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ANTINORMAL COMPOSITION OPERATORS ON `2

GYAN PRAKASH TRIPATHI AND NAND LAL

Abstract. A bounded linear operator T on a Hilbert space H is called antinormal if the distance of T from the set

of all normal operators is equal to norm of T . In this paper, we give a complete characterization of antinormal

composition operators on `2, where `2 is the Hilbert space of all square summable sequences of complex numbers

under standard inner product on it.

1. Introduction

Let B(H) be the C∗-algebra of all bounded linear operators on a Hilbert space H . For an
operator T ∈ B(H), the distance d(T, M) of an operator T from M ⊂ B(H) is given by d(T, M) =
inf{‖T −M‖ : M ∈ M}.

It is an important problem to compute the distance of an operator from the set of all nor-
mal operators. For details and some open problem, see [3, p.155]. An operator T is called
antinormal if d(T, N ) = ‖T ‖ where N is the set of all normal operators in B(H). This definition
was first given by Holmes [8] in 1974. Fruther study of antinormal operators has been done
by Rogers, Izumino and Elst, see [1], [2], [5], [9] and [10].

For an operator T in B(H) index of T [1] is given by

index T =



0 if dim ker T = dim ker T ∗

dim ker T −dim ker T ∗ if dim ker T < N0 and
dim ker T ∗ < N0.

dim ket T if dim ker T ≥ N0 and
dim ker T ∗ < dim ker T

−dim ket T ∗ if dim ker T ∗ ≥ N0 and
dim ker T < dim ker T ∗

Observe that index T =−index T ∗ for all T ∈ B(H).

Minimum modulus m(T ) of an operator T is defined by [7] m(T ) = inf{λ≥ 0 : λ ∈ σ(|T |)}.
It is easy to see that m(T ) = inf{‖T x‖ : ‖x‖ = 1} also. Essential minimum modulus me of an op-
erator T is defined by [7] me (T ) = inf{λ≥ 0 :λ ∈σe (|T |)} = inf{λ≥ 0 :λI −|T | is not Fredholm}.
Here |T | denotes

p
T ∗T and σe (T ) denotes the essential spectrum of T .
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Now we give some results for an operator T on a separable Hilbert space H which are
useful in our context.

Theorem 1.1.([10]) Let T ∈ B(H).
(i) If index T = 0, then d(T,U ) = max{‖T ‖−1,1−m(T )}

(ii) If index T < 0, then d(T,U ) = max{‖T ‖−1,1+me (T )}
where U is the set of all unitary operators in B(H).

Sinde d(T,U ) = d(T ∗,U ), we consider T ∗ when index T > 0.

Theorem 1.2.([9]) Let T ∈ B(H).
(i) If index T = 0, then d(T, N ) ≤ (‖T ‖−m(T ))/2

(ii) If index T < 0, then me (T ) ≤ d(T, N ) ≤ (‖T ‖+me (T ))/2

Remark 1.3. If index T = 0, then T cannot be antinormal.

Theorem 1.4.([9]) Let T ∈ B(H) with index T < 0, then the following conditions are equiva-
lent.

(i) T is antinormal
(ii) me (T ) = ‖T ‖

(iii) d(T,U ) = 1+‖T ‖.

Remark 1.5. T is antinormal iff T ∗ is antinormal because d(T, N ) = d(T ∗, N ).
The composition operator Cφ on `2 is defined as [10] Cφ( f ) = f oφ, whereφ is the inducing

function on N into itself satisfying
(i) An =φ−1(n) is finite for each n ∈ N .

(ii) {An : n ∈ N } is bounded where An denotes the number of elements in An .

2. Main Result

Now we state some results on composition operator on `2, which will be useful in proof of
our main result, Theorem 2.3 of this section.

Theorem 2.1.([11]) Let Cφ be a composition operator on `2 then
(i) φ is one-one iff Cφ is noto iff C∗

φ is one-one.
(ii) φ is onto iff Cφ is one-one iff C∗

φ is onto.
(iii) φ is one-one and onto iff Cφ is normal iff Cφ is invertible.

Proposition 2.2. Let Cφ be a composition operator on `2. Then the range of the operator
αI - C∗

φCφ is colsed for each α ∈C .

Proof. Let f =Σ f ( j )χ j be an element of `2, where χ j is the characteristic function of { j }.
We have

C∗
φCφ( f ) = C∗

φCφ

( ∞∑
j=1

f ( j )χ j

)



ANTINORMAL COMPOSITION OPERATORS ON `2 349

= C∗
φ

( ∞∑
j=1

f ( j )χφ−1( j )

)
=

∞∑
j=1

A j f ( j )χ j .

Now (αI -C∗
φCφ)( f ) =

∞∑
j=1

(α− A j ) f ( j )χ j .

ThusαI -C∗
φCφ is a diagonal operator and the spectrum ofαI -C∗

φCφ consists of only a finite
number of distinct points. Hence zero is not a limit point of spectrum of αI -C∗

φCφ. Therefore
range of αI -C∗

φCφ is closed because the range of a normal operator is closed iff 0 is not a limit
point of its spectrum [3].

Now we characterize antinormal composition operators on `2.

Theorem 2.3. Let Cφ be a composition operator on `2.
(i) If φ is one-one and onto then Cφ is not antinormal.

(ii) If φ is one-one but not onto then Cφ is antinormal.

(iii) φ is onto but not one-one then Cφ is antinormal iff An = ‖Cφ‖2 for all but finitely many
n ∈ N .

(iv) Suppose φ is neither one-one nor onto.

(a) If index Cφ < 0, then Cφ is antinormal iff An = ‖Cφ‖2 for all but finitely many n ∈ N .
(b) if index Cφ ≥ 0 then Cφ is not antinormal.

Proof.
(i) Ifφ is one-one and onto, then by Theorem 2.1 (iii) Cφ is a non-zero normal operator and

hence by definition it follows that Cφ is not antinormal.
(ii) Ifφ is one-one but not onto, we shall show that Cφ is antinormal. Sinceφ is one-one but

not onto, dim ker C∗
φ = 0 and dim ket Cφ 6= 0. Therefore index C∗

φ < 0.

Let f ∈ `2,

then CφC∗
φ( f ) = Cφ

(
C∗
φ

∞∑
j=1

f ( j )χ j

)
= Cφ

( ∞∑
j=1

f ( j )χφ( j )

)
=

∞∑
j=1

f ( j )χφ−1(φ( j ))

=
∞∑

j=1
f ( j )χ j (because φ is 1−1)

= I ( f ).

Therefore CφC∗
φ = I . As dim ker Cφ 6= 0, Cφ is a non-surjective isometry. Then from

Theorem 8 and Theorem 9 in [1] it follows that C∗
φ is antinormal and by Remark 1.5, Cφ

is antinormal.
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(iii) If φ is onto but not one-one, then index Cφ < 0 by Theorem 2.1. Suppose An = ‖Cφ‖2

for all but finitely many n ∈ N . Now to prove that Cφ is antinormal, we shall show that
me (Cφ) = ‖Cφ‖. We note that range (kI -C∗

φCφ) is closed in particular for 0 ≤ k < ‖Cφ‖2

by Proposition 2.2. The set (n ∈ N : An = k} is a finite subset of N for each 0 ≤ k < ‖Cφ‖2.

For f ∈ `2, (kI -C∗
φCφ)( f ) =

∞∑
j= j

(k − A j ) f ( j )χ j . Therefore dim ker (kI -C∗
φ) = dim ket (kI -

C∗
φCφ) is finite for each 0 ≤ k < ‖Cφ‖2. Hence kI −C∗

φCφ is Fredholm for 0 ≤ k < ‖Cφ‖2.

Thus k 6∈ σe (|Cφ|) for 0 ≤ k < ‖Cφ‖. Now dim ker (‖Cφ‖2I −C∗
φCφ) is infinite because

An = ‖Cφ‖2 for all but finitely many n ∈ N . Hence ‖Cφ‖ ∈σe (|Cφ|). Therefore me (Cφ) =
inf{λ≥ 0 :λ ∈σe (|Cφ|)} = ‖Cφ‖. Thus Cφ is antinormal.

Conversely suppose that the set {n ∈ N : An 6= ‖Cφ‖2} is infinite. It is easy to see that

there exists a non-negative integer k0 < ‖Cφ‖2 such that {n ∈ N : An = k0} is infinite.
Therefore dime ker (k0I −C∗

φCφ) is infinite and hence (k0I −C∗
φCφ) is not Fredholm.

Thus
√

k0 ∈σe (|Cφ|) and me (Cφ) ≤
√

k0 < ‖Cφ‖. Hence Cφ is not antinormal.
(iv) Suppose that φ is neither one-one nor onto.

(a) If index Cφ < 0 then the proof is similar to that of case (iii).
(b) If index Cφ > 0 then index C∗

φ < 0. We shall show that C∗
φ is not antinormal. Since

`2 is separable, index C∗
φ < 0 implies that dim ker C∗

φ is finite. Since dim ker C∗
φ =∑

An>1

(An − 1) is finite, it is easy to see that An = 1 for infinitely many n ∈ N . Now

(I −CφC∗
φ)( f ) =

∞∑
j=1

f ( j )χ j −
∞∑

j=1
f ( j )χφ−1(φ( j )). Since An = 1 for infinitily many n ∈ N ,

and n ∈φ−1(φ(n)) for each n ∈ N , Ker (I −CφC∗
φ) is infinite dimensional. Therefore

I −CφC∗
φ is not Fredholm. Thus 1 ∈σe (|C∗

φ|) and me (C∗
φ) ≤ 1 < ‖Cφ‖ = ‖C∗

φ‖. Hence
C∗
φ is not antinormal.

If index Cφ = 0 then Cφ cannot be antinormal by Remark 1.3.

3. Examples

1. The function φ on N into itself defined by φ(n) = n + 1 is one-one but not onto. The
composition operator Cφ induced by φ is antinormal by case (ii). This is the unilateral
shift.

2. Define the function φ on N into itself by

φ(n) =



1 if n = 1
2 if n = 2
n +3

2
if n > 2 and n is odd

n

2
+1 if n > 2 and n is even

.
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Here φ is onto but not one-one. The composition operator Cφ is antinormal by case (iii)

because An = 2 = ‖Cφ‖2 for all n in N except n = 1 and 2.
3. Define the function φ on N into itself by

φ(n) =


1 if n = 1,2
2 if n = 3
m +5 if n = 3m +1,3m +2,3m +3

.

Hereφ is neither one-one nor onto and dim ker Cφ = N −φ(N ) = 3, dim ker C∗
φ = ∑

An>1

(An−

1) = N0. Thus index Cφ < 0. Therefore Cφ is antinormal by case iv (a) because An =
‖Cφ‖2 = 3 for all n in N except 1 ≤ n ≤ 3.

4. Define the function φ on N into itself by

φ(n) =
{

1 if n = 1,2
n +2 if n ≥ 3

.

Here φ is neither one-one nor onto and index Cφ = 2 > 0. Therefore Cφ is not antinormal
by case iv (b).

5. Define the function φ on N into itself by

φ(n) =
{

1 if n = 1,2
n if n > 2

.

Here φ is neither one-one nor onto and index Cφ = 0. Therefore Cφ is not antinormal by
case iv (b).
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