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INVERSE SCATTERING PROBLEM FOR STURM–LIOUVILLE

OPERATOR ON ONE-VERTEX NONCOMPACT GRAPH WITH A CYCLE

MIKHAIL IGNATYEV

Abstract. A scattering problem is studied for second-order differential operator on one-

vertex noncompact graph with a cycle and with standard matching conditions in the ver-

tex. A uniqueness theorem for a corresponding inverse problem is proved and a proce-

dure for solving the problem is provided.

1. Introduction

Transport, spectral and scattering problems for differential operators on graphs often

appear in mathematics, natural sciences and engineering [1], [3], [4], [2], [5], [6]. During the

last years such problems were in the focus of intensive investigations. The most complete

results on (both direct and inverse) spectral problems were achieved in the case of compact

graphs [8], [7], [9], [10], [11], [12], [13]. In the noncompact case there are no similar general

results since the presence of the noncompact edges (rays) leads to new qualitative difficulties

in the investigation of the spectral problems. Some particular results in this direction were

obtained in [14], [15], [16], [17].

The present paper is devoted to the Sturm–Liouville operator on a one–vertex geometric

graph which consists of one cycle (or: closed walk) and a finite number of rays emanating

from the vertex. The paper is structured as follows. In section 2 we establish some spectral

properties of the considered operator. Section 3 is devoted to a certain particular inverse

scattering problem that consists in recovering the potential on one ray from the given part of

scattering data. In section 4 we provide a formulation of the inverse scattering problem and

give a constructive procedure for solving this problem.

Let v be some point in a finite–dimensional Euclidian space. Let E0 be a smooth curve

of length π which starts and ends in v , further let E j , j = 1, p be rays emanating from v . We

assume p > 1, case p = 1 requires special consideration. Suppose that each ray does not
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intersect any other ray and does not intersect E0. Define G :=
p
⋃

j=0
E j . We consider G as a

geometric graph with the vertex v and the set of edges E = {E j }, j = 0, p . We assume that all

the edges are parameterized with the natural parameters x j , x j ∈ [0,∞), j = 1, p, x0 ∈ [0,π].

The function y(x) on G we shall treat as a vector y(x) =
[

y j (x j )
]p

j=0
. Consider the differ-

ential expressions:

ℓ j y j :=−y ′′
j +q j (x j )y j , (1.1)

where the potential function q(x) is real-valued and satisfying the following condition

∫π

0

∣

∣q0(x0)
∣

∣ d x0 +

p
∑

j=1

∫

∞

0
(1+x j )|q j (x j )| d x j <∞. (1.2)

The following condition in a vertex v we call standard matching condition:

p
∑

j=0

y ′
j (0) = y0(π). (1.3)

We consider in L2(G)∩C (G) (which is considered as a dense subset of L2(G)) the Sturm–

Liouville operator L = L(q,G) which is generated by the expression (1.1) and the matching

condition (1.3).

2. Auxiliary propositions

We call a function Φ(x,λ), defined at least for x ∈G , λ ∈ C \ R the Weyl solution iff:

(1) Φ(·,λ) ∈ L2(G)∩C (G) and Φ | v = 1;

(2) it solves the differential equations ℓ jΦ j =λΦ j , j = 0, p .

The value

M (λ) :=
p
∑

j=0

Φ
′
j (0,λ)−Φ

′
0(π,λ)

is called the Weyl function. Although we shall not use M (λ) as an input data for the inverse

problem it plays a significant role in our further considerations.

We recall that a Nevanlinna function F is by definition defined and holomorphic at least

in C \ R and has the properties

• F (z)= F (z) for all z in the domain of holomorphy of F .

•
Im F (z)

Im z
≥ 0 for Im z 6= 0.
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Lemma 2.1. M (λ) is a Nevanlinna function.

Proof. In order to construct the Weyl solution Φ(x,λ) one can use a local fundamental system

of solutions on each edge. Then standard technique [9]-[13] reduces the condition 1 to a cer-

tain system of linear algebraic equations with a determinant which is a holomorphic function

in C \ [0,+∞). So Φ(x,λ) exists and is unique for all λ ∈ C \ [0,+∞) with the possible excep-

tion of a countable set of points and moreover the Weyl function M (λ) is meromorphic in

C \ [0,+∞). Further one can easily verify that M (λ̄) = M (λ).

Now let us take an arbitrary λ=σ+ iτ. Then we can apply the following classical identity

(see for instance [18]):

τ

∫T

0
|y |2d x = Im

(

y(0)y ′(0)
)

− Im
(

y(T )y ′(T )
)

to the Weyl solution on each edge. This yields:

τ

∫π

0
|Φ0|

2d x0 = Im
(

Φ0(0)Φ′
0(0)

)

− Im
(

Φ0(π)Φ′
0(π)

)

,

τ

∫∞

0
|Φ j |

2d x j = ImΦ j (0)Φ′
j (0) j = 1, p

Summarizing these identities and using the condition 1 we obtain:

τ

∫π

0
|Φ0|

2d x0 +τ
p
∑

j=1

∫∞

0
|Φ j |

2d x j = Im M (λ)

and we can conclude that Im M (λ) and Im λ have the same sign. ���

Let C j (x j ,λ), S j (x j ,λ), j = 0, p be the solutions of the equations ℓ j y j = λy j under the

initial conditions C j (0,λ) = S ′
j
(0,λ) = 1, S j (0,λ) = C ′

j
(0,λ) = 0. Also we shall use the Jost

solutions e j (x j ,ρ), j = 1, p of the equations ℓ j y j = ρ2 y j with the asymptotics e j (x j ,ρ) =

exp(iρx j )(1+o(1)) as x j →∞.

Now we consider the eigenvalue problem for L. In order to obtain negative eigenvalues

one can proceed as follows. Let λ∈ C \ [0,+∞). Then an eigenfunction has the form:

y j (x j ) = γ j e j (x j ,ρ), j = 1, p , (2.1)

y0(x0) = α0C0(x0,λ)+β0S0(x0,λ), (2.2)

where λ = ρ2, ρ ∈ Ω+ := {ρ : Imρ > 0}. In view of (2.1), (2.2) the matching condition (1.3)

together with the condition y(·) ∈C (G) reduce to a system of linear algebraic equations with

respect to the values {α0,β0} and {γ j } j=1,p . We denote the determinant of this system ∆(λ)

and call it characteristic function for L. Clear that for given λ∈ C \ [0,+∞) to be an eigenvalue

for L it is necessary and sufficient to be a zero of ∆(·).
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The following lemma can be easily obtained via direct calculation.

Lemma 2.2. The following representation holds:

M (λ)=
∆(λ)

d (λ)
,

where

d (λ) :=
p
∏

j=0

d j (λ), d j (λ) := e j (0,ρ), d0(λ) := S0(π,λ),

i.e. d j (λ) are the characteristic functions for Dirichlet–Dirichlet eigenvalue problems on E j .

Denote Λ the set of eigenvalues of L. Since L is self–adjoint all the eigenvalues are real.

We split Λ as follows: Λ=Λ
−∪Λ

+, where Λ
− =Λ∩(−∞,0). Let n− = card(Λ−) and let N− be a

number of the negative zeros of ∆(·) counted with multiplicity.

Lemma 2.3. The following estimate holds:

n− ≤ N− ≤ N0 +Q ,

where

Q =

p
∑

j=1

∫

∞

0
x j

∣

∣q j (x j )
∣

∣ d x j

and N0 depends only upon q0(·).

Proof. It follows from Lemma 2.2 that the negative zeros of ∆(·) are interlaced with the neg-

ative zeros of d (·). It is known that the number of negative zeros of d0(·) is finite while the

number of zeros of d j (·) can be estimated with the value [18]:

Q j =

∫

∞

0
x j

∣

∣q j (x j )
∣

∣ d x j . ���

Let us introduce the graphs Gk , k = 0, p with the single vertex v and the sets of edges

{E j } j=0,p\{k}. Denote ∆
k (·) the characteristic function for L on Gk and Mk (·) the corresponding

Weyl function. Lemma 2.2 yields the representation:

Mk (λ) =
∆

k (λ)

∆k (λ)
,

where

∆k (λ) :=
∏

j=0,p\{k}

d j (λ).

Also we introduce the functions:

d k (λ) = e ′
k (0,ρ), k = 1, p , d 0(λ) = 2−C0(π,λ)−S ′

0(π,λ).
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Note that the following fractions:

mk (λ) :=
d k (λ)

dk (λ)

can be treated as "local Weyl functions" on Ek and, in particular, all of them are the Nevan-

linna functions.

Direct calculations yield the following results.

Lemma 2.4. The following representation holds:

∆(λ)= dk (λ)∆k (λ)+d k (λ)∆k (λ),

where k ∈ 0, p is arbitrary.

Remark 2.1. It is often convenient to use both spectral parameters λ and ρ in the same for-

mula like it has been done in Lemma 2.3. Here and everywhere below we assume λ= ρ2 and

if ρ ∈ R \ {0} we agree that λ= ρ2 + sgnρ · i 0 (i.e. on the boundary of the cut in C \ [0,+∞) one

should take here and below the corresponding limit).

Lemma 2.5. For a.e. λ ∈ (0,∞) one has ±ImMk (λ± i 0) > 0. If k = 0 then the estimate holds for

all λ∈ (0,∞).

Proof. The assertion follows directly from the representation:

M (λ) =
p
∑

j=0

m j (λ)

and the analogous representations for Mk (λ). In addition we recall that [19]

±Imm j (λ± i 0) > 0, λ ∈ (0,∞), j = 1, p . ���

Lemma 2.6. The following estimates hold:

|∆(λ)| ≥ |∆k (λ)| · |dk (λ)| · |Im mk (λ)| , k = 1, p ,

|∆(λ)| ≥
∣

∣

∣∆
k (λ)

∣

∣

∣ ·

∣

∣

∣d k (λ)
∣

∣

∣ ·

∣

∣

∣

∣

Im
1

mk (λ)

∣

∣

∣

∣

, k = 1, p ;

|∆(λ)| ≥ |∆0(λ)| · |d0(λ)| · |Im M0(λ)| ,

|∆(λ)| ≥
∣

∣∆
0(λ)

∣

∣ ·
∣

∣d 0(λ)
∣

∣ ·

∣

∣

∣

∣

Im
1

M0(λ)

∣

∣

∣

∣

,

where λ= ρ2, ρ ∈Ω+ \ {0}.

Proof. Let λ be such that ∆0(λ)d0(λ) 6= 0. Then Lemma 2.4 in view of Lemma 2.2 yields:

∆(λ)

∆0(λ)d0(λ)
= M0(λ)+m0(λ),
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Since both M0(·) and m0(·) are Nevanlinna functions the values Im M0(λ) and Im m0(λ) have

the same sign. So we have:

|M0(λ)+m0(λ)| ≥ |Im M0(λ)+ Im m0(λ)| ≥ |Im M0(λ)| .

Another estimates can be obtained analogously. ���

Lemma 2.7. If λ ∈ (0,+∞) is such that ∆(λ) = 0 then λ ∈Λ. Conversely if λ∈Λ
+ then ∆(λ) = 0.

Remark 2.2. Generally, for λ ∈ (0,+∞) we have two different values ∆(λ±i 0) (see also Remark

2.1). Nevertheless, from the relation ∆(λ) =∆(λ) it follows that∆(λ+i 0) = 0 implies ∆(λ−i 0) =

0 and vice versa. So in Lemma 2.7 and its proof below the notation ∆(λ) would not effect any

confusion.

Proof of Lemma 2.7. It follows from Lemma 2.6 (k = 0) that ∆(λ)= 0 for real positive λ is pos-

sible only if d0(λ) = d 0(λ) = 0. This means that λ is an eigenvalue for both Dirichlet-Dirichlet

and periodic problems on E0. In this situation S0(x0,λ) satisfies the periodic boundary con-

ditions and the following function:

y(x)=

{

0, x ∈ E j , j = 1, p ,

S0(x0,λ),

is an eigenfunction for L on entire G .

Conversely, if real non-negative λ is an eigenvalue for L on G then the corresponding

eigenfunction must be identically 0 on each of E j , j = 1, p . Consequently, on E0 it must be

proportional to S0(x0,λ) and the matching conditions (1.3) reduce to the periodic conditions

on S0(x0,λ). This means that λ is an eigenvalue for both Dirichlet-Dirichlet and periodic

problems on E0, d0(λ) = d 0(λ) = 0. ���

Lemma 2.8. For λ = ρ2, |ρ| > ρ∗, ρ ∈Ω
δ
+ = {ρ ∈Ω+ :

∣

∣ρ−n
∣

∣ ≥ δ,n ∈ Z} the following estimate

holds:

Cδ exp(τπ)≤ |∆(λ)| ≤C exp(τπ) ,

where τ= Im ρ.

Furthermore,

∆(λ) =−
p +2

2
exp(τπ)+O

(

1

ρ
exp(τπ)

)

, ρ→∞, arg ρ ∈ [ε,π−ε], ε ∈ (0,π/2).

Proof. Using Lemma 2.4 one can obtain the following representation:

∆(λ) =
p
∑

k=0

d k (λ)
∏

j=1,p\{k}

dk (λ).
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Using here the classical asymptotics:

dk (λ) = 1+O

(

1

ρ

)

, d k (λ) = iρ

(

1+O

(

1

ρ

))

, k = 1, p

and

d0(λ) =
sinρπ

ρ
+O

(

1

ρ2
exp(τπ)

)

, d 0(λ) = 2−2cos(ρπ)+O

(

1

ρ
exp(τπ)

)

we arrive at:

∆(λ)= 2−2cos(ρπ)+ i p sinρπ+O

(

1

ρ
exp(τπ)

)

. (2.3)

Now standard arguments [18], [19] complete the proof. ���

3. Particular scattering problem

Let us take an arbitrary ray Ek , k ∈ 1, p . We call the function ψk (x,ρ), x ∈ G , ρ ∈ Ω+ the

Weyl–type solution associated with Rk iff:

(1) it is continuous on G (with respect to x) and satisfying (1.3);

(2) it solves the differential equation ℓ jψk j = ρ2ψk j , j = 0, p ;

(3) ψk j (x j ,ρ)=O
(

exp(iρx j )
)

as x j →∞, j = 1, p \ {k};

(4) ψkk (xk ,ρ)= exp(−iρxk)(1+o(1)) as xk →∞.

In order to construct ψk (x,ρ) one can use the following representations:

ψk j (x j ,ρ)=γk j (ρ)e j (x j ,ρ), j = 1, p \ {k}; (3.1)

ψkk (xk ,ρ)= γkk (ρ)ek (xk ,ρ)+δk (ρ)Sk(xk ,λ). (3.2)

Clear that these representations guarantee that conditions (2) – (3) are satisfied. Then (4) is

equivalent to

δk (ρ) =−
2iρ

ek (0,ρ)
. (3.3)

Finally condition 1) leads to a linear algebraic system (with respect to {γk j }) whose determi-

nant coincides with characteristic function ∆(λ). Solving this system we obtain in particular:

γkk (ρ)=
2iρ

ek (0,ρ)
·
∆k (λ)

∆(λ)
, (3.4)

where ∆k (λ) is the function introduced in previous section.

Also we shall use the following representation.

γkk (ρ)=
2iρ

e2
k

(0,ρ)
·

1

Mk (λ)
. (3.5)
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The considerations above lead us to the following lemma.

Lemma 3.1. For xk ∈ [0,∞) ψkk (xk ,ρ) is a meromorphic function with respect to ρ in Ω+ with

possible poles on the imaginary axis.

We denote by Z−
k

the set of poles of ψkk (xk ,ρ). It is clear that .

Lemma 3.2. If ρ0 ∈ Z−
k

then λ0 = ρ2
0 ∈Λ

−. Z−
k

is a finite set.

Proof. It follows from (3.4), (3.3) that for given ρ ∈Ω+ to be a pole for ψkk (xk ,ρ) it is sufficient

that λ0 = ρ2
0 was a zero of the function dk (λ)∆(λ). Suppose that dk (λ0) = 0 but ∆(λ0) 6= 0. It is

clear that ψkk (xk ,ρ) has at ρ = ρ0 at most a simple pole. Calculating the residue one gets:

resρ=ρ0
ψkk (xk ,ρ)=

2iρ0

ėk (0,ρ0)
·
∆k (λ0)

∆(λ0)
·ek (xk ,ρ0)−

2iρ0

ėk (0,ρ0)
·Sk (xk ,λ0),

where dot denotes a derivative with respect to ρ. Now we take into account that in view of

Lemma 2.4∆(λ0) = e ′
k

(0,ρ0)∆k (λ0), while 0 = dk (λ0)= ek (0,ρ0) yields ek (xk ,ρ0)= e ′
k

(0,ρ0)Sk (xk ,λ0)

and we obtain finally resρ=ρ0
ψkk (xk ,ρ) = 0, i.e. ρ0 is not a pole actually. Thus, we have proved

that all the poles of ψkk(xk ,ρ) correspond to the eigenvalues of L. Now Lemma 2.3 guarantees

that Z−
k

is a finite set. ���

Lemma 3.3. All poles of ψkk (xk ,ρ) are simple. For the residue resρ=ρ0
ψkk (xk ,ρ), ρ0 ∈ Z−

k
the

following asymptotic behavior is valid

resρ=ρ0
ψkk (xk ,ρ)= iαk (ρ0)exp(iρ0xk )(1+o(1)), xk →∞.

The values αk (ρ0) are all real and positive.

Proof. Let ρ0 ∈ Z−
k

be such that ek (0,ρ0) 6= 0. Then λ0 = ρ2
0 is a zero of ∆(λ) and a simple zero

of Mk (λ) from (3.5). Since Mk (λ) is a Nevanlinna function one has:

1

Mk (λ)
=

a(λ0)

λ−λ0
+O(1), λ→λ0, (3.6)

where a(λ0) is real and positive. In view of (3.6) this yields:

γkk(ρ) =
2iρ0

e2
k

(0,ρ0)
·

a(λ0)

ρ2 −ρ2
0

+O(1), ρ→ ρ0,

and consequently γkk(ρ) has a simple pole in ρ0 and

resρ=ρ0
γkk(ρ) = iαk (ρ0), αk (ρ0) =

a(λ0)

e2
k

(0,ρ0)
. (3.7)

Moreover, since e2
k

(0,ρ0) ∈ (0,+∞), we have αk (ρ0) ∈ (0,+∞). Now from (3.5), (3.7) we infer

that

resρ=ρ0
ψkk (xk ,ρ)= iαk (ρ0)ek (xk ,ρ0),
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which yields the required asymptotic expression.

Now let ek (0,ρ0) = 0. In this case we repeat the arguments above replacing the solu-

tion Sk(xk ,λ) with the solution S0
k

(xk ,λ) under the sine-type conditions at xk = x0
k

, where

ek

(

x0
k

,ρ
)

6= 0. ���

We call the values αk (ρ0), ρ0 ∈ Z−
k

the weight numbers.

Remark 3.2. Actually we have proved the following representation:

resρ=ρ0
ψkk (xk ,ρ)= iαk (ρ0)ek (xk ,ρ0),ρ0 ∈ Z−

k .

Now we consider the behavior of ψkk (xk ,ρ), as Im ρ→+0. Denote Z+
0 the set of all ρ ∈ R

such that λ= ρ2 ∈Λ.

Lemma 3.4. If ρ0 ∈ R\
(

{0}∪Z+
0

)

then there exists the limit ψkk (xk ,ρ0) := lim
ρ→ρ0,ρ∈Ω+

ψkk (xk ,ρ0).

If ρ0 ∈ Z+
0 then ψkk (xk ,ρ) and ψ′

kk
(xk ,ρ) are bounded as ρ→ ρ0,ρ ∈Ω+.

Proof. The assertion of the lemma follows directly from (3.2)–(3.4) and Lemmas 2.6, 2.4. ���

Proceeding as in the classical scattering theory we arrive at

Lemma 3.5. For ψkk (xk ,ρ), ρ ∈ R \
(

{0}∪Z+
0

)

the following representation holds:

ψkk (xk ,ρ)= ek (xk ,−ρ)+ sk (ρ)ek (xk ,ρ).

Corollary. For ψkk (xk ,ρ), ρ ∈ R \
(

{0}∪Z+
0

)

the following asymptotics is valid:

ψkk (xk ,ρ)= exp(−iρxk )+ sk (ρ)exp(iρxk)+o(1), xk →∞.

We call the function sk(ρ), ρ ∈ R \
(

{0}∪Z+
0

)

the reflection coefficient associated with Ek ;

the corollary shows how it can be measured.

Lemma 3.6. For a.e. ρ ∈ R \
(

{0}∪Z+
0

)

|sk(ρ)| < 1. Furthermore, sk (−ρ)= sk (ρ).

Proof. Using (3.2) – (3.4) one can obtain after some algebra:

sk (ρ)=−
ek (0,−ρ)

ek (0,ρ)
·

Mk (λ)+mk (λ)

Mk (λ)+mk (λ)
. (3.8)

This representation yields the symmetry sk(−ρ) = sk (ρ). Further, it follows from Lemma 2.5

that:
∣

∣

∣

∣

∣

Mk (λ)+mk (λ)

Mk (λ)+mk (λ)

∣

∣

∣

∣

∣

< 1
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while the classical theory yields:
∣

∣

∣

∣

ek (0,−ρ)

ek (0,ρ)

∣

∣

∣

∣

= 1.

Substituting these estimates into (3.8) we obtain the required assertion. ���

Lemma 3.7. The following estimate holds:

∣

∣γkk(ρ)
∣

∣≤ Ak , ρ→∞,ρ ∈Ω+ \ {0},

where γkk (ρ) is given by (3.4) and Ak is a constant depending on the geometry of the graph G

and not on q(·).

If in addition q(·) is compactly supported, then the estimate can be made more precise:

∣

∣gk (ρ)
∣

∣≤ Ak , gk (ρ) := γkk(ρ)
∏

ρ0∈Z−

k

ρ−ρ0

ρ−ρ0

, ρ ∈Ω+.

Proof. The first part of the assertion can be obtained in a straightforward way from the repre-

sentation (3.5), Lemma 2.8.

Now let q(·) be compactly supported. Since for ρ,ρ0 ∈Ω+ we have |ρ−ρ0| ≤ |ρ−ρ0| the

estimate obtained for γkk(ρ) remains the same for gk (ρ). So we have for all sufficiently large

ρ ∈Ω+: |gk (ρ)| ≤ Ak .

Let us consider ρ ∈ R \ {0}. One has

sk (ρ)= γkk(ρ)−
ek (0,−ρ)

ek (0,ρ)

and we can estimate:
∣

∣gk (ρ)
∣

∣=
∣

∣γkk(ρ)
∣

∣≤ 2, ρ ∈ R \ {0}. (3.9)

Since q(·) is compactly supported the function gk (ρ) is holomorphic in a neighborhood of 0

and the estimate (3.9) remains true for all ρ ∈ R. Now for completing the proof it is sufficient

to apply the maximum principal to gk (ρ) in Ω+∩ {ρ : |ρ| < R} with sufficiently large R > 0. ���

Remark 3.3. Since for ρ ∈Ω+, ρ0 ∈Ω+ one has

∣

∣

∣

∣

ρ−ρ0

ρ−ρ0

∣

∣

∣

∣

≤ 1,

the estimate of Lemma 3.7 can be generalized in the following way:

| f (ρ)| ≤ Ak , f (ρ) := γkk (ρ)
∏

ρ0∈Z

(

ρ−ρ0

ρ−ρ0

)ν(ρ0)

,

where Z is an arbitrary finite subset of Ω+ such that Z−
k
⊆ Z and ν(ρ0), ρ0 ∈ Z are arbitrary

nonnegative integer numbers.
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Lemma 3.8. ψkk (xk ,ρ), ψ′
kk

(xk ,ρ), are bounded as ρ→ 0, ρ ∈Ω+.

Proof. If q(·) is compactly supported then the required estimate follows directly from Lemma

3.7. In the general case we consider the family L(T ) = L
(

q (T )(x),G
)

with a parameter T > 0,

where:

q (T )
0 (x0) = q0(x0);

q (T )
j

(x j ) = q j (x j ), x j ≤ T ;

q (T )
j

(x j ) = 0, x j > T.

Classical Sturm–Liouville theory on the semi-axis shows that ∆(T )(λ) → ∆(λ) as T →∞ uni-

formly on {λ ∈ C \ [0,+∞) : ε< |λ| < R} with any 0 < ε< R <∞. Moreover, if we write Λ
− in the

form Λ
− = {λν = ρ2

ν}ν=1,n−
then it is guaranteed that γ(T )

kk
(ρ) → γkk(ρ) as T →+∞ uniformly in

{ρ ∈Ω+ : |ρ| ≥ ε, |ρ−ρν| ≥ ε,ν= 1,n−}.

Let κν, ν ∈ 1,n− be the multiplicity of λν as a zero of ∆(λ). Then for any ε> 0 and T > Tε

all the zeros of ∆(T )(λ) are: λ(T )
ν j

=

(

ρ(T )
ν j

)2
, j = 1,κν, ν= 1,n−, λ(T )

0 j
=

(

ρ(T )
0 j

)2
, j = 1,κ(T )

0 , where
∣

∣

∣ρ(T )
ν j

−ρν

∣

∣

∣ < ε,
∣

∣

∣ρ(T )
0 j

∣

∣

∣ < ε. Although κ(T )
0 depends on T it follows from Lemma 2.3 that κ(T )

0 ≤

N∗, where N∗ does not depend on T . We set ρ(T )
0 j

= 0, j = κ(T )
0 +1, N∗.

Consider the family of functions

f (T )(ρ)= γ(T )
kk

(ρ) ·
n−
∏

ν=1

κν
∏

j=1

ρ−ρ(T )
ν j

ρ−ρ(T )
ν j

·

N∗
∏

j=1

ρ−ρ(T )
0 j

ρ−ρ(T )
0 j

.

It is clear that ρ(T )
ν j

→ ρν, ρ(T )
0 j

→ 0 as T →∞. So for any fixed ρ ∈Ω+ f (T )(ρ) → f (ρ), where:

f (ρ)= γkk(ρ)
n−
∏

ν=1

(

ρ−ρν

ρ−ρν

)κν

.

On the other hand Lemma 3.7 and Remark 3.4 yield the estimate
∣

∣ f (T )(ρ)
∣

∣≤ Ak , conse-

quently
∣

∣ f (ρ)
∣

∣≤ Ak . In particular, this means that γkk(ρ) =O(1) asρ→ 0,ρ ∈Ω+. On the other

hand the classical theory guarantees the δk (ρ) =O(1) as ρ→ 0,ρ ∈Ω+ and this completes the

proof. ���

Now we agree that together with L = L(q,G) we consider an operator L̃ = L(q̃ ,G) on the

same graph G but having a different potential q̃(x). If a certain symbol ξ denotes an object

related to L, then the corresponding symbol ξ̃ with tilde denotes the analogous object related

to L̃ and ξ̂ := ξ− ξ̃.

Lemma 3.9. For ρ ∈Ω
δ
+ one gets:

ψkk (xk ,ρ) = O
(

exp(−iρxk)
)

, ψ′
kk (xk ,ρ)=O

(

ρ exp(−iρxk)
)

,
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ψ̂kk (xk ,ρ) = O

(

1

ρ
exp(−iρxk )

)

.

Proof. Using the representation (2.3) one can easily verify that

∆̂(λ) =O

(

1

ρ
exp(τπ)

)

. (3.10)

In a similar way one can obtain:

∆̂k (λ) =O

(

1

ρ2
exp(τπ)

)

. (3.11)

Using representation (3.2), estimates (3.10), (3.11), Lemma 2.8 and taking into account the

classical estimates:

ek (xk ,ρ) = O(eiρxk ), êk (xk ,ρ) =O

(

1

ρ
eiρxk

)

,

Sk (xk ,λ) = O

(

1

ρ
e−iρxk

)

, Ŝk(xk ,λ) =O

(

1

ρ2
e−iρxk

)

,

we obtain the required assertion. ���

Definition 3.1. The data Jk := {sk (ρ), ρ ∈ R \
(

{0}∪Z+
0

)

, Z−
k

, αk (ρ), ρ ∈ Z−
k

} are called the

scattering data, associated with Ek .

Next theorem shows that the scattering data, associated with Ek uniquely determine the

potential qk (xk ) on the edge.

Theorem 3.1. Let L, L̃ be Sturm–Liouville operators on G with real-valued potentials q(·) and

q̃(·) both satisfying (1.2). Then Jk = J̃k yields qk (xk ) = q̃k (xk ).

Proof. Consider for λ ∈ C \ [0,+∞) the following functions:

ϕ1(xk ,λ) :=ψkk (xk ,ρ), ϕ2(xk ,λ) := ek (xk ,ρ), λ= ρ2,ρ ∈Ω+.

Let us define the matrices

Ψ(xk ,λ) :=

[

ϕ1(xk ,λ) ϕ2(xk ,λ)

ϕ′
1(xk ,λ) ϕ′

2(xk ,λ)

]

and Ψ̃(xk ,λ) and introduce the spectral mapping matrix:

P(xk ,λ) :=Ψ(xk ,λ)Ψ̃−1(xk ,λ).

It follows from Lemma 3.5 that for the limit-value matrices Ψ
±(xk ,λ) := Ψ(xk ,λ± i 0),

λ ∈ (0,+∞) \Λ the following relation holds:

Ψ
−(xk ,λ) =Ψ

+(xk ,λ)w (λ),
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where

w (λ)=

[

sk(ρ) 1

1−|sk (ρ)|2 −sk (ρ)

]

, λ= ρ2,ρ ∈ (0,+∞).

Suppose that sk = s̃k . Then w = w̃ and consequently P+(xk ,λ) = P−(xk ,λ), λ ∈ (0,+∞) \

(Λ∪ Λ̃). This means that P(xk ,λ) is holomorphic in λ ∈ C \
(

{0}∪Λ∪ Λ̃
)

. Take an arbitrary

λ0 ∈ (0,+∞)∩(Λ∪Λ̃). It follows from Lemma 3.4 that P(xk ,λ) is bounded in the neighborhood

of λ0, so λ0 is a removable singularity for P(xk ,λ).

Then, Jk = J̃k means in particular that Λ
− = Λ̃

−. Taking an arbitrary λ0 ∈ Λ
− we can

conclude that λ0 is either a pole or a removable singularity for P(xk ,λ). Let us consider the

functions P11(xk ,λ) and P12(xk ,λ). One has:

P11(xk ,λ) =
1

2iρ

(

ψkk (xk ,ρ)ẽ ′
k (xk ,ρ)− ψ̃′

kk (xk ,ρ)ek(xk ,ρ)
)

,

P12(xk ,λ) =
1

2iρ

(

ψ̃kk (xk ,ρ)ek (xk ,ρ)−ψkk (xk ,ρ)ẽk(xk ,ρ)
)

.

Substituting here the representations (see Remark 3.2)

ψkk (xk ,ρ) =
iαk (ρ0)

ρ−ρ0
ek (xk ,ρ0)+O(1), ρ→ ρ0,

ψ̃kk (xk ,ρ) =
i α̃k (ρ0)

ρ−ρ0
ẽk (xk ,ρ0)+O(1), ρ→ ρ0,

and taking into account that αk (ρ0) = α̃k (ρ0) we obtain P11(xk ,λ) =O(1), P12(xk ,λ) =O(1) in

a neighborhood of λ0. Thus λ0 is a removable singularity.

Then, using Lemma 3.9 and the classical asymptotics for the Jost solution ek (xk ,ρ) one

can obtain the estimates:

P11(xk ,λ)−1 =O

(

1

ρ

)

, P12(xk ,λ) =O

(

1

ρ

)

, λ→∞,ρ2
=λ,ρ ∈Ω

δ
+.

On the other hand Lemma 3.8 yields:

P11(xk ,λ)−1 =O

(

1

ρ

)

, P12(xk ,λ) =O

(

1

ρ

)

, λ→ 0,ρ2
=λ.

These estimates together mean that actually P11(xk ,λ)−1 = 0, P12(xk ,λ) = 0, i.e. ϕν(xk ,λ) =

ϕ̃ν(xk ,λ), ν= 1,2 and, consequently, qk (xk ) = q̃k(xk ) for a.e. xk ∈ [0,∞). ���

Thus we can formulate the following particular inverse scattering problem.

Problem I P(k). Given the scattering data Jk , construct qk (·).

Our next goal is to reduce the Problem I P(k) to a certain linear equation in some Hilbert

space.
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We start with the identities from Lemma 3.5 written for L and L̃. After subtraction we

obtain:

ψ̂kk (xk ,ρ)= ê−
k (xk ,ρ)+ sk (ρ)êk (xk ,ρ)+ ŝk (ρ)ẽk(xk ,ρ),

where (and below) we denote e−
k

(xk ,ρ) := ek (xk ,−ρ). Then we integrate this relation as fol-

lows:

1

2πi

∫N+1/2

−N−1/2

eiµxk

µ−ρ
ψ̂kk (xk ,µ) dµ=

1

2πi

∫N+1/2

−N−1/2

eiµxk

µ−ρ
ê−

k (xk ,µ) dµ

+
1

2πi

∫N+1/2

−N−1/2

eiµxk

µ−ρ
sk(µ)êk (xk ,µ) dµ+

1

2πi

∫N+1/2

−N−1/2

eiµxk

µ−ρ
ŝk (µ)ẽk (xk ,µ) dµ, (3.12)

where ρ ∈Ω− = {ρ : Imρ < 0} is arbitrary fixed, N is positive integer. Our next step is taking the

limit as N →∞. It follows from Lemma 3.9 that:

lim
N→∞

1

2πi

∫N+1/2

−N−1/2

eiµxk

µ−ρ
ψ̂kk (xk ,µ) dµ= lim

N→∞

1

2πi

∫

Γ
+
N

eiµxk

µ−ρ
ψ̂kk (xk ,µ) dµ

=
∑

µ∈Z−

k

iαk (µ)
eiµxk

µ−ρ
ek (xk ,µ), (3.13)

where Γ
+
N = [−N −1/2, N +1/2]∪ {(N +1/2)exp(iβ), β ∈ (0,π)} with the counterclockwise ori-

entation. Analogously one gets:

lim
N→∞

1

2πi

∫N+1/2

−N−1/2

eiµxk

µ−ρ
ê−

k (xk ,µ) dµ

= lim
N→∞

1

2πi

∫

Γ
−
N

eiµxk

µ−ρ
ê−

k (xk ,µ) dµ=−ê−
k (xk ,ρ)eiρxk , (3.14)

where Γ
+
N = [−N−1/2, N+1/2]∪{(N+1/2)exp(iβ), β ∈ (−π,0)} with the clockwise orientation.

Further, the estimates |sk (ρ)| < 1, êk (xk ,ρ)=O(ρ−1) show that

lim
N→∞

1

2πi

∫N+1/2

−N−1/2

eiµxk

µ−ρ
sk(µ)êk (xk ,µ) dµ

=
1

2πi

∫

∞

−∞

eiµxk

µ−ρ
sk (µ)êk (xk ,µ) dµ (3.15)

and integral in right-hand side converges absolutely. It follows from (3.12)–(3.15) that there

exists a limit:

lim
N→∞

1

2πi

∫N+1/2

−N−1/2

eiµxk

µ−ρ
ŝk(µ)ẽk (xk ,µ) dµ=: Gk (xk ,ρ). (3.16)

In view of (3.13)–(3.16) the relation (3.12) can be rewritten in the following form:

ê−
k (xk ,ρ) =

∑

µ∈Z−

k

iαk (µ)
ei (µ−ρ)xk

ρ−µ
êk (xk ,µ)+

1

2πi

∫

∞

−∞

ei (µ−ρ)xk

µ−ρ
sk(µ)êk (xk ,µ) dµ
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+Gk (xk ,ρ)e−iρxk +
∑

µ∈Z−

k

iαk (µ)
ei (µ−ρ)xk

ρ−µ
ẽk (xk ,µ), ρ ∈Ω−. (3.17)

While solving the Problem I P(k) we assume the operator L̃ to be known ("model") and conse-

quently we can assume all the values in (3.17) except êk (xk ,ρ) to be given. Thus, our goal is to

obtain from (3.17) some closed system of equations with respect to the values of êk(xk ,ρ). For

this purpose we set in (3.17) ρ ∈ −Z−
k

and then (independently) take the limit as Imρ →−0.

The resulted pair of relations we write as a certain equation in some Hilbert space.

Let us define:

gk (xk ,ρ) := Gk (xk ,ρ)e−iρxk +
∑

µ∈Z−

k

iαk (µ)
ei (µ−ρ)xk

ρ−µ
ẽk (xk ,µ), ρ ∈−Z−

k , (3.18)

gk (xk ,ρ) := lim
ε→+0

Gk (xk ,ρ− iε)e−i (ρ−iε)xk +
∑

µ∈Z−

k

iαk (µ)
ei (µ−ρ)xk

ρ−µ
ẽk (xk ,µ), ρ ∈ R. (3.19)

The limit in (3.19) exists because it exists for all the other terms in (3.17).

Denote by C the Cauchy operator:

C f (ρ) :=
1

2πi

∫

∞

−∞

f (µ) dµ

µ−ρ
, ρ ∈ C \ R

and define in L2(R) the operators:

C± f (ρ) := lim
ε→+0

(C f )(ρ± iε). (3.20)

Also we shall use the following operators acting (and continuous) in L2(R):

Uk f (ρ) := sk (ρ) f (ρ), Vk (xk ) f (ρ) := eiρxk f (ρ), T f (ρ) := f (−ρ). (3.21)

Let H be a space of functions f (ρ),ρ ∈ R∪ (−Z−
k

) such that f |R ∈ L2(R). We consider H as a

Hilbert space with the scalar product of the form:

( f1, f2) :=
1

2π

∫∞

−∞

f1(ρ) f2(ρ) dρ+
∑

ρ∈−Z−

k

αk (−ρ) f1(ρ) f2(ρ). (3.22)

Let us define in H the following operators depending on parameter xk :

Hk (xk ) f (ρ) := V −1
k (xk )C−UkVk (xk )T f (ρ)+

∑

µ∈Z−

k

iαk (µ)
ei (µ−ρ)xk

ρ−µ
f (−µ), ρ ∈ R (3.23)

Hk (xk ) f (ρ) :=
1

2πi

∫

∞

∞

sk (µ)
ei (µ−ρ)xk

µ−ρ
f (−µ) dµ+

∑

µ∈Z−

k

iαk (µ)
ei (µ−ρ)xk

ρ−µ
f (−µ), ρ ∈ Z−

k . (3.24)

Thus, from (3.17) we arrive at the following relation:

ê−
k (xk )= Hk (xk )ê−

k (xk )+ gk (xk ), (3.25)
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where xk is considered as a parameter, ê−
k

(xk ) denotes the function ê−
k

(xk , ·) which is con-

sidered as an element of H . Since Hk (xk ) is continuous in H the function gk (xk ,ρ),ρ ∈

R∪ (−Z−
k

) belongs to H , we denote by gk (xk ) the corresponding element of this space.

Theorem 3.2. For each fixed xk ∈ [0,∞) ê−
k

(xk ) is a unique solution of the equation (3.25) in

the space H .

Proof. Theorem is already proved in part by the considerations above. Now we are to show

that ê−
k

(xk ) is a unique solution of (3.25). For this purpose we consider the corresponding

homogenous equation:

f = Hk (xk ) f (3.26)

for arbitrary fixed xk . First, using the symmetries sk (−ρ) = sk (ρ),ρ ∈ R, αk (ρ) =αk (ρ),ρ ∈ Z−
k

one can easily obtain the following fact: if f is a solution of (3.26) then ϕ, defined as follows:

ϕ(ρ) := i ( f (ρ)− f (−ρ)),ρ ∈ R, ϕ(ρ) := i ( f (ρ)− f (ρ)),ρ ∈−Z−
k

satisfies (3.26) as well.

Now let ϕ ∈ H be a solution of (3.26). Without loss of generality we can assume the

following properties:

ϕ(−ρ) =ϕ(ρ), ρ ∈ R, ϕ(ρ) =ϕ(ρ), ρ ∈−Z−
k . (3.27)

Then one gets:

(ϕ,ϕ) = (Hk (xk )ϕ,ϕ) = A11 + A22 + A12 + A21,

where:

A11 =
1

2π

(

(Hk (xk )ϕ) |R ,ϕ |R
)

L2(R) ,

A22 =
∑

ρ∈−Z−

k

αk (−ρ)ϕ(ρ)
∑

µ∈Z−

k

iαk (µ)ϕ(−µ)
ei (µ−ρ)xk

ρ−µ
,

A12 =
1

2π

∫

R

∑

µ∈Z−

k

iαk (µ)
ei (µ−ρ)xk

ρ−µ
ϕ(−µ)ϕ(ρ) dρ,

A21 =
1

2πi

∫

R

∑

ρ∈−Z−

k

αk (−ρ)sk(µ)
ei (µ−ρ)xk

µ−ρ
ϕ(−µ)ϕ(ρ) dµ.

First, using (3.27) and the formula:

ei (µ−ρ)xk

i (µ−ρ)
=−

∫∞

xk

ei (µ−ρ)t d t , Imµ> Imρ, (3.28)
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we transform A22 into the form:

A22 =−

∫

∞

xk

Φ
2(t ) d t , Φ(t ) =

∑

ρ∈−Z−

k

αk (−ρ)ϕ(ρ)e−iρt . (3.29)

Proceeding in analogous way we obtain after some algebra:

A12 + A21 =−

∫

∞

xk

Φ(t )Ψ(t ) d t , (3.30)

where Ψ(t ) is the Fourier transform:

Ψ(t ) =
1

2π
l .i .m.N→∞

∫N

−N
f (ρ)eiρt dρ, f (ρ) :=ϕ(ρ)+ sk(ρ)ϕ(−ρ).

In order to calculate Ψ(t ) we have to return to (3.26) for ρ ∈ R. Using the relation C+−C− = E

(identical operator) we obtain:

ϕ(ρ)+ sk (ρ)ϕ(−ρ)=
∑

µ∈Z−

k

iαk (µ)
ei (µ−ρ)xk

ρ−µ
ϕ(−µ)+V −1

k (xk )C+UkVk (xk )Tϕ(ρ).

Since the Fourier transform of the last term in right-hand side is equal to 0 for all t > xk we

deduce from this relation:

Ψ(t )=−
∑

µ∈Z−

k

αk (µ)ϕ(−µ)eiµt
=−Φ(t ).

Substituting this into (3.29), (3.30) we obtain A12 + A21 + A22 = 0.

It follows from (3.27), the symmetry sk (−ρ) = sk(ρ) and the estimate
∣

∣sk(ρ)
∣

∣ < 1 that if

ϕ 6= 0 then

|A11| =
1

2π

∣

∣

∣

(

(Hk (xk )ϕ) |R ,ϕ |R
)

L2(R)

∣

∣

∣<
1

2π

(

ϕ |R ,ϕ |R
)

L2(R) ≤ (ϕ,ϕ).

On the other hand as we have already seen above ϕ= Hk (xk )ϕ implies (ϕ,ϕ) = (Hk (xk )ϕ,ϕ) =

A11. Thus, we conclude that ϕ= 0 and this completes the proof. ���

Theorem 3.2 provides the following procedure for solving the Problem I P(k).

Algorithm 3.1. Given the scattering data Jk .

1. Choose an arbitrary "model" operator with a real-valued potential q̃ satisfying (1.2). For

instance, one can assume q̃ j = 0, j = 0, p .

2. For each fixed xk ∈ [0,∞) construct the operator Hk (xk ) via (3.20), (3.21), (3.23), (3.24) and

calculate gk (xk ) by (3.18), (3.19).

3. For each fixed xk ∈ [0,∞) find ê−
k

(xk ) by solving the equation (3.25).
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4. Take an arbitrary ρ ∈ R \ {0}. For each fixed xk ∈ [0,∞) calculate e−
k

(xk ,ρ) = ẽ−
k

(xk ,ρ)+

ê−
k

(xk ,ρ).

5. Recover qk (xk ) = (e−
k

(xk ,ρ))′′/e−
k

(xk ,ρ)+ρ2.

4. Inverse scattering problem

It turns out that in order to recover the operator on the entire graph G one should have all

the particular scattering data Jk , k = 1, p , described above and some additional information.

Let Λ0 and Λ0 be the spectra of periodic and Dirichlet–Dirichlet boundary-value prob-

lems on E0 respectively. We define the function ω(λ),λ ∈ Λ
− setting ω(λ) = 1 if λ ∈ Λ

0 ∩Λ0

and ω(λ) = 0 otherwise. Suppose now that all the eigenvalues of periodic problem are: λ0
0 <

λ0
3 ≤ λ0

4 < λ0
7 ≤ λ0

8 < . . . (here we use the classical notations which take into account the mul-

tiplicities of eigenvalues). Let λ0
1 ≤ λ0

2 < λ0
5 ≤ λ0

6 < . . . be the eigenvalues for the antiperiodic

problem and σ0
n ,n = 1,∞ be the sign sequence corresponding to the spectrum Λ0 =

{

µn

}∞

n=1

of Dirichlet–Dirichlet problem, where we set σ0
n = 0 if λ0

2n−1 =λ0
2n .

Definition 4.1. The data

J = {Jk ,k = 1, p ; Λ; ω(λ),λ ∈Λ
−; σ0

n ,n = 1,∞}

are called the global scattering data.

Now we can formulate the inverse scattering problem on the whole graph G .

Problem I P . Given the global scattering data J , construct qk (·), k = 0, p .

The procedure described in the previous section allows us to reconstruct the functions

qk (·), k = 1, p from the given scattering data. The final step is reconstruction of q0(x0), x0 ∈

[0,π]. Now we show how to reduce this problem to the classical inverse periodic problem [20]

(when all other qk (·), k = 1, p have been already recovered as we mentioned above).

First we note that we can consider the Jost solutions e j (x j ,ρ), j = 1, p as known. In par-

ticular we can calculate the local Weyl functions:

m j (λ) =
e ′

j
(0,ρ)

e j (0,ρ)
, ρ ∈Ω+, j = 1, p . (4.1)

Also we can calculate the values ψkk (0,ρ), ψ′
kk

(0,ρ), ρ ∈Ω+, where k ∈ 1, p is arbitrary fixed.

For this purpose one can use the relation from Lemma 3.5 for realρ and then make an analytic

continuation. Now we can write the matching condition (1.3) for ψk (x,ρ) in the following

form:

m0(λ) =−
ψ′

kk
(0,ρ)

ψkk (0,ρ)
−

∑

j=1,p\{k}

m j (λ), λ= ρ2,ρ ∈Ω+. (4.2)
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This relation provides a way to find m0(·) which is the fraction of the form specified in section

2. Let Z0 be a set of poles of m0(·). It is clear that (see also proof of Lemma 2.7) Λ0 = Z0∪Λ
+∪

{λ ∈ Λ
− : ω(λ) = 1}. So we can recover Λ0 and corresponding characteristic function d0(·) of

the Dirichlet–Dirichlet problem using the formula [20]:

d0(λ) =π
∞
∏

n=1

µn −λ

n2
. (4.3)

Now we can return to m0(·) and use d0(·) to recover d 0(·). Given Λ0, Λ0 and a sign sequence

{si g ma0
n} we are able to pose the classical periodic inverse problem [20]. Thus we arrive at

the following procedure.

Algorithm 4.1. Given the global scattering data J .

1. For each k = 1, p construct qk (·), by solving the Problem I P(k) according to Algorithm 3.1.

2. Calculate ek (xk ,ρ), xk ∈ [0,∞), ρ ∈Ω+, k = 1, p .

3. Take and fix an arbitrary k ∈ 1, p .

4. Construct ψkk (0,ρ), ψ′
kk

(0,ρ) via Lemma 3.5 and then using a procedure of analytic con-

tinuation.

5. Calculate m0(·) via (4.1), (4.2).

6. Find the set Z0 of poles of m0(·) and construct the set Λ0 = Z0 ∪Λ
+∪ {λ ∈ Λ

− : ω(λ) = 1}

=:
{

µn

}∞

n=1.

7. Calculate d0(·) using (4.3), d 0(·) as d 0(λ) = m0(λ)d0(λ).

8. Given d0(·), d 0(·) and the sign sequence {si g ma0
n}∞n=1 recover q0(·), by solving the classical

periodic inverse problem [20].

Theorem 4.1. Operator L is uniquely determined by it’s global scattering data and can be re-

covered from this data by using Algorithm 4.1.
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