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NEW RELATIONS AMONG EULER SUMS OF EVEN WEIGHT

WEN-CHIN LTAW

Abstract. In this paper, we shall consider different kinds of Euler sums which are related to
Ramanujan’s constant G(1). We develop new relations among these Euler sums and classical

Euler sums of even weight. In particular, from these relations we give explicit evaluations of

ad 1 k1
G12nt1 = T —— —=.
n kz:; (2k + 1)2nt1 ; j

1. Introduction

For a pair of positive integers p and ¢ with ¢ > 1, the classical Euler sum is defined

N LA |
:ZEZ-—p- (1.1)

k=1" j=1 J

See for example [1, 12, 13, IF] for the details. The following well-known formula for S7 ,, is
due to Euler (cf. |1, p. 253]).

Theorem A. For each positive integer n with n > 2, we have

n+2 —

$10= " <(n+1)§§<(j)<<n+1j>- (12)

In an attempt to investigate relations among Euler sums of the same even weight,
Chen and Eie M| defined, for positive integers p and ¢ with ¢ > 2, some related new sums
as
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and for positive integers r,

1 j:lj
(k)T 2 7 2 kT 1 2 7

In his famous notebooks [l p. 252], Ramanujan claimed that

IR 1 mx= (-DF T~ 1
_2872ij1_ZZ(4k+1)3_3\/§kZ=O(2k+1)3' (17)

k=1 j=1 k=0

The above formula is incorrect as can be easily seen numerically. In our notation we have
8G(1) = B ~ 3815 = BY — 2¢(4) = Gap + 13¢(0).

There is no closed-form evaluation known for E%)n 41, nor for Gp 4 if p + ¢ is even.

However, we are able to evaluate G 2,41 and E1 2n+1 + 22"+1H172n+1. Here are our
main theorems in this paper.

Theorem 1. For each positive integer n, we have

Grons1 = (2= 27" ) {8) 941 — C(2+ 2n)}

—2X\(2n+1)log2 + zn: 21 (ON2n +2 - 1), (18)
(=2
where -
1 —S
= kzzg @1 (1=27%)¢(s). (1.9)

Theorem 2. For each positive integer n, we have

2
E£,2)n+1 + 22" Hy g

1 1
= 55172%1 + (22”“ - 5) C(2n +2) + 22" F1\(2n + 1) log 2

— i 2= (DN(2n +2 — ). (1.10)
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As a byproduct of our results, we also prove the following relations among Euler sums
of the same even weight.

Theorem 3. For each positive integer n,

2n
D 27 Seanra—e = (27" = 1)S1 0041 — 27((2n + 2)
(=2

+i22"+17%(5)>\(2"+2*£)' (1.11)

Two more general theorems will be given in Section 5.

2. The evaluation of G1,2n41

As shown in ([CH), we already have a formula relating Gy 25,41 to E£,22)n+1 + 22n+1
Hi 2n4+1. We need one more relation in order to evaluate G 2p41. First we obtain an
evaluation of G'1,2n41 in terms of S¢op42-¢ for £ =2,3,...,2n.

Proposition 1. For each positive integer n, we have
Grongr = (1427 CP) G 5y — (1= 27C*D)¢(2n + 2)

2n

—2\(2n + 1)10g2+2_2n22€_15&2n+2_g. (2.1)
(=2

Proof. We begin with E£,22)n+1 defined by

1 2"+1 Z k2n+1 Z (2.2)

Note that
0o 1 2k 1
2
B — Sioni =) J2ntl >
k=1 j=k+1 J

fzqui;’if;
D) 7]?2"""1 = j4+k

o0 o0 1
=—-((2n+2)+ ZZ:: (k+ )20+ (k +2j5)
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In light of the partial fraction decomposition

1 g 11 1
(x+ k)2 12z + k) k2l o+ k/2 x4k k(x + k)2ntl

2n 9l-1
a ZZ::Q ke (z + k)2nt2—e’

we conclude that

o0 oo 1
ZZ (k +j)2n+1(k, + 2.7)

k=1 j=1

22”2]@2”“2(]4‘]?/2 j+l€> 2121 k:—i—j )2t
Z?é IZZ,C@,WW@ (2.3)

k=1j=1

The second term in the above is equal to

—{S12n11 —C(2n +2)},

while the third term is equal to

2n

- Z 2271 {S€,2n+27€ - C(Qn + 2)} )
(=2

or
2n

=3 27 S pnga e+ (277 = 2)¢(2n + 2).
(=2

Now it remains to evaluate the first term. When k ranges over all positive even integers,
the corresponding partial sum is equal to

o0 o0
2n 3 1 11 }
£ (2k)2m S itk j+2k ’

which is equal to
1 2
3 {EiQ)nJrl - 51,2n+1} :

When k ranges over all positive odd integers, the corresponding partial sum is

oo

1 > 1 1
92n - . 2.4
;(2k+1)2n+1;{j+k+1/2 j+2k:+1} (2.4)
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In view of the Kronecker limit formula for Hurwitz zeta function [1],

. 1 I'(6)

we get in particular that

1 O T(k+3/2) T(2k+2)
Z{]+k+1/2 j+2k+1}__F(k+3/2)+F(2k+2)' (2.6)

Also we have for positive integers k (e.g. see [1]),

I'(k +3/2) 1
T 914+ 2log 2 2.7
Tk 3/2) tg gy ) Tyt 2los (2.7)
and (2K + 2) 1 1
+
— 14+ 2.
Tkt et Tt (28)

where 7 is the Euler constant defined by
v = lim ilflogn . (2.9)
n—oo k
k=1
Consequently, this expression in (4 is equal to

oo

2n+1 2n 1 o ( 1)]+1
22 tIN(2n + 1) log2 — 2 Z

(21<;+1)2n+1Z I

which we rewrite as
22" IN(2n + 1) log 2 — 22" Hy 9541 + 22" G 2011

It follows that

1 1 1
§E£’22)n+1 = *551,2n+1 + (22" - §> C(2n +2) + 22"\ (2n + 1) log 2

2n
— 22" [ 9pi1 + 22" Gy an g — Z 2718y an 2
=2
Our assertion then follows from the further relation
1 _
3 {E£22)n+1 + 22"+1H1,2n+1} =2°"S1 9nt1 — 22" G ang (2.10)

As an immediate consequence, we have
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Proposition 2. For each positive integer n,

1
E§,22)n+1 + 22 ) oy = <22n - —> S12n+1 + <22n - 5) ¢(2n+2)

2n
+ 2220 + 1) log2 = Y 27 Sp om0
(=2

Rremark. Unfortunately, both evaluations of G1 2,41 and E£,22)n+1 + 22”+1H172n+1
involve the common expression

2n

-1
E 27" S onto—e.
=2

Such a sum can be replaced by a linear combination of Si 2,41 and {(p)¢(g) with p+q¢ =
2n + 2 as we shall see in Section 4.

3. Explicit evaluation of Ef2)n+1 + 22"t H, opyy

Our first attempt to evaluate G 2p41 is unsuccessful, so we try another way to deal
with E1 op41 and Hy 2,41 directly.

Proposition 3. For each positive integer n,

2n

9—2n {E£,22)n+1 -5 2n+1} = )\(271 —+ 1) log2 + G1 2nt+1 — Z 27 F2n+2 §.d (31)
j=2
where for p, ¢ > 2,
[eS) 1 k—1 1
— il — 2 _9o-p
Fpq = Z kq Z (25 + 1)P - Ep,q 27PS5pq
k=1 7=0
Proof. We begin with the difference
(2)
Eyony1 — 5'1 2nt1 = Z kgnﬂ Z 2] 1 (3.2)

It follows that

—(2n 2 1 3
o (52 Y} 5 e &

o0 o0 1
’ZZ (2k + 25 + 2)27+1(25 4+ 1) (3:3)

=0 7=0




NEW RELATIONS AMONG EULER SUMS OF EVEN WEIGHT 27

with a simple change of variable k = kK’ + 7 + 1 in the summation. We need the partial
fraction decomposition

1 1 1 1 1
(z+2k +1)2n+1g (2K + 1)2n+] {E 42kt 1} 2k + 1)(z + 2k 4 1)20+1

1
a ez:; (2k + 1)%(x + 2k + 1)2n+2-¢

2n

(3.4)

Setting x = 2j + 1 and letting j and k range over all non-negative integers, we get

oo

—(2n+1) (2) _ 1 _ 1 .- 1 _ 1
2 {E1,2n+1 251,2n+1} = Z (2k + 1)2n+1 Z 27+1  254+2k+2

o0 o0 1
ZZ( 2k + 1)(2j + 2k + 2)2n+1

k=0 j=0
2n

oo

> 1
> T
p < (2k + 1)1(2k + 2n + 2)%"

The second term on the right-hand side is equal to
_ 1
—27 () {E§22)n+1 - 551,2n+1} ;

while the third term is equal to

2n
¢
- Z 27 Fopya_r-
=2

The inner summation of the first term is equal to

1 {r'(1/2) F’(k+1)}

2\ T2 Tt

hence the whole term is equal to

1
A(2n +1)log2 + §G1,2n+1.
Thus our assertion follows.
In a similar way, we get

Proposition 4. For each positive integer n,

1 1
Hiong1 = A(2n 4 2) + 277+ {Efgnﬂ - §Sl,gn+1} — 5G12n41

n
_22_€Gl,2n+2_£. (35)
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Proof. We begin with the definition of Hi 2p41:

oS k
1 1
Hl 2n+1 — D) . 9
) 11
kZ:O (2k + 1)2n ]Z:o 2j + 1

which we rewrite as

oo o0

1

oo oo 1
— A(2n+2)
;;} Ghr e e et +kzuzo(21c+23+1)2n+1(23+1)

In order to evaluate the double series, we need the partial fraction decomposition:

1 1 (11 1
(2k + x)2ntlg — (2k)2ntl |z o+ 2k 2k(2k + )2

2n

1
a ; (2k)*(2k + x)2n+2-

Setting x = 25 4+ 1 and letting j range over all non-negative integers and k range over all
positive integers, we get

Hyont1 = A2 2)
1,2n+1 (2n + Jrkzl 2k,2n+12{2]+1 23+2k+1}

2n 1

1
; kz:; ; 2k(2k 425 + 1)20 ez:; (2k)%(2k + 2j + 1)2n+2-¢

The second term in the right-hand side can be rewritten as

[eS) 1 k—1 1
27(27’14»1)

which is equal to
_(2n 1
o—(2n+1) {Efgm - 551,2n+1}.

On the other hand, simply by the definition of G 4, the third term and final term are
equal to _%G1,2n+1 and — 2522 2’2G472n+2_g, respectively. This proves the assertion.

Proof of Theorems 1, 2, and 3. Observe that for p > 2 and ¢ > 2,

—p -p — - 1 ! — 9P
27PGp g+ 27y = ;} (2k + 1) Z (27)P =2""((p)A(q). (3.6)

j=1
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So if we add formulas in Propositions 3 and 4 together, we get

2tV EC) b Hignrr = A2n+ 1)log2 + A(2n +2) +27DS 5

,iQ‘Q(Z))\(QnJrQ —0). (3.7)

Upon multiplying by 22"*! on both sides, we prove Theorem 2. By comparing two

different expressions for E§ 2)n 41+ 22" Hy 55,41 in Proposition 2 and Theorem 2, we get

> 27 S anga e = (22" — 1)S1 90 — 27"¢(2n + 2)

+> <22”+1f - %) CO)¢c@2n+2—0), (3.8)
=2

which proves Theorem 3. Combining Theorem 3 and Proposition 1 then proves Theo-
rem 1.

4. Relations among Euler sums of the same even weight

Some linear relations among Euler sums S¢ ont2-¢, £ = 2,3,...,2n can be obtained
easily from the partial fraction decompositions of the rational functions

1

W, 612,3,...,277,. (41)

Here we illustrate the details. It is easy to see that

1 1 2n+ 2n +2n—1+ n 1 (4.2)
2z +1)20 22 oz x4+l (z+1)2 (x+1)2n° '

Replacing x by x/k, we get another identity ready to be used

1 1 2n 1 /-1
22(z + k)2" T p2ng2 | p2ntl {_ ac—i—k} Z ke (x + k)2nt2—t (4.3)

As x and k both range over all positive integers and sum together, we get

2n

Sg,gn — C(Q’I’L + 2) = (:(2)(:(271) — 27151,2”4_1 + Z(f — 1) {Sg,2n+2_g — C(Q’I’L + 2)} , (44)
=2

which we rewrite as

Sa.9n +2532n—1 4+ 3S42n—2+ -+ (2n — 1)Sap 2 = S22 + A(2), (4.5)
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where A(2) is a linear combination of ¢(2n + 2), ((2)¢(2n) and S1,2n+1-
On the other hand, from the partial fraction decomposition

1 _ 121 2e-) [1 1
3(x + 1)2n—1 23 x? 2 x z+1
-1 1
> 2 (z+1)0 (4.6)
(=2
we get the identity
1 _ 1 2n—1 2n(2n—-1) 1 1 1
x3(x+k)2n71 T k2n—143 Je2n 02 9 k2ntl o x4k
_an_:l (2n—0)(2n—£-1) 1 (4.7)
~ 2 2 t2—C (g + k) :

Consequently, we have another relation

(2n —2)(2n — 3)

S3,2n—1 + 35’47271_2 + 65’572,@_3 4+t 5

Son,2 = —S3.2n-1 + A(3),

where A(3) is a linear combination of {(2n + 2), {(2)¢(2n), ¢(3)¢(2n — 1) and S 2p+1-
Continuing this process, we get the following system of linear relations among
Stonto—0, £ =2,3,...,2n,

S2,9n+253.2n—1+354,2n—2+455 203+ ~+(2n—1)52n,2 = 5272n+A(2)
2n —1
2
2n—1
3

SS,anl + 354727172 + 65572n—3+' st ( >S2n,2 = *SS,anl + A(?’)

S4on—2 + 455 2n—3+ -+ ( )SQn,Q = Sion—2+A4)

Son—1,3+ (2n —1)Sap2 =—Son_13+A(2n—1)
Son,2 = San,2 + A(2n).

(4.8)
All adding together, we obtain
2n 2n 2n
2(26_1 —1)Seont2—¢ = 2(71)652,27#24 + Z A(2).
£=2 £=2 £=2

Therefore,

2n

2n 2n 2n
> 2 oo 0= Seantat+ D (1) Sranta-c+ Y A(D).
=2 =2 =2

=2
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Note that
2n 1 2n
D Seanta-e =5 ((OC(2n+2—0) = (20— 1)((2n)
=2 =2
and
2n 2n 1 . .
1 sC(2n +2), if n is odd;
1) Spongoe==Y (-DCU)C2n+2—-0)+< 2
DD Stansae =5 D VNG +2 -0+ 9 0T

So it is not a surprise that the sum

2n

-1
Z 2" Sp onyo—r
=2

can be expressed in terms of ((p){(q) with p+ ¢ = 2n+ 2 and S7 2,,41.
Remark. If we treat S5 2y,,532n—1,...,52,,2 as 2n — 1 unknowns, the coeflicient
matrix of the system is given by

0 2 3 4 ... ...2n—-1
2n—1
8 (2) g i 22"2‘13
3 . (4.9)

The rank of this matrix is n — 2. But still we have the relation

Spg T Sqp = C(p)¢(a) +¢(p + 9), (4.10)

and so 1
Spitmil = 3 {Cn+1)+¢2n+2)}. (4.11)
So there are actually n — 1 unknowns S5 25, S3.2n—1, - - -, Sn,n+2 to be determined from

only n— 2 independent linear equations. Of course, the result is undetermined. However,
we are able to evaluate suitable linear combinations of a pair of sums. For example, when
n =5, we have 4 unknowns S 10, 53,9, 54,8, 55,7 subject to three conditions

95210+ 6539 +4S18+ 2557 = A(2)
365210 + 26539 + 18548 + 9557 = A(3) (4.12)
845510 + 56539 + 35548 + 16557 = A(4).
The above system is equivalent to
952,10 + 2539 = A'(2)
16539 + 9545 = A'(3) (4.13)
7S48 + 8557 = A'(4).
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Consequently, we are able to express 953 10 + 2559, 16539 + 95458 and 7S48 + 8557
explicitly in terms of values of the Riemann zeta function at positive integers.
Exactly the same happens to Eg, H, 3 and G2,2. By Theorem 2, we have

1 15
By +8H15= 3513+ 50(4) +8A(3) log2 — 20(2)A(2)
or

35
EC) +8H, 5 = 2 C4) +7¢(3) log2. (4.14)
Also from Proposition 4, we get
5
E%} —8Hy 3 — 2G2z = —2((4) = 7((3) log2. (4.15)

With only @Idl) and (EIH) at our disposal, we are unable to determine Eﬁz, H, 3 and
G2 individually.

The above discussion indicates the indeterminacy nature of Ramanujan’s constant
G(1), which is due to the lack of linearly independent relations among Euler sums of the
same even weight.

5. A further generalization

For a pair of positive integers p and g with ¢ > 2 and another pair of positive integers
a and b, we define new sums

oS k
1
Gp.q(a,b) Z — (5.1)
0 ak+b q = yiz
and
00 k
Hp 4(a,b) = kzo ak T ; @ +b (5.2)

When a = 2, b = 1 and p + ¢ is odd, the evaluations of G, 4(2,1) and Hp4(2,1) are
already known [6]. Here we shall give the evaluations of Gy y(a,b) and

(a)Jra ZHln a,b)
b=1

through relations among Gy, 4(a,b), Hp 4(a,b) and Ez(,?q).

Theorem 4. For positive integers n > 2 and a pair of positive integers a and b, we
have

Grala) = 1. 9> 50 { e )

b
= Zg S)(n+1-14, ). (5.3)
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Proof. Right from the definition (&), we have

oo

Glnab Zak+b";a:,§;(ak+aj+b)"a3

k=0

We need the following partial fraction decomposition

1

1 11 1 1 ”z’: 1
(r+a)"z am |z z+a alz + a)» 5_20/(:c+04)"+1*4'

Set © = aj and a = ak + b. Then letting j range over all positive integers, k range over
all non-negative integers and summing together, we get

(o) 1
—1 2 -
@ Grn(a,b) = — ( ak+b = { aj ak+aj+b}
P (ak + b)(ak + aj + b)™

n—1 oo oo

1
222 (ak + b)(ak + aj + b)n+t1-t

£=2 k=0 j=1

The first term is equal to

1 & 1 IM(k+1+b/a) T'(1)
5,§<ak+b>"{1“(k+1+b/a> - T(1) }
which we rewrite as

> y 1 I'(b/a)

> ak+b Za]+b+az ak+b { (b/)”}

k:O O

Hy ,(a,b) + aan ((n, g) {11:/((://5)) * 7} '

or simply as

The second term is equal to the negative of

b

Hl,n(aab) - —C(Tl + 17 5)

and the third term is equal to the negative of

— b
Z {Hg ni1—e(a,b) — anlﬂg(n—i—l,a)}.
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Consequently, we have

e =lanen a8

n—1

—a Z Hypy1-e(a,b).

=2

Qur assertion then follows from

1 n—1
Z Hppi1-0(a,b) = 5 Z {Hens1-0(a,b) + Hpp1-00(a,b)}
=2
b b
2a”+1z Cn+1-£-)+C(n+1,-)

Theorem 5. For positive integers n and a with n > 2, a > 2, we have

St -5 () - (E9 )

b=1

SN ek on +1 —e,g). (5:4)

Proof. At first, we have

o0 oo 1
Hyn(a,b) = ;::OJZ: (ak 4+ aj+b)"(aj +b)

1

=q (D 1— :
- Cn+ le (ak +aj +b)"(aj + b)

With the help of partial fraction decomposition, the second term is equal to

i — 1 1 B z‘: 1
(ak)" <= \aj+b ak+aj+b  (ak)'(ak +aj + b)~ =0

k=1 7

or
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Let b range over 1,2,...,a — 1 and sum together, we get
= “ b 1
o) = S e Dot {18151
b=1 b=1
a—1n—1
— Z Z aierynJrlfl (a, b).
b=1 ¢=1

On the other hand, we have

ak

S k
—n fpla) _ 1 I 1
a {Enfa Syn}: = —

N (ak)" “~ aj +b

|
M 1M 5
T

P

o0
it akz+a]+a "(aj + b)

<
Il

1

=~
Il

As before, we employ partial fraction decomposition to get

Z Z (ak +aj + a) (aj +b) ™' Crn(a,a —b) —a™"¢(n, 1 - g) {F/(b/a) + 7}

e dl I'(b/a)
n—1 oo 1 k—1 1
o Z n+1—4 ; Y
— — (ak) (aj +a—Db)
So it follows that
a—1 a—1 /
o () 1 1 “n b, [I'(b/a)
2 E - n( — n - - 71 -
a { in—a S, } ;Glg a,a—>b)—a ;(j(n a){l“(b/a)—i—,y

n—1
- Z a " {Ef;zl ) ai(nH)MSnHJ,Z} :

Our assertion then follows from

{Ez(;,lq) - a_pSp,q} Za 1Gqp(a,b) Za—(P-HJ)(: )
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