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ON A SYSTEM OF NONLINEAR WAVE EQUATIONS OF
KIRCHHOFF TYPE WITH A STRONG DISSIPATION

SHUN-TANG WU AND LONG-YTI TSAI

Abstract. The initial boundary value problem for systems of nonlinear wave equations of Kirch-
hoff type with strong dissipation in a bounded domain is considered. We prove the local existence
of solutions by Banach fixed point theorem and blow-up of solutions by energy method. Some

estimates for the life span of solutions are given.

1. Introduction

We consider the initial boundary value problem for the following nonlinear coupled
wave equations of Kirchhoff type :

uge — M (|| Vul|3) Au— Aug = fi(u,v) in Q x [0, 00), (1.1)
vy — M (| Vv]3) Av — Avy = fo(u,v) in Q x [0,00), (1.2)

with initial conditions,

u(x,()) = Uo (:L')a Ut (JJ,O) = ux (:L')a z €, (13)
v (z,0) =v (x), v (2,0) =v1 (z), z€Q, (1.4)

and boundary conditions,

u(z,t) =0, z €99, t >0, (1.5)
v(z,t) =0, x €09, t >0, (1.6)

where Q ¢ RN, N > 1, is a bounded domain Wit}21 smooth boundary 92 so that Diver-
gence theorem can be applied. Let A = Z;V=1 % be the Laplace operator, and M (r)

be a nonnegative locally Lipschitz function for r > 0 like M (r) = a + br?, with a > 0,
b>0,a+b>0,v>0,and f;(u,v), i =1,2, be a nonlinear function. We denote ||Hp to
be LP-norm.
The existence and nonexistence of solutions for a single wave equation of Kirchhoff
type :
ue — M (||[Vul|3) Au + g(ug) = f(u) in Q x [0, 00), (1.7)
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have been discussed by many authors and the references cited therein. The function g in
(1.7) is considered in three different cases. For g(u;) = duy, 6 > 0, the global existence and
blow-up results can be found in [4, 10, 16,22]; for g(u;) = —Auy, some global existence
and blow-up results are given in [8,10,14,17,18,22]; for g(us) = |u¢|™ ug, m > 0, the
main results of existence and blow-up are in [2, 3,13, 15,22]. As a model it describes the
nonlinear vibrations of an elastic string. More precisely, we have

2 L 2 2

i {E_ [ () }g_f L9
for 0 < z < L,t > 0; where u is the lateral deflection, x the space coordinate, ¢ the time,
FE the Young modulus, p the mass density, h the cross section area, L the length, po the
initial axial tension and f the external force. Kirchhoff [11] was the first one to study
the oscillations of streched strings and plates, so that (1.8) is named the wave equation
of Kirchhoff type. Moreover, (1.8) is called a degenerate equation when py = 0 and
nondegenerate one when py > 0. For the system of wave equations with no dissipative
terms, when M = 1 many authors have discussed the local, global existence and blow-up
properties in [5,6,7,12]. When M is not a constant, Park and Bae [19, 20] considered the
system of wave equations with f;(u,v) = |u|” u, fo(u,v) = |v|” v, 8 > 0, and showed the
global existence and asymptotic behavior of solutions under some restrictions on initial
energy. Later, Benaissa and Messaoudi [3] studied blow-up properties for negative initial
energy.

In this paper, we investigate the local existence, blow-up properties of solutions for
some nonlinear coupled wave equations of Kirchhoff type (1.1)—(1.6) in a bounded do-
main  with more general f;(u,v), i = 1,2. The paper is organized as follows. In
section 2, we present the preliminaries and some lemmas. In section 3, we will show
the existence of a unique local weak solution (u,v) of our problem (1.1)—(1.6) with
ug,vo € H?(Q) N HE(Q) and uy,v; € L3(Q) by applying the Banach contraction map-
ping principle. In section 4, we first define an energy function E(t) by (4.1) and show
that it is a nonincreasing function. Then by using the direct method [12], we obtain
Theorem 4.4, which shows blow-up properties of solutions under some restrictions even
for positive initial energy, that is, we prove that there exists a finite time 7 > 0 such

that lim, ,p-- [, <|Vu|2 + |Vv|2) dx = co. Estimates for the blow-up time T* are also

given in Remark 4.5.

2. Preliminaries

Let us begin by stating the following lemmas, which will be used later.

Lemma 2.1.(Sobolev-Poincaré)[17, p.154]) Let 0 < p < 25—-(0 < p < oo if
N =2m). Then, the inequality

m
2

(—=4)

’UH (2.1)

ol < e. 2
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holds with some constant cy.

Lemma 2.2. Let § >0 and B(t) € C?(0,00) be a nonnegative function satisfying

B"(t) —4(6 4+ 1)B'(t) + 4(6 + 1) B(t) > 0. (2.2)
If
B'(0) > r2B(0) + Ko, (2.3)
then
Bl(t) > Ky

for t >0, where Ky is a constant, ro = 2(6 +1) — 24/(6 + 1)d s the smallest root of the
equation
2 — 46+ 1)r +4(5+ 1) = 0.

Proof. see [12].

Lemma 2.3. If J(t) is a nonincreasing function on [ty,00) and satisfies the differ-
ential inequality
1
J () >a+bJ(t)*ts, (2.4)

where a > 0,b € R, then there exists a finite time T such that

lim J(t) =0

t—T*—

and the upper bound of T* is estimated respectively by the following cases:

(i) If b<0 and J(to) < min{l,/—a/b}, then

T <ty +

1 =5
\/Tbln \/_Zb_ J(to).

(ii) If b=0, then
J(to)
J'(to)

T <to+

(iii) If b > 0, then
J(to)
Va

T*

IN

or
3541 OC 1
T <tg+2 2 —{1-1]1 J(to)] 2z
<to+ 25 S0 L+ ()7,

where ¢ = (%)”%.

Proof. see [12].



4 SHUN-TANG WU AND LONG-YT TSAI

3. Local existence

In this section we shall discuss the local existence of solutions for (1.1)—(1.6) by
method of Banach fixed point theorem under the following assumptions on f;(u,v), i =
1, 2. In the sequal, for the sake of simplicity we will omit the dependence on ¢, when the
meaning is clear.

(A1) f; : R? — R is continuously differentiable such that for each (u,v) € H}(Q) x
HY(Q), we have ufi, vfa € LY(Q), and F(u,v) € L*(Q), where

u v
F(u,v) :/ fi(s,v)ds —|—/ 12(0, s)ds.
0 0
(A2) f;(0,0) = 0 and for any p > 0 there exists a constant k(p) > 0 such that

[Fuluwr,00) = Filuuz, v2)| < k(p) |(fua]® + Jual®) fux = |+ (Jor| + o) [or = eal]

where |u;|, |vi| < p, for u;,v; € R, i =1,2, andOSaSﬁ,OSﬁg

2] o
(A3) G =2

=

Note the function of the form f1(u,v) = u*~tv¥+uP, fo(u,v) = v~ u®+0v9 satisfy the
assumptions (A1)—(A3) where 1 < s, p, ¢ < % for N >4ors,p,g>1for N=1,23.
Before proving the existence theorem for nonlinear equations, we will give the definition
of weak solution of (1.1)—(1.6) and we need the existence result for a nonhomgeneous
wave equation with a strong dissipation.

Definition. A function w(t) = (u(t),v(t)) € H}(Q) x Hi(Q), t € [0,T), is called a
weak solution of (1.1)—(1.6) if
{ 4 [Cwndz = — [, M (|Vu|3) VuVndz — [, VueVndz + [, f1(u,v)ndz,

(3.1)
4 [ vnde = — [, M ([V]3) VoVnda — [, VoVda + f;, folu, v)nda,

holds for any n € H ().

Theorem 3.1. Let m(t) be a nonnegative Lipschitz function and f(t) be a Lipschitz
function on [0,T), T > 0. If ug € H*(Q) N HE(Q) and u; € L*(Q), then there exists a
unique solution u satisfying

u(t) € C°([0,T]; H*() N Hy (),
u'(t) € C°([0, T]; L*()) N L2((0, T); Hy (),
and
u —m(t)Au — Au' = f(t) in Q x [0, 7],

U(O):Uo, ul(o):ula QL'EQ,
u(z,t) =0, z € 09, t >0,
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ou

r_
here v’ = 5t -

Proof. See [17, Prop. 2.2].

Theorem 3.2. Assume (A2) holds and M(r) is a nonnegative locally Lipschitz
function for r > 0 with the Lipschitz constant L. If ug, vy € H2(Q) N H& (Q) and uy,v;
€ L%(Q), then there exist a unique local weak solutions (u,v) of (1.1)—(1.6) satisfying

u(t), v(t) € C°([0,TT; H*(Q) N Hy (),

and

u/(t), v (t) € CO([0, T); L2()) N L2((0,T); Hy (Q)), for T > 0.

Moreover, at least one of the following statements hold :
(i) T=00
(i) e(u(t), v() = [luelly + 18ul3 + Joells + [Av] — oo as t — T~

Proof. We set w(t) = (u(t),v(t)), and define the following two-parameter space :

XrR
_ {w(t)GCO([O,T];HQ(Q) N Hg(Q)), we(t) €CO([0,T; L2(2)) N L2((0,T); Hg () 1}
e(u(t),v(t)) < R%, with w(0) = (uo,v0), w(0) = (u1,v1). ’

for T'> 0, R > 0. Then X7 g is a complete metric space with the distance

dy) = sup {0 enll + 1A= Mgl + I — vl + 1as - AvlE} L (32

where y(t) = (u(t),£(t)), 2(t) = (#(t), ¥ () € X1.R.
Given w(t) = (u(t),v(t)) € Xr,r, we consider the linear system
wy — M (||[VE)3) Au— Auy = f1(4,0) in Q x [0,7), (3.3)
vy — M ([|[VP]|3) Av — Av, = fo(w, ) in Q% [0,T), (3.4)

with initial conditions,
u(z,0) =ug (x), ut (2,0) =uy (z), x€Q, (3.5)
v(x,0) = (z), v (x,0) =v1(x), z€Q, (3.6)
and boundary conditions,
u(x,t) =0, z € 09Q, t >0, (3.7)
v(x,t) =0, x €09, t> 0. (3.8)

By Theorem 3.1, there exists a unique solution w(t) = (u(t),v(t)) of (3.3)—(3.8). We
define the nonlinear mapping Sw = w, and then, we will show that there exist T" > 0
and R > 0 such that
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(i) S: X7 r — X7 R,
(ii) S is a contraction mapping in X7 p with respect to the metric d(-,-) defined in
(3.2).
Indeed, multiplying (3.3) by 2u;, integrating it over €2, and then by Divergence theorem,
we get

d —
= {lwell3 + 21 (1) [90l3} + 2 [ Vuelly = L + L. (3.9)
where
d 9 2
= (M (Va1 ) 19l (3.10)
Iu2:/2f1(ﬂ,ﬁ)utd:c. (311)
Q
Similarly, we also have
d 2 —112 2 2
= {llvel3 + 22 (IVT13) V03 } + 2 Vol = Loy + Lo, (3.12)
where
d _
= (43 (17918) ) 19018, (5.13)
IUQZ/QfQ(ﬂ,E)’Utdm. (314)
Q

Note that from Lemma 2.1, Divergence theorem, and w € Xt g, we have

N e 2
L | < 2L || ATl [l [[Vull;
< 2LcR? || Al
< coLR?*e(u,v), (3.15)

where cg = 2¢2. In the same way, we get
|I1] < coLR?e(u,v). (3.16)
By (3.11), (A2), and Lemma 2.1, we have
Lo §2kz/ (1 4 15171 e de
Q
— a+1 — 1
< 2k [(ex A" + (e 1871)" ] fuel,
<ep (R + RAHY) e(u,v)?, (3.17)

where ¢; = 2k max (c‘j‘“, & H). Similarly, we have

[La| < 1 (RO 4+ RPY) e(u,v)2, (3.18)
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Combining (3.9) and (3.12) together, and by (3.15)—(3.18), we have

d 2 _ 2 _
= hall3 + M (IVaIB) 9l + ool + M (1951) [1Voll3 }
+2 [Vl |3 + 2 [Vl
< 2¢oLR%e(u,v) + 2¢; (R*! + R e(u, v)7. (3.19)
On the other hand, multiplying (3.3) by —2Au, and integrating it over 2, we get

d

G {10l =2 [ st )+ 201 (19)

2|V |2 —/QZfl(ﬂ,E)Auda:

<2||Vus|3 + 1 (RO + R e(u,0)2, (3.20)

the last inequality in (3.20) is obtained by following the arguments in (3.17). Similarly,
we also have
d
S {100l =2 [ wvds | + 207 (17018) ol
Q

< 2|V + e1 (R 4+ RPH) e(u(t)) 2, (3.21)

W=

Now, combining (3.20) and (3.21), we get

4 {||Au|§ — 2/ ugAudx + HAng - 2/ ’UtA’UdIL'}
+2M (|Val3) |Aull; +2M ([VT]3) | Ao

<2 (HVutHi + HWtH;) +2¢; (RO 4+ RO e(u,0)2. (3.22)

Multiplying (3.22) by €, 0 < & < 1, and adding (3.19) together, we obtain

d * 2
e a(u,0) + 201 = &) [[Vudl} + [ Vol

< 2¢oLR%e(u,v) +2(1 + &)er (R*T + R e(u, V)7, (3.23)
where

* — — 2
ex 5w, 0) = [[ugll3 + lodll5 + M (IVal3) [Vull; + M (|V3]13) [|Voll3

o (/ utAuda:—/vtAvdx) te (|\Au||§ + ||Au|\§). (3.24)
Q )
By Young's inequality, we get |2 [, usAudz| < 2¢ Hut||§ +5 HAqu Hence

* 9
en o, 0) 2 (1= 29) (Jluelly + lerll3) + 5 (IAul} + [1a0]3)
+M ([Val3) [Vull; + M (Vo) [Voll;
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Choosing € = %, we have

1
ey 5, v) > ge(u,v). (3.25)
From (3.23) and (3.25), we obtain
14 1
s o(u(0).0(0) < 106 LR e (u(t) o)) + V00, (R 4 B1) e ule) o) .

By Gronwall Lemma, we get

1

2
* * 1 7\/3 a c 2
egz(u(t),v(t)) < (ea(om(o)(uovvo)z A (R + R+ T) e oL (3.26)

Note that from (3.24), and Young’s inequality, we have

€5(0),5(0) (1(0),v(0)) < ca, (3.27)

where

2 2
=2 (||u1||2 + Hmllé) + [ Augl3 + (| Avo |5
2
+M ([Vuol3) | Vuolls + M ([Vvol3) | Vvoll3 -

Then, from (3.25), (3.26), (3.27), we obtain for any ¢ € (0,71,

e(u(t), v(t)) < Segz(u(t), v(t))
< x(uo, u1,v0,v1, R, T)Qe5CULR2T, (3.28)

where

V5

1
X(UO) UL'UO, U1, R) T) = 622 + TCI (Ra+1 + Rﬁ-’rl) T
We see that for parameters T and R satisfy
X(UO;UI,U(%UI;R? T)QGSCOLR2T S R2- (329)

Then S maps X7 g into itself. By Theorem 3.1, w € C°([0,7]; H*(Q) N H} (L)) N
C1([0,T]; L*(Q)). Moreover, it follows from (3.19) and (3.29) that u/,v" € L?((0,T); H}
(€2)). Hence, we see that u(t) and v(t) belong to C°([0,T]; H*(Q)NHE(Q))NC([0,T]; L?
().

Next, we will show that S is a contraction mapping with respect to the metric d(-, -).
Let (w;,7;) € Xr.r and (u;,v;) be the corresponding solution to (3.3)—(3.8). By the
above discussion, we see that (u;,v;) € Xr g, i = 1,2. Setting wy(t) = (u1 — u2)(t),
wa(t) = (v1 — v2)(t), then wy and ws satisfy the following system:

(wi)y — M (| VEr]|3) Awy — A (wy),
= fi(@,m) — (@2, 12) + [M (|VaE]|3) — M (| Vaz|3)] Aus, (3.30)
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(wa)y — M (IIVTL]3) Awa — A (w2),

= fo(wr, ) — f2(uz,02) + [M (|VU1]3) — M (| Vez]3)] Avs, (3.31)
w1(0) =0, (w1),(0) =0, (3.32)
w9 (0) =0, (ws),(0) =0 33

Multiplying (3.30) by 2 (w1), , and integrating it over €, we have

d __
pm {H(wl)tHi +M (|| Va3) I\lelli} +2|V (wr), 5
= ly3 + Iu4 + Iu57 (334)
where

d _

s = (EM(|Vu1|§)) Vw3, (3.35)

s =2 [M (I 7r]8) - M (17z]3)] | Aua (wn), da, (3.36)

Q

s =2 [ (fim,00) = (3, 73)) (wn), do. (3.37)

Q

Similarly, we have

d __
= {lw2)i 13+ M (I97T3) [V 3} + 219 (wa), )

= IU3 + Iv4 + I’u57 (338)
where
d
o= (3 (I95818) ) 1 el (3.39)
o =2 [M (I9113) = M (1913)] | Ava o), do (3.40)
Lo =2 [ (ald@, ) ~ fo(iz,55) (w2), do- (3.41)
Q

From (3.35), by using the Divergence theorem and Lemma 2.1, we have

_ _ 2
[Lus| < 2L[| AT 2 [[(@)4 5 [V [l
< CoLR2€(U}1,U}2). (3.42)

Note that by Lemma 2.1, we have

|M ([IVal3) — M (IV@ll3)| < L (Va2 + | Vazll2) [ Var - Vaz]

1

< 2¢?RLe(W1 — 3,71 — 2) 7. (3.43)
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From (3.36) and (3.43), we get
Ta| < ALR%e(ut — g, 07 — 13) % e(w1, w) . (3.44)

By (A2) and Lemma 2.1, we get

|Lus| < dey (R + R%) ey — 3,51 — T3)  e(wy, we) ¥ (3.45)
Hence from (3.34), (3.42), (3.44), (3.45), we have
d __ 2 2
= Ul ll5 + M (|| Va3) valllg} + 2V (wi),ll;
< coLR?e(wy,ws) + 4c2LR?e(t7 — Uz, U7 — E)%e(wl, wg)%
+4c1 (R + RP) e(ur — W, o1 — T3) 2 e(wy, ws) 2. (3.46)

By the same procedure, from (3.38), we have the similar inequality for ws. Hence, we
obtain

d _ __
= {lGwa) I3 + M (1VaTI) 9w 3 + ), 5 + M (IVT13) Vi3 }
+2[IV (w1)yl3 + 21V (w23
< 2coLR?e(wy,ws) + 8¢ LR?e (7 — Uz, 1 — T2) 2 e(wy, wg)%

+8c1 (R + R?) e(ur — T, 1 — T3) 2 e(wn, ws)*. (3.47)

ol NI

On the other hand, multiplying (3.30) by —2Aw;, and integrating it over €2, and then
by Divergence theorem and (A2), we have

d

S {1auwnl =2 [ ), Awnde} + 20 (IvamIR) 80

< 2|V (wr)ell3 + 4LR?e(T — 3,1 — T2) 2 e(wy, wn)
+2¢1 (R + RP) e(ur — 3,71 — 12)? e(wy, wn)?.

The similar inequality is obtained for wy. Therefore, we get

%{|Aw1||32/9(w1)t Awld:c+|\Aw2|\§—2/Q(w2)t Awgdaz}
+2M (|| Va|3) [|Aws |5 + 20 (|[Vor]j3) [|Aws |
<2 [IIV(wn)ell3 + 1V (w2)e 3] + 8¢ LRZe(wr — 3, 57 - 73) e, ws)
+4c1 (R + RP) e(ur — W3, 1 — T2) % e(wn, ws) . (3.48)

Multiplying (3.48) by €, 0 < & < 1, and adding it to (3.44), we have

d .
(0, w2) + 2(1 = &) [V (wi)il}3 + |V (w2)e3]
< 2¢oLR?e(w1,ws) + 8¢2(1 + &) LR%e(ut — Uz, 01 — 13) 2 e(wy, w)? +

A(1 + e)er (RO + RPHY) e(ur — W, o7 — T3) Ee(wy, w2) 3, (3.49)
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Where e (wl,wg is given by (3.24) with u = w1, v = wa, W = U7 and T = 7. Taking

€= £ in (3.49), and as in (3.22)—(3.25), we have

eu—lﬁ(wl,wg) >

e(wr, wa). (3.50)

OWI»—!

Therefore, from (3.49) and (3.50), we get

N

1
e oy (w1, w2) < 10coLR?e: - (w1, wz) + csLR?e(uy — Uz, 71 — 32 ar o7 (W1, W2)

u1,v1

dt

teq (R 4+ ROY) e(T — W, U1 — U2) % el o (w1, w2) 7,

where c3 = %ci, cy = 28‘[01 Noting that e ) (o) (w1(0),w2(0)) = 0, and by
applying Gronwall Lemma, we get

2
621 ar(wy, we) < [ LR? + (RQH + Rﬁﬂ)} T2e5c0LR°T . <Sltlli Te(u_1 — g, U1 — U3).

By (3.2) and (3.50), we have
d((ur,v1), (uz,v2)) < C(T, R)2d (W, 77) , (3, 73))

where
C(T,R)=5 [%LRQ - %3 (R + Rﬁﬂ)} TS0 LRT (3.51)

Hence, under inequality (3.29), S is a contraction mappingn if C(T, R) < 1. Indeed, we
choose R sufficient large and T sufficient small so that (3.29) and (3.51) are satisfied at
the same time. By applying Banach fixed point theorem, we obtain the local existence
result.

4. Blow-up property

In this section, we will study blow-up phenomena of solutions for a system (1.1)—(1.6).
In order to state our results, we further make the following assumptions:
(A4) there exists a positive constant § > 0 such that

ufi(u,v) + vfa(u,v) > (24 46)F(u,v), for all u,v € R,

where F'(u,v) is given in (Al).
(A5) (26 +1)M(s) > M(s)s, for all s > 0, and 4 is the constant given in (A4), where

:fOSM r)dr

Definition. A solution w(t) = (u(t),v(t)) of (1.1)—(1.6) is called blow-up if there
exists a finite time 7™ such that

lim (|Vu|2 + |Vv|2) dzx = oo.
Q

t—T*—
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Let (u(t),v(t)) be the solution of (1.1)—(1.6), define the energy function

sl + ol + 37 (1 l3) + 37 (1901)] = | Fluv)de, ¢2 0. (41

| =

E(t) =

Lemma 4.1. Assume that (A1) and (A3) hold, then E(t) is a nonincreasing function

and

E(t):E(O)—/O (Ve + [Voe|2) dt. (4.2)

Proof. By differentiating (4.1) and using (1.1), (1.2), (A1) and (A3), we get

dE(t
B (17wl + 1 7e3)

Thus, Lemma 4.1 follows at once.
Now, let

t
a(t):/ (u? +v?) d:c+/ ([[Vull3 + [Vv]3) dt, t > 0. (4.3)
Q 0

Lemma 4.2. Assume that (Al), (A3), (A4) and (A5) hold, we have

a” (t) 74(5+1)/Q (uf +v7) dx

> (—4 —85) E(0) + (4 + 89) /Ot (Vw3 + [ Vvell3) dt. (4.4)
Proof. Form (4.3), we have
o (1) = 2/9 (uttg + vor) dz + [ Va2 + | Vol 2. (4.5)
By (1.1),(1.2) and Divergence theorem, we get

" (6) =2 [ (u? +oF) do—2 (M (I1Vul) [Vul + 21 (IV0lB) [7013)

+2/Q(uf1(u,v)+vf2(u,v)) dzx. (4.6)
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By (4.2), we have from (4.6)
a”(t)—4(5+1)/9(uf+vf)dm
(480 B+ (1+59) [ (19wl +19013) s
@+ 4005 (19ul) - 201 (1913) [ (9l e
@+ 40) 3 (19018) 207 (19018) [ v0i?as]
+/Q2[uf1(u,v)+vf2(u,v)— (2 + 46) F(u, v)) da.

Therefore, from (A4) and (A5), we obtain (4.4). Now, we consider three different cases
on the sign of the initial energy F (0).(1) If E(0) < 0, then from (4.4), we have

a (t)>ad (0)—4(1+25)E(0)t, t > 0.

Thus we get a’ (t) > || Vuol|3 + || Vuol|3 for ¢ > t*, where

. _ a’ (0) — ([ Vuoll3 + [ Vvol[3)
t —max{ 11120 E(0) 2 ,0}. (4.7

(2) If E(0) = 0, then a” (t) > 0 for t > 0. If a’ (0) > ||Vuo||3 + ||Vuol|3, then we have
a' (t) > ||Vuol|3 + || Vvol|2, t > 0.(3) For the case that E (0) > 0, we first note that

t
2/ /VuVutd:cdt:||Vu|\§—|\Vu0||§. (4.8)
0o JQ

By Hoélder inequality and Young's inequality, we have from (4.8)

t t
IVul2 < [ Vuo|l2 + / IV ul3dt + / Va2t (4.9)

In the same way, we get

t t
V03 < [[Vuol3 + / Vol 2de + / V0,2t (4.10)

By Holder inequality, Young’s inequality and then using (4.9) and (4.10), we have from
(4.5)

a' (t) < a(t)+ ||Vuol3 + || Voo |3 +/ (ut + ’ut) dz +/ (HVutH% + ||Vvt|\§) dt. (4.11)
Q
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Hence by (4.4) and (4.11), we obtain
a"(t)—4(0+1)a" (t)+4(0+1)a(t)+ K1 >0,

where

Ky = (4+85) E(0) +4(5 + 1) (| Vuol|2 + | Vuol|2) -

Let

b(t)a(t)+4(K1 ,t>0.

4(1+90)

Then b () satisfies (2.2). By Lemma 2.2, we see that if

a' (0) > ry {a (0) + ﬁ} + ([Vuoll3 + [Vvoll3) (4.12)

then o’ (¢) > (||Vuol3 + [|[Vuwoll3) , ¢ > 0, where 7y is given in Lemma 2.2. Consequently,
we have

Lemma 4.3. Assume that (Al), (A3), (A4) and (A5) hold and that either one of the
following statements is satisfied :
(i) E(0) <0,
(i) E(0) =0 and o (0) > (|Vuoll3 + | Vooll3).
(ili) £(0) > 0 and (4.12) holds,
then o (t) > (|[Vuol3 + |[Vuol3) for t > to, where to = t* is given by (4.7) in case (i)
and tg = 0 in cases (ii) and (iii).

Now, we will find the estimate for the life span of a (t). Let
2 2\71—9
J(t) = [a(t) + (T1 = t) ([Vuoll3 + | Vwoll3)] . for t € [0,T1], (4.13)
where T} > 0 is a certain constant which will be specified later. Then we have
1
T (t) = =8 ()" (' (8) = [Vuoll3 — [ Vwol[3) ,

and
J" () = -850V (1), (4.14)

where

V() =a" (1) [a(t) + (71 — t) (IVuoll3 + [Vwol3)]
—(146) (' (t) — [Vuol3 — | Vwoll3)” . (4.15)
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For simplicity of calculation, we denote

Pu:/u2d:c, Py:/”UQd’I',
Q Q

t t
Qu= [ Ivulat Q.= [ Iveliat
0 0
Ruz/ufda:, RU:/dex,
Q Q
K 2 ! 2
su:/ V|2 dt, sy:/ V|2 dt.
0 0

From (4.5), (4.8), and Holder inequality, we get
() =2 [ (wn +vee)dao + [V + [ Vool

Q
t t
+2/ /VuVutdxdt+2/ /VvVvtd:cdt
0 JQ o Ja

+[Vuol|2 + | Vo2 (4.16)

By (4.4), we have
a”(t) > (=4 —86)E(0) +4(1+06) (Ry+ Su+ Ry + 5,). (4.17)

Thus, from (4.16), (4.17), (4.15) and (4.13), we obtain

(S

V() > [(=4—=88)E(0)+4(1+6) (Ru+ Su+ Ry + Su)] J (t)~

—4(1+6) (\/RUPU +V/QuSy + VR,P, + \/QUSU) .

And by (4.13) and (4.3), we have

_1
B

V(t) = (—4—86)E(0)J(t)
+4 (14 6) [(Ru+ Su+ Ry + Su) (Th — t) (| Vuoll3 + [|[Vuoll3) + ©(8)]

where
O(t) = (Ru + Su+ Ry + Su) (Pu + Qu + Py + Qy)
- (\/RuPu + \/QuSu + \/R'UP'U + \/QUSU)2 .

By Schwarz inequality, ©(t) is nonnegative. Hence, we have

V(t)> (~4—88)E(0)J ()5, t > to. (4.18)
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Therefore by (4.14) and (4.18), we get
J"(t) <5(4+88)E(0)J ()5, ¢ >t (4.19)

Note that by Lemma 4.3, J' (t) < 0 for ¢ > ty. Mutiplying (4.19) by J’ (¢) and integrating
it from ty to ¢, we get
J (1) > a+ BJ(#)*TF for t > 1o,

where
a =082 (t)*7 | (a’ (to) — [|Vuoll3 — | Vwoll3)? — 8E(0) J(to)ﬂ : (4.20)
and
B =852E(0). (4.21)
We observe that
(o (to) = | Vuoli3 = [ Vuol3)*
8a (to) + (T — to) ([[Vuoll3 + [[Vuo|[3)]

Then by Lemma 2.3, there exists a finite time 7™ such that lim;_,p-- J (¢) = 0 and the
upper bound of T* is estimated respectively according to the sign of E (0). This means

that .
i { [ 2oy [ (19l + 1902) | = o
Q 0

t—=T*—

a>0 iff £(0) <

By Poincaré inequality, it implies that

lim (|Vu|2 + |VU|2) dx = 0. (4.22)
Q

t—T*—

Theorem 4.4. Assume that (A1), (A3), (A4) and (Ab) hold and that either one of
the following statements is satisfied :
(i) £(0) <0,
(i) £(0) =0 and a’ (0) > (|IVuollz + [IVeoll3),
a’(to) = Vuoll3—1IVwoll3
(iii) 0< E(0) < S[a(t(o)-i-(Tl—to)(IIV?uo||§+Hé210||§)] and (4.12) holds,
then the solution (u(t),v(t)) blows up at finite time T* in the sense of (4.22).

In case (i),
J (to)
T <tg— . 4.23
Furthermore, if J (tp) < min {1, \ /%ﬁ}, we have
1 =5
T <to+ In (4.24)

V-8 \/%—J(to)'
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In case (ii),

. J (o)
T* < to — 4.25
or
T <ty + J\%). (4.26)
In case (iii),
J (to)
T* < 4.27
<Ll (a:27)
or 5
T* §t0+23“2§1¢_‘%{1f [1+cJ(t0)]5—«>‘}, (4.28)

244
where ¢ = (%) " here o and 3 are given in (4.20), (4.21). Note that in case (i), to = t*

is given in (4.7) and tp = 0 in case (i¢) and (4i%). The choice of T} in (4.13) is possible
under some conditions. We shall discuss it in the following Remark.

Remark 4.5.
(i) For the case E(0) =0
(1) If 20 [, (uour + vovr) dx — (||Vuoll3 + [|[Vwol[3) > 0, by (4.25), we choose

J(0)
T > — .
)
Then, in particular, we have
T S T1 = w,

where )
_ [[uollz + l[voll3
20 [, (uwour + vovy) dz — (|| Vuo||3 + [[Vwol|3)

w

(2) If 0< 26 [, (wour +vovr) dz < (||Vuoll3 + [[Vuol|3), by (4.26), we choose

T, > % (4.29)

From (4.29), and by Young's inequality, we get
2
[uollz + llwoll3 + T (IVuoll3 + [[Vwoll3)

2 2 2 2
<oy (Jluoll3 + llus 3+ fuoll2 + fen12)
< Ty (I Vuoll3 + 11 Veoll3 + llerl13 + lonl13)
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where the last inequality is obtained by Lemma 2.1, with ¢ = max (60,%, 1) .
Then, in particular, we have
T* S T1 = p,
where

[uoll3 + llvoll3 .
¢ = 1 [IVuoll3 + [IVeoll3] + € ([luall3 + llvall3)

"1

(ii) For the case E(0) <0
(1) If [, (uour + vov1) da > 0, then a/(t) > ||Vug||3+[|Vuol|3 and t* = 0 (by (4.7)).
Thus 77 can be chosen as in (i).
/ 2 2
uou1 + vov1) dz < 0, then t* = —vrola _LVYllz Thus, by (4.23), we
2) If 0 d 0. th * a’(0)—||Vuoll5—[IVvol| Th b 4.23

4(1+25)E(0)
choose T7 > t* — %

(iii) For the case E(0) > 0By (4.27), we choose

[[uoll3 + llvoll3
[cor3 ([Vuoll3 + [[Vvoll3) — 1] (IVuoll3 + [[Vvol3)”

T =
here

c=1, if [Vuol3 + [[Vuol3 > 52
T3

2 1
c= ;i [[Vuoll3 + [[Vuoll3 < —5-
o735 ([[Vuol3 + [[Veol[3) 2 2= or3

Under the condition
E(0) < min{k1, K2},

where
o (1+6) [a’(0) = r2a(0) — (r2 +1) ([ Vuoll5 + [[Vwoll3)]
e 7“2(1 + 25) ’
and )
_ Unluows =+ vour)da)”* [edr3 (IVuoll3 + [ Veol}3) 1
2 = .

2
26873 (Jluoll3 + Ilvol13) (I1Vuol3 + I Fwol13)

Then, we have
I

T* <
\/4(f9 upu1 + vovidr)? — 8E(0)u

)

where
2
a3 (Jluoll3 + lvol3) (IVuoll3 + 1V eol3)

cor ([|Vuoll3 + I Veol3) — 1

M:
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