ANTINORMAL COMPOSITION OPERATORS ON ℓ^2

GYAN PRAKASH TRIPATHI AND NAND LAL

Abstract. A bounded linear operator *T* on a Hilbert space *H* is called antinormal if the distance of *T* from the set of all normal operators is equal to norm of *T*. In this paper, we give a complete characterization of antinormal composition operators on ℓ^2 , where ℓ^2 is the Hilbert space of all square summable sequences of complex numbers under standard inner product on it.

1. Introduction

Let B(H) be the C^* -algebra of all bounded linear operators on a Hilbert space H. For an operator $T \in B(H)$, the distance d(T, M) of an operator T from $M \subset B(H)$ is given by $d(T, M) = \inf\{||T - M|| : M \in M\}$.

It is an important problem to compute the distance of an operator from the set of all normal operators. For details and some open problem, see [3, p.155]. An operator *T* is called antinormal if d(T, N) = ||T|| where *N* is the set of all normal operators in B(H). This definition was first given by Holmes [8] in 1974. Fruther study of antinormal operators has been done by Rogers, Izumino and Elst, see [1], [2], [5], [9] and [10].

For an operator T in B(H) index of T [1] is given by

index $T = \left\{ \right.$	0	if dim ker $T = \dim \ker T^*$
	dim ker T – dim ker T^*	if dim ker $T < N_0$ and dim ker $T^* < N_0$.
	dim ket T	if dim ker $T \ge N_0$ and dim ker $T^* < \dim \ker T$
	$-\dim \ker T^*$	if dim ker $T^* \ge N_0$ and dim ker $T < \dim \ker T^*$

Observe that index $T = -index T^*$ for all $T \in B(H)$.

Minimum modulus m(T) of an operator T is defined by [7] $m(T) = \inf\{\lambda \ge 0 : \lambda \in \sigma(|T|)\}$. It is easy to see that $m(T) = \inf\{\|Tx\| : \|x\| = 1\}$ also. *Essential minimum modulus* m_e of an operator T is defined by [7] $m_e(T) = \inf\{\lambda \ge 0 : \lambda \in \sigma_e(|T|)\} = \inf\{\lambda \ge 0 : \lambda I - |T| \text{ is not Fredholm}\}$. Here |T| denotes $\sqrt{T^*T}$ and $\sigma_e(T)$ denotes the essential spectrum of T.

Received April 16, 2007; revised July 21, 2008.

2000 Mathematics Subject Classification. 47B33.

Key words and phrases. Antinormal operator, composition operator, indes, Fredholm.

Now we give some results for an operator T on a separable Hilbert space H which are useful in our context.

Theorem 1.1.([10]) *Let* $T \in B(H)$.

(i) If index T = 0, then d(T, U) = max{||T|| − 1, 1 − m(T)}
(ii) If index T < 0, then d(T, U) = max{||T|| − 1, 1 + m_e(T)} where U is the set of all unitary operators in B(H).

Sinde $d(T, U) = d(T^*, U)$, we consider T^* when index T > 0.

Theorem 1.2.([9]) *Let* $T \in B(H)$.

(i) If index T = 0, then $d(T, N) \le (||T|| - m(T))/2$

(ii) If index T < 0, then $m_e(T) \le d(T, N) \le (||T|| + m_e(T))/2$

Remark 1.3. If index T = 0, then T cannot be antinormal.

Theorem 1.4.([9]) Let $T \in B(H)$ with index T < 0, then the following conditions are equivalent.

(i) T is antinormal

(ii) $m_e(T) = ||T||$

(iii) d(T, U) = 1 + ||T||.

Remark 1.5. *T* is antinormal iff T^* is antinormal because $d(T, N) = d(T^*, N)$.

The composition operator C_{ϕ} on ℓ^2 is defined as [10] $C_{\phi}(f) = f o \phi$, where ϕ is the inducing function on N into itself satisfying

(i) $A_n = \phi^{-1}(n)$ is finite for each $n \in \mathbb{N}$.

(ii) $\{\overline{\overline{A_n}}: n \in N\}$ is bounded where $\overline{\overline{A_n}}$ denotes the number of elements in A_n .

2. Main Result

Now we state some results on composition operator on ℓ^2 , which will be useful in proof of our main result, Theorem 2.3 of this section.

Theorem 2.1.([11]) Let C_{ϕ} be a composition operator on ℓ^2 then

- (i) ϕ is one-one iff C_{ϕ} is noto iff C_{ϕ}^* is one-one.
- (ii) ϕ is onto iff C_{ϕ} is one-one iff C_{ϕ}^* is onto.

(iii) ϕ is one-one and onto iff C_{ϕ} is normal iff C_{ϕ} is invertible.

Proposition 2.2. Let C_{ϕ} be a composition operator on ℓ^2 . Then the range of the operator $\alpha I - C^*_{\phi}C_{\phi}$ is colsed for each $\alpha \in C$.

Proof. Let $f = \Sigma f(j)\chi_j$ be an element of ℓ^2 , where χ_j is the characteristic function of $\{j\}$. We have

$$C_{\phi}^* C_{\phi}(f) = C_{\phi}^* C_{\phi} \Big(\sum_{j=1}^{\infty} f(j) \chi_j \Big)$$

348

$$= C_{\phi}^{*} \Big(\sum_{j=1}^{\infty} f(j) \chi_{\phi^{-1}(j)} \Big)$$
$$= \sum_{j=1}^{\infty} \overline{\overline{A_j}} f(j) \chi_j.$$

Now $(\alpha I - C_{\phi}^* C_{\phi})(f) = \sum_{j=1}^{\infty} (\alpha - \overline{\overline{A_j}}) f(j) \chi_j.$

Thus $\alpha I - C_{\phi}^* C_{\phi}$ is a diagonal operator and the spectrum of $\alpha I - C_{\phi}^* C_{\phi}$ consists of only a finite number of distinct points. Hence zero is not a limit point of spectrum of $\alpha I - C_{\phi}^* C_{\phi}$. Therefore range of $\alpha I - C_{\phi}^* C_{\phi}$ is closed because the range of a normal operator is closed iff 0 is not a limit point of its spectrum [3].

Now we characterize antinormal composition operators on ℓ^2 .

Theorem 2.3. Let C_{ϕ} be a composition operator on ℓ^2 .

- (i) If ϕ is one-one and onto then C_{ϕ} is not antinormal.
- (ii) If ϕ is one-one but not onto then C_{ϕ} is antinormal.
- (iii) ϕ is onto but not one-one then C_{ϕ} is antinormal iff $\overline{A_n} = \|C_{\phi}\|^2$ for all but finitely many $n \in \mathbf{N}$.
- (iv) Suppose ϕ is neither one-one nor onto.
- (a) If index $C_{\phi} < 0$, then C_{ϕ} is antinormal iff $\overline{A_n} = \|C_{\phi}\|^2$ for all but finitely many $n \in \mathbb{N}$.
- (b) if index $C_{\phi} \ge 0$ then C_{ϕ} is not antinormal.

Proof.

- (i) If ϕ is one-one and onto, then by Theorem 2.1 (iii) C_{ϕ} is a non-zero normal operator and hence by definition it follows that C_{ϕ} is not antinormal.
- (ii) If φ is one-one but not onto, we shall show that C_φ is antinormal. Since φ is one-one but not onto, dim ker C^{*}_φ = 0 and dim ket C_φ ≠ 0. Therefore index C^{*}_φ < 0. Let f ∈ ℓ²,

then
$$C_{\phi}C_{\phi}^{*}(f) = C_{\phi}\left(C_{\phi}^{*}\sum_{j=1}^{\infty}f(j)\chi_{j}\right)$$

$$= C_{\phi}\left(\sum_{j=1}^{\infty}f(j)\chi_{\phi(j)}\right)$$

$$= \sum_{j=1}^{\infty}f(j)\chi_{\phi^{-1}(\phi(j))}$$

$$= \sum_{j=1}^{\infty}f(j)\chi_{j} \quad (\text{because }\phi \text{ is } 1-1)$$

$$= I(f).$$

Therefore $C_{\phi}C_{\phi}^* = I$. As dim ker $C_{\phi} \neq 0$, C_{ϕ} is a non-surjective isometry. Then from Theorem 8 and Theorem 9 in [1] it follows that C_{ϕ}^* is antinormal and by Remark 1.5, C_{ϕ} is antinormal.

- (iii) If ϕ is onto but not one-one, then index $C_{\phi} < 0$ by Theorem 2.1. Suppose $\overline{A_n} = \|C_{\phi}\|^2$ for all but finitely many $n \in \mathbf{N}$. Now to prove that C_{ϕ} is antinormal, we shall show that $m_e(C_{\phi}) = \|C_{\phi}\|$. We note that range $(kI C_{\phi}^* C_{\phi})$ is closed in particular for $0 \le k < \|C_{\phi}\|^2$ by Proposition 2.2. The set $(n \in \mathbf{N} : \overline{A_n} = k)$ is a finite subset of \mathbf{N} for each $0 \le k < \|C_{\phi}\|^2$. For $f \in \ell^2$, $(kI C_{\phi}^* C_{\phi})(f) = \sum_{j=j}^{\infty} (k \overline{A_j})f(j)\chi_j$. Therefore dim ker $(kI C_{\phi}^*) = \dim$ ket $(kI C_{\phi}^* C_{\phi})$ is finite for each $0 \le k < \|C_{\phi}\|^2$. Hence $kI C_{\phi}^* C_{\phi}$ is Fredholm for $0 \le k < \|C_{\phi}\|^2$. Thus $k \notin \sigma_e(|C_{\phi}|)$ for $0 \le k < \|C_{\phi}\|$. Now dim ker $(\|C_{\phi}\|^2I C_{\phi}^*C_{\phi})$ is infinite because $\overline{A_n} = \|C_{\phi}\|^2$ for all but finitely many $n \in \mathbf{N}$. Hence $\|C_{\phi}\| \in \sigma_e(|C_{\phi}|)$. Therefore $m_e(C_{\phi}) = \inf\{\lambda \ge 0 : \lambda \in \sigma_e(|C_{\phi}|)\} = \|C_{\phi}\|$. Thus C_{ϕ} is antinormal. Conversely suppose that the set $\{n \in \mathbf{N} : \overline{A_n} \ne \|C_{\phi}\|^2$ such that $\{n \in \mathbf{N} : \overline{A_n} = k_0\}$ is infinite. It is easy to see that there exists a non-negative integer $k_0 < \|C_{\phi}\|^2$ such that $\{n \in \mathbf{N} : \overline{A_n} = k_0\}$ is infinite. Therefore dime ker $(k_0I C_{\phi}^*C_{\phi})$ is infinite and hence $(k_0I C_{\phi}^*C_{\phi})$ is not Fredholm. Thus $\sqrt{k_0} \in \sigma_e(|C_{\phi}|)$ and $m_e(C_{\phi}) \le \sqrt{k_0} < \|C_{\phi}\|$. Hence C_{ϕ} is not antinormal.
- (iv) Suppose that ϕ is neither one-one nor onto.
 - (a) If index $C_{\phi} < 0$ then the proof is similar to that of case (iii).
 - (b) If index $C_{\phi} > 0$ then index $C_{\phi}^* < 0$. We shall show that C_{ϕ}^* is not antinormal. Since ℓ^2 is separable, index $C_{\phi}^* < 0$ implies that dim ker C_{ϕ}^* is finite. Since dim ker $C_{\phi}^* = \sum_{\overline{A_n} > 1} (\overline{A_n} 1)$ is finite, it is easy to see that $\overline{A_n} = 1$ for infinitely many $n \in \mathbb{N}$. Now $(I C_{\phi}C_{\phi}^*)(f) = \sum_{j=1}^{\infty} f(j)\chi_j \sum_{j=1}^{\infty} f(j)\chi_{\phi^{-1}(\phi(j))}$. Since $\overline{A_n} = 1$ for infinitily many $n \in \mathbb{N}$, and $n \in \phi^{-1}(\phi(n))$ for each $n \in \mathbb{N}$, Ker $(I C_{\phi}C_{\phi}^*)$ is infinite dimensional. Therefore $I C_{\phi}C_{\phi}^*$ is not Fredholm. Thus $1 \in \sigma_e(|C_{\phi}^*|)$ and $m_e(C_{\phi}^*) \le 1 < ||C_{\phi}|| = ||C_{\phi}^*||$. Hence C_{ϕ}^* is not antinormal.

If index $C_{\phi} = 0$ then C_{ϕ} cannot be antinormal by Remark 1.3.

3. Examples

- 1. The function ϕ on N into itself defined by $\phi(n) = n + 1$ is one-one but not onto. The composition operator C_{ϕ} induced by ϕ is antinormal by case (ii). This is the unilateral shift.
- 2. Define the function ϕ on N into itself by

$$\phi(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2 & \text{if } n = 2 \\ \frac{n+3}{\frac{n}{2}} & \text{if } n > 2 \text{ and } n \text{ is odd} \\ \frac{n}{2} + 1 & \text{if } n > 2 \text{ and } n \text{ is even} \end{cases}$$

350

Here ϕ is onto but not one-one. The composition operator C_{ϕ} is antinormal by case (iii) because $\overline{\overline{A}}_n = 2 = \|C_{\phi}\|^2$ for all *n* in *N* except n = 1 and 2.

3. Define the function ϕ on *N* into itself by

$$\phi(n) = \begin{cases} 1 & \text{if } n = 1,2 \\ 2 & \text{if } n = 3 \\ m+5 & \text{if } n = 3m+1,3m+2,3m+3 \end{cases}$$

Here ϕ is neither one-one nor onto and dim ker $C_{\phi} = \overline{\overline{N} - \phi(\overline{N})} = 3$, dim ker $C_{\phi}^* = \sum_{\overline{\overline{A}}_n > 1} (\overline{\overline{A}}_n - \overline{\overline{A}}_n)$

1) = N_0 . Thus index $C_{\phi} < 0$. Therefore C_{ϕ} is antinormal by case iv (a) because $\overline{A}_n = \|C_{\phi}\|^2 = 3$ for all n in N except $1 \le n \le 3$.

4. Define the function ϕ on *N* into itself by

$$\phi(n) = \begin{cases} 1 & \text{if } n = 1, 2\\ n+2 & \text{if } n \ge 3 \end{cases}$$

Here ϕ is neither one-one nor onto and index $C_{\phi} = 2 > 0$. Therefore C_{ϕ} is not antinormal by case iv (b).

5. Define the function ϕ on *N* into itself by

$$\phi(n) = \begin{cases} 1 & \text{if } n = 1,2 \\ n & \text{if } n > 2 \end{cases}$$

Here ϕ is neither one-one nor onto and index $C_{\phi} = 0$. Therefore C_{ϕ} is not antinormal by case iv (b).

Acknowledgement

- 1. Research work of first author is supported by CSIR Award No. 9/13(951/2000-EMR-1 DATED 19.12.2002.
- 2. The authors are grateful to the referee for his suggestions.

References

- [1] AFM ter Elst, Antinormal operators, Acta. Sci. Math. 54(1990), 151–158.
- [2] AFM ter Elst, Approximation by unitary operators, Acta. Sci. Math. 54(1990), 145-149.
- [3] I. D. Berg and K. R. Davidson, *Almost commuting matrices and a quantitative version of the Brown, Douglas and Fillmore Theorem*, Acta. Math. **166**(1991), 121–161.
- [4] John. B. Conway, A Course in Functional Analysis, second edition, Springer Verlag, 1990.
- [5] M. Fujii and R. Nakamoto, *Antinormal operators and theorems of Izzumino*, Math. Japon. **24**(1979), 41–44.

GYAN PRAKASH TRIPATHI AND NAND LAL

- [6] P. R. Halmos, A Hilbert Space Problem Book, Princeton, New Jersey, Von Nostrand, 1967.
- [7] D. A. Herrero, Approximation of Hilbert Space Operators, Vol. 1, second edition. Pitnam Research Notes in Mathematics Series. Longman Scientific and Technical, 1989.
- [8] R. B. Holmes, Best approximation by normal operators, J. Approx. Theory 12(1974), 412–417.
- [9] Saichi Izumino, *Inequalities on normal and antinormal operaotrs*, Math. Japonica 23(1978), 211–215.
- [10] Donald D. Rogers, *Approximation by unitary and anti unitary operators*, Acta. Sci. Math. **39**(1977), 141–151.
- [11] R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces. North Holland, 1993.

Department of Mathematics, SGR PG College, Dobhi, Jaunpur-222149, India. E-mail: gptbhu@yahoo.com

1/89 Vinay Khand, Gomati Nagar Lucknow-222460, India.

352