
TAMKANG JOURNAL OF MATHEMATICS
Volume 42, Number 3, 385-394, Autumn 2011
doi:10.5556/j.tkjm.42.2011.385-394

-
+

+

-

-
-

-
-

Available online at http://journals.math.tku.edu.tw/

INVERSE SPECTRAL NONLOCAL PROBLEM FOR

THE FIRST ORDER ORDINARY DIFFERENTIAL EQUATION

LEONID NIZHNIK

Abstract. We solve direct and inverse spectral problems for the first order ordinary dif-

ferential equation with nonlocal potential and nonlocal boundary condition.

1. Introduction

An inverse spectral problem for some nonlocal operators have been studied in [1]–[6].

A Schrödinger operator with a nonlocal point potential was introduced and studied in [7].

Direct and inverse nonlocal problems for the Sturm-Liouville operator with various boundary

conditions were solved in [8]–[10].

In this paper, we study inverse spectral nonlocal problems for the first order ordinary

differential equation with a nonlocal potential and a nonlocal boundary condition. Then we

consider the following nonlocal eigenvalue problem:

i y ′(x)+v(x)y− =λy(x), x ∈ (−π,π), (1)

subject to the boundary-value condition

y++2i (y, v)L2
= 0. (2)

Here v ∈ L2(−π,π) is a nonlocal “potential”, λ ∈ C is a spectral parameter and y− = y(π)−
y(−π), y+ = y(π)+ y(−π) are boundary data for the function y(x).

The problem (1)–(2) is self-adjoint in the space L2(−π,π). This follows from the following

analogue of Lagrange’s formula, which holds for arbitrary functions y, ϕ that belong to the

space W 1
2 (−π,π):

(i y ′+v y−,ϕ)L2
− (y, iϕ′+vϕ−)L2

=−
i

2
[y++2i (y, v)L2

]ϕ−+
i

2
y−[ϕ+−2i (v,ϕ)L2

]. (3)
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2. Spectral problem

Spectral problem (1), (2) is naturally related to an operator T on the Hilbert space H =
L2(−π,π). It has domain

dom T = {y | y ∈W 1
2 (−π,π), y satisfies boundary condition (2)}

and is defined by T y = i y ′(x)+ v(x)y−. The operator T is a self-adjoint operator on H . The

self-adjoint operator T is a finite rank perturbation of a self-adjoint operator Tp defined by

Tp y = i y ′(x) on functions that satisfy the boundary conditions y(π)= y(−π).

Since the operator Tp has discrete spectrum, which consists of the eigenvalues λn = n,

n ∈ Z , the operator T has discrete spectrum consisting of real numbers λn →+∞ and λ−n →
−∞ for n →∞.

Theorem 1. All eigenvalues of problem (1), (2), distinct from n, n ∈ Z , are real and simple.

The number λ= n is an eigenvalue of problem (1), (2) if and only if

v−n =
1

2π

∫π

−π
v(x)e i nx d x =

i

2π
(−1)n+1. (4)

The number λ= n is a double eigenvalue of problem (1), (2) if and only if, in addition to (4), we

have
∑

k+n 6=0

1

k +n
[(vk −v k )(−1)k +2πi |vk |2] = 0. (5)

Problem (1), (2) has no eigenvalues with multiplicity exceeding 2.

Proof. The eigenvalues of problem (1), (2) are real, since they are eigenvalues of the self-

adjoint operator T .

If an eigenvalue λ0 were twofold, then there would exist two linearly independent eigen-

functions y1 and y2 corresponding to this eigenvalue. Since any linear combinations y =
C1 y1 +C2 y2 is also an eigenfunctions of problem (1), (2) corresponding to the eigenvalue λ0,

by choosing C1 = y2− and C2 = −y1−, we get y− = 0. If y ≡ 0, then y1− = y2− = 0. Hence,

for the eigenvalue λ0 there exists a nonzero eigenfunction y that satisfies the boundary con-

dition y− = 0. It follows from (1) that y = e−iλ0x . The condition y− = 0 shows that λ0 is an

integer. Let now λ = n be an eigenvalue of problem (1), (2). If the corresponding eigen-

function y(x;n) assumes equal values at the endpoints of the interval, that is, y− = 0, then

(1) yields y(x;n) = e−i nx , and boundary condition (2) leads to (4). Conversely, assuming (4)

shows that the function y(x;n) = e−i nx is an eigenfunction of problem (1), (2) corresponding

to the eigenvalue λ= n. If condition (4) holds, then equation (1) has a solution distinct from

y(x;n)= e−i nx ,

ϕ(x;n)= xe−i nx +2π(−1)n
∑

k+n 6=0

vke−i kx

k +n
, (6)



INVERSE SPECTRAL NONLOCAL PROBLEM 387

where vk are Fourier coefficients of the potential v(x) =
∞
∑

k=−∞
vke i kx . A function ϕ(x;n) is an

eigenfunction of problem (1), (2) if and only if it satisfies boundary condition (2). This leads

to relation (5). The eigenvalue λ= n can not have multiplicity exceeding 2, since equation (1)

does not have more than two linearly independent solutions. ���

To give an exact description of the distribution of eigenvalues of problem (1), (2), it is

convenient to show that the eigenvalues are connected with zeros of an analytic function,

which is the characteristic function of problem (1), (2).

To this end, consider a special solution of equation (1) with λ= z,

ϕ(x; z) =
1

2
e−i zx − i sinπz

∞
∑

n=−∞

vne i nx

n + z
. (7)

The function ϕ is an eigenfunction of problem (1), (2) if it satisfies the boundary-value condi-

tion (2). This gives the characteristic equation χ(z) = 0, where the characteristic function χ(z)

is defined by χ(z) =ϕ++2i (ϕ, v) and has the form

χ(z) = cosπz +2sinπz
∞
∑

n=−∞

αn(−1)n

n + z
, (8)

where

αn =−i vn + i v̄n +2π(−1)n |vn|2. (9)

Lemma 1. The characteristic function χ(z) of problem (1),(2) is an entire function of z and

takes the values

χ(−m) = (−1)m [1+2π(−1)mαm] = (−1)m |1−2πi (−1)m vm|2. (10)

Proof. The proof is carried out by making direct computations using the explicit form (8) of

the characteristic function. ���

Theorem 2. The number λ is an eigenvalue of problem (1), (2) if and only if λ is a zero of the

characteristic function χ(z). A number λ is a double eigenvalue of the problem (1), (2) if and

only if λ is a double zero of the characteristic function. All zeros z 6=n, n ∈ Z , of the characteris-

tic function are simple. The characteristic function does not have zeros of multiplicities greater

than 2.

Proof. It follows that zeros λ 6= n of the characteristic function χ(z) are eigenvalues, since the

special solution (7) is an eigenfunction and vice versa. The number λ= n is a eigenvalue if and

only if (4) is satisfied which, by (10), is equivalent to χ(n) = 0. If the characteristic function χ

had a multiple root z = n, this would imply that
dχ(z)

d z
|z=n= 0, which is equivalent to (5). The
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characteristic function does not have zeros of multiplicities greater than 2 for, otherwise, the

function
d 2ϕ(x; z)

d z2
|z=z0

would be a nontrivial generalized eigenfunction for problem (1)–(2),

which is impossible since problem (1), (2) is self–adjoint. ���

2. Resolvent

A fundamental solution of the equation (i d
dx

− z)E = δ(x − s) has the form

E (x − s; z)=
i

2
e i z(s−x)sign (s −x). (11)

Green’s function for the equation (i d
dx −z)Gp = δ(x−s) and which corresponds to the periodic

boundary condition y(π)= y(−π) is

Gp (x, s; z)= E (x − s; z)−
cos zπ

2sin zπ
e−i zxe i zs . (12)

This means that the resolvent (Tp −zI )−1 of the self-adjoint operator Tp with periodic bound-

ary conditions is the integral operator (Tp −zI )−1u(x) =
π

∫

−π

Gp (x, s; z)u(s)d s. Green’s function

Ga for the antiperiodic boundary conditions y(π)=−y(−π) has the form

Ga(x, s; z) =E (x − s; z)+
sin zπ

2cos zπ
e−i zx e i zs . (13)

The function Ga is the kernel of the integral resolvent operator (Ta − zI )−1 for the self-adjoint

operator Ta corresponding to the antiperiodic boundary conditions. It follows from (12)–(13)

that

Ga −Gp =
1

2sin 2πz
e−i zxe i zs . (14)

Hence, the integral operators (Ta−zI )−1 and (Tp−zI )−1 differ by a one-dimensional operator.

The self-adjoint operators Ta and Tp are rank one perturbations of each other.

Simple calculations show that the resolvent (T − zI )−1 of the main operator for problem

(1)–(2) is an integral operator whose kernel is Green’s function

G (x, s; z)=Gp (x, s; z)+
2

sinπzχ(z)
ϕ(x; z)ϕ(s; z). (15)

Formula (15) shows that the self-adjoint operator T is a rank one perturbation of the

self-adjoint operator Tp , and (14) with v 6= 0 shows that it is a rank two perturbation of the

self-adjoint operator Ta . Note that, if v = 0, then T = Ta .



INVERSE SPECTRAL NONLOCAL PROBLEM 389

3. Example of a constant potential

Consider the case where the nonlocal potential is a pure imaginary constant, v(x) ≡ iβ.

Here, the characteristic equation is

χ(λ) = cosλπ−γ
sinλπ

λπ
= 0, (16)

where γ = −4πβ(1+πβ) is a real number. Since the function χ(λ) is even, the set of its zeros

is symmetric, λn = −λ−n , n ∈ N . We have λ1 = λ−1 = 0 if and only if γ = 1, that is, β = − 1
2π

.

Eigenfunctions have the form

ϕ(x;λn) =
1

2
e−iλn x +β

sinλnπ

λn
, n =±1,±2, . . . (17)

They form a complete orthonormal system in the space L2(−π,π), being a complete system

of eigenfunctions of a self-adjoint operator T . By passing to the functions sn(x) = i [ϕ(x;λn)−

ϕ(x;−λn)] = sinλn x and cn(x) = ϕ(x;λn)+ϕ(x;−λn ) = cosλn x +δn , where δn =−
cosλnπ

2(1+πβ)
,

we obtain a complete orthonormal system of functions in the space L2(−π,π),

sn(x) = sinλn x, cn(x) = cosλn x +δn , (18)

where λn ≥ 0, n ∈ N , are roots of the characteristic equation (16). Note that the functions

in system (18) can be connected to eigenfunctions of usual self-adjoint boundary problems.

Indeed, if x ≥ 0, the functions sn(x) are eigenfunctions of the self-adjoint boundary problem

y ′′+λ2 y = 0 on the interval (0,π) with the boundary conditions y(0) = 0, y ′(π)−
γ

π
y(π) = 0.

Since the functions sn(x) are odd, they can be considered on the interval [−π,π]. We have

cn(x) = 1
λn

s′n(x)+δn , where the constants δn are uniquely determined by the condition that

the system {cn(x)}∞n=1 is orthogonal in the space L2(−π,π).

4. Distribution of the eigenvalues

In the definition (8)–(9) of the characteristic function, the values αn can be regarded as

Fourier coefficients of the function α(x) ∈ L2(−π,π), α(x) =
∞
∑

n=−∞
αne i nx . Then the character-

istic function χ admits, in addition to representation (8), the representation

χ(z) = cosπz +
π

∫

−π

e i ztα(t )d t , (19)

too. Representation (19) for the characteristic function χ permits to recover the function χ

from the set of its zeros. We use the following analogue of a result due to Marchenko, see [11],

Lemma 3.4.2.
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Lemma 2. For a function χ(z) to admit the representation

χ(z) = cosπz +
π

∫

−π

e i ztα(t )d t , (20)

where α(t ) ∈ L2(−π,π), it is necessary and sufficient that

χ(z) =
∞
∏

k=1
(k − 1

2 )2(ak − z)(z −a−k ),

ak = k − 1
2 sign k +βk ,

(21)

where βk is an arbitrary number sequence satisfying the condition

∞
∑

k=−∞
|βk |2 <+∞.

Theorem 3. An increasingly ordered two–sided sequence

· · · ≤λ−n · · · ≤λ−2 ≤λ−1 ≤λ1 ≤λ2 ≤ . . . ≤λn ≤ . . . (22)

is a sequence of all eigenvalues of problem (1), (2), counting multiplicities, if and only if it has

the following properties:

1. the sequence weakly alternates with the sequence n,

n −1 ≤λn ≤ n, −n ≤λ−n ≤−n +1, n ∈ N ; (23)

2. there is an asymptotic representation,

λn =n − 1
2
+βn ,

λ−n =−n + 1
2 +β−n , n∈N ,

where
∞
∑

j=−∞
β2

j <+∞. (24)

Proof. Let · · · ≤ λ−n · · · ≤ λ−2 ≤ λ−1 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . . be a sequence of eigenvalues of

problem (1), (2) and χ(z) be its characteristic function.

By the Rouché theorem, the entire function χ(z) and the function cosπz have the same

number of zeros, counting multiplicities, in the strip |Re z| < n for large n. Since, by Theo-

rem 2, the eigenvalues λn of problem (1), (2) are zeros of the function χ(z) and zeros of the

function cosπz are the numbers zn = n − 1
2 , z−n =−n + 1

2 , n ∈ N , we see that the inequalities

n <λn+1, λ−n−1 <−n hold for large n.

On the other hand, χ(n) 6= 0 for any n ∈ Z and, moreover, χ(n)(−1)n > 0. Hence, in every

interval In = (n,n+1), the characteristic function χ has at least one zero z0 and, consequently,

there is one eigenvalue λ= z0 in the interval In . The assumption that at least one interval In
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contains more than one eigenvalue leads to a contradiction with the estimate for λn for large

|n|. Hence, if the conditions χ(n) 6= 0 are satisfied, inequality (23) holds,

n −1<λn <n, −n <λ−n <−n +1. (25)

Since the condition χ(n) 6= 0 can be satisfied by an arbitrary small change of the potential,

passing to the limit in (25) we get (23). The asymptotic representations (24) follows from the

asymptotic representation (21) of zeros of the characteristic function χ(z), since λk = zk .

Let us now prove that conditions (23)–(24) are sufficient.

Let a sequence ... ≤ λ−n ... ≤ λ−2 ≤ λ−1 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . . satisfy the conditions

(23) and (24). Then the numbers ak = λk satisfy conditions (21) and, by Lemma 2, there is a

function α ∈ L2(−π,π) such that representation (21) holds.

Since all an = λn are real, it follows from (21)–(23) that (−1)nχ(n) ≥ 0. This permits, by

solving equation (10), to construct vk from the Fourier coefficients αk of the function α ∈ L2.

Construct a function v ∈ L2(−π,π) from its Fourier coefficients vn . Then the function χ(z)

will be a characteristic function for problem (1), (2) with the above constructed potentials, and

the numbers λk make a set of all eigenvalues of problem (1), (2). ���

5. The inverse spectral problem

When proving sufficiency in Theorem 3, we have actually used an effective algorithm for

solving the inverse eigenvalue problems (1), (2). Let us formulate this algorithm.

Assume we have an ordered two–sided sequence Λ= {λ j }∞
j=−∞ of real numbers (22) sat-

isfying conditions 1 and 2 of Theorem 3. In order to find a potential v for problem (1), (2) such

that the spectrum of problem (1), (2) would coincide with a given sequence Λ, we can apply

the following algorithm.

Step 1. Using the eigenvalues Λ = {λ j }∞
j=−∞ construct the characteristic function χ(z) by

formula (21),

χ(z) =
∞
∏

k=1

(k −
1

2
)(λk − z)(z −λ−k ).

Step 2. Calculate the values χ(n), n ∈ Z .

Step 3. The functions v ∈ L2(−π,π) will be the ones we are looking for if and only if all their

Fourier coefficients will satisfy the identities

|1−2πi (−1)n vn|2 = (−1)nχ(−n). (26)

Step 4. By solving the algebraic quadratic equations (26), we find Fourier coefficients vn.

The potentials are defined in terms of their Fourier series v(x)=
∞
∑

n=−∞
vne i nx .
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Example 1. Let us find the potential v(x) for problem (1), (2) from the spectrum λ1 = λ−1 = 0,

λn =n − 1
2

, λ−n =−n + 1
2

, n = 2,3, . . .

Step 1. The characteristic function has the form

χ(z) =
z2

z2 − 1
4

cosπz. (27)

Step 2. From (27), calculate the values χ(n), n ∈ Z ,

χ(n) =
n2

n2 − 1
4

(−1)n . (28)

Step 3. Substituting the value of χ(n) from (28) into (26) we obtain a quadratic equation for

vn ,

|1−2πi (−1)n vn|2 = 1+
1

4n2 −1
.

A solution that has the least norm is the following:

vn =
i (−1)n

4π(4n2 −1)
−

iδn

2
, where δn =−

(−1)n

2π(4n2 −1)2

[

1+
√

1+
1

4n2 −1

]−2
.

Step 4. Using the Fourier coefficients we construct the potentials

i v(x)=
1

4π
+

1

8
cos

x

2
+

∞
∑

n=1

δn cos nx.

Let v(x) = v(x) be a real potential. Then the Fourier series v(x) =
∞
∑

n=−∞
vne i nx can be

written as

v(x) =
∞
∑

n=0

(vc ,n cos nx +vs,n sin nx) (29)

with real Fourier coefficients vc ,n , vs,n . The Fourier coefficients vn with respect to the system

{e i nx } and the Fourier coefficient vc ,n , vs,n satisfy the relations vc ,n = vn + v−n , vs,n = i (vn −
v−n), vn = 1

2 (vc ,n − i vs,n). Using these relations we get from (10) that

vs,n =
1

4π
(χ(n)−χ(−n)), v 2

c ,n +v 2
s,n =

1

2π
((−1)n (χ(n)+χ(−n))−2). (30)

Corollary 1. A real odd potential v ∈ L2 is defined uniquely by spectrum of problem (1)–(2).

Indeed, for an odd potential, we have that vc ,n = 0. Since the characteristic function χ is

uniquely defined by the spectrum of problem (1)–(2), formulas (30) explicitly give the value of

vs,n . Then the potential is given by its Fourier series (29).
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6. Isospectral nonlocal potentials

Let Λ(v) = {λ j }∞
j=−∞ be an ordered two–sided sequence of eigenvalues of problem (1),

(2) with a nonlocal potential v . Two potentials v (1) and v (2) are called isospectral if Λ(v (1)) =
Λ(v (2)). It follows from Theorem 2 that potentials v (1) and v (2) are isospectral if and only if

the corresponding characteristic functions coincide. Using representations (10) for the char-

acteristic functions we obtain a criterion for two potentials v (1) and v (2) to be isospectral in

terms of their Fourier coefficients v
( j )
n , j = 1,2, n ∈ Z ,

|1−2πi (−1)n v (1)
n | = |1−2πi (−1)n v (2)

n |, ∀n ∈ Z . (31)

This condition has a simple geometric interpretation. The Fourier coefficients v (1)
n and v (2)

n of

an isospectral potential lie on the same circle in the complex plane with center at the point

cn =
i (−1)n+1

2π
.

These considerations easily imply a number of corollaries.

Corollary 2. The set of all potentials that are isospectral to the potential v(x) contains a unique

potential vext (x) having a minimal L2-norm. We also have that

vext (x) =
∞
∑

n=−∞
vext ,ne i nx ,

vext ,n = i (−1)n

2π (1−|1−2πi (−1)n vn|),

where vn are Fourier coefficients of the potential v(x)=
∞
∑

n=−∞
vne i nx .

Consider a complex-valued potential v(x) having the properties of

1. CE-symmetry, v(x)= v(−x),

2. CO-symmetry, v(x) =−v(−x).

In the case of the CE-symmetry, the real part of the function v(x) is even, and the imag-

inary part is odd. The Fourier coefficients vn in the decomposition v(x) =
∞
∑

n=−∞
vne i nx of a

CE-symmetric function will be real. The function v(x) will be CO-symmetric if and only if

its Fourier coefficients are pure imaginary. Note that the potential vext (x) in Corollary 2 is a

CO-symmetric function.

Isospectral condition (31) for potentials having the CE or CO symmetries take the form

1. v (1)
n =±v (2)

n for CE-symmetric potentials, and

2. v (1)
n = v (2)

n or v (1)
n +v (2)

n =
i (−1)n+1

π
for CO-symmetric potentials.
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Corollary 3. If two CO-symmetric potentials v (1) and v (2), which belong to the space L2(−π,π),

are isospectral, then they differ by a trigonometric polynomial,

v (1)−v (2) =
K
∑

k=−K

εk e i kx, K <∞.

Corollary 4. Assume that a priori it is know that the L2-norm of a CO-symmetric potential is

less than 1p
2π

. Then this potential is uniquely defined by the spectrum.

In fact, by the Parseval equality, ||v ||2L2
= 2π

∑

|vn|2, and it follows from the condition

||v ||L2
< 1p

2π
that all Fourier coefficients of the potential v satisfy the estimate |vn| <

1

2π
. The

isospectrality condition for CO-symmetric potentials yields that the isospectral potentials co-

incide in a ball ||v ||L2
<

1
p

2π
.
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