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MONOTONICITY RESULT FOR GENERALIZED LOGARITHMIC

MEANS

XIN LI, CH.-P. CHEN AND F. QI

Abstract. r 7→
Lr(a,b)

Lr(1−a,1−b)
is a strictly increasing function of r ∈ (−∞,∞) for 0 < a < b ≤ 1

2 ,

and is a strictly decreasing function of r ∈ (−∞,∞) for 1
2 ≤ a < b < 1, where Lr(a, b) denotes

the generalized logarithmic mean of two positive numbers a and b.

1. Introduction

The following inequality in [1, p. 5] is due to Ky Fan: If 0 < xi ≤ 1
2 for i = 1, 2, . . . , n,

then
( ∏n

i=1 xi
∏n

i=1(1 − xi)

)1/n

≤
∑n

i=1 xi
∑n

i=1(1 − xi)
, (1)

with equality only if all the xi are equal.

Inequality (1) can be written as

M0(x)

M0(1 − x)
≤ M1(x)

M1(1 − x)
, (2)

where Mr(x) denotes the r-order power mean of xi > 0 for i = 1, 2, . . . , n, defined by

Mr(x) =







(

1
n

∑n
i=1 xr

i

)1/r
, r 6= 0;

(
∏n

i=1 xi)
1/n

, r = 0.
(3)

Zh. Wang, J. Chen and X. Li [12] found the necessary and sufficient condition for

Mr(x)

Mr(1 − x)
≤ Ms(x)

Ms(1 − x)
(4)

when r < s.
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In 1975, Stolarsky [10] defined the extended means E(r, s; x, y) by

E(r, s; x, y) =

(

r

s
· ys − xs

yr − xr

)1/(s−r)

, rs(r − s)(x − y) 6= 0; (5)

E(r, 0; x, y) =

(

1

r
· yr − xr

ln y − lnx

)1/r

, r(x − y) 6= 0; (6)

E(r, r; x, y) =
1

e1/r

(

xxr

yyr

)1/(xr−yr)

, r(x − y) 6= 0; (7)

E(0, 0; x, y) =
√

xy, x 6= y; (8)

E(r, s; x, x) = x, x = y. (9)

It is known that E(r, s; x, y) are increasing with both r and s, or with both x and y (see

[2, 4, 10]). A comparison theorem for the extended means has been obtained by E. B.
Leach and M. C. Sholander in [5]. In [9], the logarithmic convexity of E was proved.

Taking in E(r, s; x, y) r = 1 and s = r + 1, we obtain the generalized logarithmic

mean Lr(a, b) of two positive numbers a, b: For a = b by Lr(a, b) = a and for a 6= b by

Lr(a, b) =

(

br+1 − ar+1

(r + 1)(b − a)

)1/r

, r 6= −1, 0; (10)

L−1(a, b) =
b − a

ln b − ln a
= L(a, b); (11)

L0(a, b) =
1

e

(

bb

aa

)1/(b−a)

= I(a, b), (12)

where L(a, b) and I(a, b) are respectively the logarithmic mean and the exponential mean

of two positive numbers a and b. When a 6= b, Lr(a, b) is a strictly increasing function

of r. In particular,

lim
r→−∞

Lr(a, b) = min{a, b}, lim
r→+∞

Lr(a, b) = max{a, b},

L1(a, b) = A(a, b), L−2(a, b) = G(a, b),

where A(a, b) and G(a, b) are the arithmetic and the geometric means, respectively. For
a 6= b, the following well known inequality holds:

G(a, b) < L(a, b) < I(a, b) < A(a, b). (13)

In this short note, motivated by inequality (4), we will establish the following.

Theorem 1. r 7→ Lr(a,b)
Lr(1−a,1−b) is a strictly increasing function of r ∈ (−∞,∞) for

0 < a < b ≤ 1
2 , and is a strictly decreasing function of r ∈ (−∞,∞) for 1

2 ≤ a < b < 1.

As a consequence of Theorem 1, we have



MONOTONICITY RESULT FOR GENERALIZED LOGARITHMIC MEANS 179

Corollary 1. If 0 < a < b ≤ 1
2 , then

a

1 − b
<

G(a, b)

G(1 − a, 1 − b)
<

L(a, b)

L(1 − a, 1 − b)

<
I(a, b)

I(1 − a, 1 − b)
<

A(a, b)

A(1 − a, 1 − b)
<

b

1 − a
.

(14)

If 1
2 ≤ a < b < 1, then (14) is reversed.

2. Proof of Theorem 1

In order to verify Theorem 1, we shall make use of the following elementary lemma
which can be found in [3, p.395].

Lemma 1.([3, p.395]) Let the second derivative of φ(x) be continuous with x ∈
(−∞,∞) and φ(0) = 0. Define

g(x) =







φ(x)

x
, x 6= 0;

φ′(0), x = 0.
(15)

Then φ(x) is strictly convex (concave) if and only if g(x) is strictly increasing (decreas-
ing) with x ∈ (−∞,∞).

Remark 1. In [7, p. 18] a general conclusion was given: A function f is convex on

[a, b] if and only if f(x)−f(x0)
x−x0

is nondecreasing on [a, b] for every point x0 ∈ [a, b].

Proof of Theorem 1. Define for r ∈ (−∞,∞),

ϕ(r) =



















ln

(

br+1 − ar+1

(1 − a)r+1 − (1 − b)r+1

)

, r 6= −1;

ln

(

ln(b/a)

ln[(1 − a)/(1 − b)]

)

, r = −1.

(16)

Then

ln f(r) =







ϕ(r)

r
, r 6= 0;

ϕ′(0), r = 0.
(17)

In order to prove that ln f is strictly increasing (decreasing) it suffices to show that
ϕ is strictly convex (concave) on (−∞,∞). Computation reveals that

ϕ(−1 − r) = ϕ(−1 + r) + r ln
(1 − a)(1 − b)

ab
, (18)

which implies that ϕ′′(−1 − r) = ϕ′′(−1 + r), and then ϕ has the same convexity (con-
cavity) on both (−∞,−1) and (−1,∞). Hence, it is sufficient to prove that ϕ is strictly
convex (concave) on (−1,∞).
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A computation yields

ϕ′(r) =
br+1 ln b − ar+1 ln a

br+1 − ar+1
− (1 − b)r+1 ln(1 − b) − (1 − a)r+1 ln(1 − a)

(1 − b)r+1 − (1 − a)r+1
,

(r + 1)2ϕ′′(r) = (r + 1)2

[

−ar+1br+1(ln a
b )2

(br+1 − ar+1)2
+

(1 − a)r+1(1 − b)r+1(ln 1−b
1−a )2

[(1 − a)r+1 − (1 − b)r+1]2

]

= − (a
b )r+1[ln(a

b )r+1]2

[1 − (a
b )r+1]2

+
( 1−b
1−a )r+1[ln( 1−b

1−a )r+1]2

[1 − ( 1−b
1−a)r+1]2

.

Define for 0 < t < 1,

ω(t) =
t(ln t)2

(1 − t)2
. (19)

Differentiation yields

(1 − t)t ln t
ω′(t)

ω(t)
= (1 + t) ln t + 2(1 − t) = −

∞
∑

n=2

n − 1

n(n + 1)
(1 − t)n+1 < 0, (20)

which implies that ω′(t) > 0 for 0 < t < 1. It is easy to see that

0 <
(a

b

)r+1

<

(

1 − b

1 − a

)r+1

< 1 for 0 < a < b ≤ 1

2
, r > −1, (21)

0 <

(

1 − b

1 − a

)r+1

<
(a

b

)r+1

< 1 for
1

2
≤ a < b < 1, r > −1, (22)

and therefore ϕ′′(r) > 0 for 0 < a < b ≤ 1
2 and r > −1, while ϕ′′(r) < 0 for 1

2 ≤ a < b < 1

and r > −1. Thus ϕ is strictly convex (concave) on (−1,∞) for 0 < a < b ≤ 1
2 (1

2 ≤ a <

b < 1). The proof is complete.

For various proposed multivariable extensions of the means E(r, s; x, y) to several

variables, see [4, 6, 8, 11].

In view of Theorem 1, it is natural to pose the following open problem.
Open Problem. Generalize Theorem 1 to several variables.
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