)

and with the matching condition generated by the transition matrix A. We will call Φ j (x,λ),

j = 1,n, the Weyl-Yurko solution for the differential equation (1). Using (34) we calculate

Φ j (x,λ) =ϕ j (x,λ)+
n∑

k= j+1

M j k(λ)ϕk (x,λ) (56)

where

M j k (λ) =Φ
(k−1)
j

(0,λ), 1 ≤ j < k ≤ n. (57)

It follows from (35) and (56) that

det[Φ(ν−1)
j

(x,λ)] j ,ν=1,n ≡

{
1, x ∈ J−,

det A, x ∈ J+.
(58)

Relation (56) can be written in the form

Φ(x,λ) =ϕ(x,λ)M T (λ), (59)

where Φ(x,λ) = [Φ(ν−1)
j

(x,λ)] j ,ν=1,n, ϕ(x,λ) = [ϕ(ν−1)
j

(x,λ)] j ,ν=1,n, M (λ) = [M j k(λ)] j ,k=1,n,

M j k (λ) := δ j k for j ≥ k . We will call M (λ) the Weyl-Yurko matrix for equation (1), since it is a

generalization of the concept of the Weyl-Yurko matrix introduced in [4].

Theorem 3. For |ρ(x −a)| ≥ 1, ρ ∈ Sk0
∩Gδ, j , |ρ|→∞, j ,ν= 1,n the following estimates hold

|Φ
(ν−1)
j

(x,λ)| ≤C |ρν− j e−ρRn− j+1x
|, x ∈ J−,

|Φ
(ν−1)
j

(x,λ)| ≤C |ρν− j eρR j x e−ρ(Rn− j+1+R j )a
|, x ∈ J+.

(60)

Proof. Since the functions Φ j (x,λ) satisfy the matching condition generated by the transition

matrix A, the following representation holds

Φ j (x,λ) =
n∑

s=1

χ0
j s (λ)σs (x,λ), x ∈ J−∪ J+ (61)
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where the coefficients χ0
j s

(λ) do not depend on x. Applying the fundamental system of solu-

tions {yk (x,ρ)}k=1,n we expand Φ j (x,λ) for x ∈ J− and x ∈ J+ separately:

Φ j (x,λ) =
n∑

k=1

a±

j k (ρ)yk (x,ρ), x ∈ J±. (62)

Substituting (30) into (61) we get

Φ j (x,λ) =
n∑

s=1

σs (x,λ)
n∑

k=1

a±

j k
(ρ)B±

ks
(ρ), x ∈ J±,

and consenquently,

χ0
j s (λ) =

n∑

k=1

a+
j k (ρ)B+

ks(ρ) =
n∑

k=1

a−
j k(ρ)B−

ks(ρ). (63)

According to (32), this yields

a+
j k(ρ) =

n∑

s=1

a−
j s (ρ)ξ+sk (ρ), (64)

where the functions ξ+
sk

(ρ) are defined by (43). Using (55), (62) and (64) we get

n∑

k=1

a−
j k (ρ)y (ν−1)

k
(0,ρ) = δ j v , ν= 1, j ,

n∑

k=1

a−
j k (ρ)ξ+kν(ρ)= a+

jν(ρ) ≡ 0, ν= j +1,n,





(65)

For each j = 1,n, (65) is a linear system with respect to a−
j k

(ρ). The determinant of this system

is ∆ j (ρ). Solving (65) by Cramer’s rule and using (26), (27), (47), (54) and (64) we get for ρ ∈

Sk0
∩Gδ, j , j = 1,n −1:

|a−
j k (ρ)| ≤C |ρ1− j e−ρRn− j+1a

|, k = 1,n − j +1,

|a−
j k (ρ)| ≤C |ρ1− j e−ρRka

|, k = n − j +1,n,

|a+
j k (ρ)| ≤C |ρ1− j e−ρRn− j+1a

|, k = 1, j ,

(66)

and a+
j k

(ρ)≡ 0, k = j +1,n. Substituting (66), (25) and (26) into (62) we arrive at (60). For j =n

estimates (60) obtained similarly. Theorem 3 is proved. ���

Now we consider the inverse problem of recovering ℓ from the given Weyl-Yurko matrix

M (λ). Let us prove the uniqueness theorem for the solution of the inverse problem. For this

purpose we agree that together with ℓ we consider a differential equation ℓ̃ of the same form

but with different coefficients q̃ j and ν̃ j . If a certain symbol γ denotes an object related to ℓ,

then the corresponding symbol γ̃ with tilde will denote the analogous object related to ℓ̃.

Theorem 4. If M (λ) = M̃ (λ), then ℓ= ℓ̃. Thus, the specification of the Weyl-Yurko matrix M (λ)

determines the differential equation (1) uniquely.
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Proof. Define the matrix P (x,λ) = [P j k (x,λ))] j ,k=1,n by the following formula P (x,λ) =

Φ(x,λ)
(
Φ̃(x,λ)

)−1
or, in view of (58), in the coordinates

P j k (x,λ) =
(
η(x)

)−1
det[Φ̃s (x,λ), . . . ,Φ̃(k−2)

s (x,λ),

Φ
( j−1)
s (x,λ),Φ̃(k)

s (x,λ), . . . ,Φ̃(n−1)
s (x,λ)]s=1,n ,

(67)

where η(x) = 1 for x ∈ J− and η(x) = det A for x ∈ J+. Denote Gδ =
n−1⋂
j=1

Gδ, j . By virtue of (60)

and (67), we have for each fixed x 6= a:

P j k (x,λ) =O(ρ j−k), |ρ|→∞, ρ ∈Gδ. (68)

Using (59) and the assumption of Theorem 4, we transform the matrix P (x,λ) as follows

P j k (x,λ) =ϕ(x,λ)
(
ϕ̃(x,λ)

)−1
.

Taking (35) into account we conclude that for each fixed x 6= a, the functions P j k (x,λ) are

entire in λ. Using (68), the maximum modulus principle and Liouville’s theorem, we get

P1k (x,λ) ≡ 0 for k = 2,n, and P11(x,λ) ≡P (x) does not depend in λ. Therefore,

Φ j (x,λ) ≡P (x)Φ̃ j (x,λ). (69)

Using the asymptotical formulas (36) and (1) for the function ϕn(x,λ) ≡Φn(x,λ), we get from

(69) that P (x,λ) ≡ 1. Hence Φ j (x,λ) ≡ Φ̃ j (x,λ) for all x, λ, j . This yields ℓ= ℓ̃, and Theorem 4

is proved. ���
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