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APPROXIMATION NUMBERS OF MATRIX

TRANSFORMATIONS AND INCLUSION MAPS

M. GUPTA AND L. R. ACHARYA

Abstract. In this paper we establish relationships of the approximation numbers of ma-

trix transformations acting between the vector-valued sequence spaces spaces of the type

λ(X ) defined corresponding to a scalar-valued sequence space λ and a Banach space

(X ,‖.‖) as

λ(X ) = {x = {xi } : xi ∈ X ,∀ i ∈N, {‖xi ‖X } ∈λ};

with those of their component operators. This study leads to a characterization of a di-

agonal operator to be approximable. Further, we compute the approximation numbers

of inclusion maps acting between ℓp (X ) spaces for 1 ≤ p ≤∞.

1. Introduction

Eversince the inception of approximation numbers of operators on Banach spaces in

1963 by A. Pietsch [12], mathematicians have been interested in finding the estimates of these

numbers for various embedding maps between function spaces, sequence spaces etc., for

instance one may refer to [7, 8, 10, 17]. However, motivated by the work of Hutton [9], we

estimate these numbers for inclusion mappings between vector valued sequence spaces.

Throughout this paper we denote by X , Y and Z the Banach spaces defined over the

complex field C and by UX , the closed unit ball in the space X . L (X ,Y ) represents the class

of all bounded linear operators from X to Y . N stands for the set of all natural numbers.

For T ∈L (X ,Y ) and n ∈N, the nt h approximation number of T is given by

an(T ) = inf{‖T − A‖ : A ∈L (X ,Y ), rank(A) < n};

and T is said to be approximable if an(T ) → 0 as n →∞. The approximation numbers satisfy

the following algebraic properties for well defined addition and composition of operators R , S

and T .

1. ‖S‖= a1(S)≥ a2(S)≥ ·· · ≥ an(S)≥ ·· · ≥ 0;
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2. an(S +T ) ≤ ‖S‖ + an(T );

3. an(RST ) ≤ ‖R‖ an(S) ‖T ‖;

4. If rank(S)<n, then an(S)= 0;

5. an(IX ) = 1, whenever dim(X ) ≥ n, where IX is the identity mapping on the Banach

space X .

A function s associating each linear operator T with a sequence {sn(T )} of non-negative

reals satisfying the properties analogous to [1]-[5] has been termed in the literature as an s-

function. The map defined by the approximation numbers is indeed the largest s-function

[14, 15]. For various results on s-numbers as well as approximation numbers, we refer to

[2, 9, 13] and [16]. As evident from the definition, approximation numbers are the measure

of nearness of an operator T ∈ L (X ,Y ) by finite rank operators, it is therefore natural to ask

whether the compactness of T has any connection with the rate of decrease of these numbers.

Indeed, every approximable operator is compact but converse may not be true as shown by

Enflo in [3].

Coming to the study of domain and range spaces of the matrix transformations to be

studied in this paper, we refer to [4, 5] and [11], for detailed theory of these spaces, namely

the vector valued sequence spaces. We denote by Ω(X ), the class of all sequences from X and

by Φ(X ), the subspace of Ω(X ) consisting of all finitely non-zero sequences. A vector valued

sequence space Λ(X ) is a subspace of Ω(X ) containing Φ(X ). The k t h section of x = {xi } is the

sequence x(k)
= {x1, x2, . . . , xk ,0,0, . . .}. For x ∈ X , δx

i
denotes the sequence {0,0, . . . ,0, x,0, . . .},

where x is placed at the i t h co-ordinate. In case X = C, we write ω for Ω(X ), φ for Φ(X ), λ

for Λ(X ) and we denote by e i the element δ1
i

of λ. A linear map Z : Λ(X ) → Λ(Y ) is said

to be a matrix transformation, if there exists a matrix [Zi j ] of linear maps, Zi j : X → Y for

each i , j ∈N, such that for every x = {xn} in Λ(X ), the series
∑∞

j=1 Zi j (x j ) converges to some

element yi ∈ Y , ∀ i ∈N and {yi } ∈Λ(Y ) i.e.

yi =

∞
∑

j=1

Zi j (x j ) =Pi , Λ(Y )(Z (x)),

where Pi , Λ(Y ) :Λ(Y ) → Y is defined as

Pi , Λ(Y )(y)= yi , ∀ i ∈N and ∀ y = {yi } ∈Λ(Y ).

If in the above definition Zi j ≡ 0, ∀ i 6= j , then Z is called a diagonal operator. A subset M

of Λ(X ) is said to be normal if for any x = {xi } ∈ M and αi ∈ K, with |αi | ≤ 1, i ≥ 1, the se-

quence {αi xi } ∈ M . A vector-valued sequence space Λ(X ) equipped with a Hausdorff locally

convex topology F is called (i ) a GK-space if the maps Pn, Λ(X ) : Λ(X ) → X , Pn, Λ(X )(x) = xn ,
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for each n ≥ 1, are continuous; (i i ) a GAK-space if Λ(X ) is a GK-space and for each x = {xi }

from Λ(X ), x(n)
→ x as n →∞, in F . In the case when X =K, the space in definitions (i ) and

(i i ) is referred to as a K-space and an AK-space. A norm ‖.‖λ of a scalar valued sequence space

λ is said to be monotone if |αi | ≤ |βi |, ∀ i ∈N implies ‖{αi }‖λ ≤ ‖{βi }‖λ.

The particular types of vector-valued sequence spaces which we consider in this paper

are

λ(X ) = {x = {xi } : xi ∈ X , ∀ i ∈N and {‖xi‖X } ∈λ},

where (λ, ‖.‖λ) is a scalar valued Banach sequence space. λ(X ) is a Banach space with the

norm given by

‖x‖λ(X ) = ‖{‖xi‖X }‖λ,

for any x = {xi } ∈λ(X ), [4][6].

2. Approximation numbers of matrix transformations from λ(X ) to µ(Y )

Let us recall from our earlier work [1] a few results and notations concerning the ma-

trix transformations from λ(X ) to µ(Y ), where we assume that λ and µ are any two normal,

normed scalar valued sequence spaces containing φ, which are equipped with the monotone

norms ‖.‖λ and ‖.‖µ respectively. Further, µ is an AK-space and ‖e i‖λ =‖e i‖µ = 1, ∀ i ∈N. It is

shown in [1] that if Z = [Zi j ] is a matrix transformation from λ(X ) to µ(Y ) with {
∑∞

j=1‖Zi j‖}∞
i=1

∈µ, then Z is a bounded linear operator from λ(X ) to µ(Y ) satisfying

sup
i , j

‖Zi j‖≤ ‖Z‖≤

∥

∥

∥

{ ∞
∑

j=1

‖Zi j‖

}∞

i=1

∥

∥

∥

µ
.

It has also been noted in [1] that the diagonal operators Z from λ(X ) into µ(Y ) are in fact the

maps from λ(X ) into λ(Y ) and in this case ‖Z‖= supi ‖Zi i‖.

For k ∈N, let us write

λk (X )= X ×X ×·· ·×X (k times)

We equip λk (X ) with the norm given by

‖(x1, x2, . . . , xk )‖λk (X ) =‖{zi }‖λ(X );

where zi = xi , 1 ≤ i ≤ k and zi = 0, ∀ i > k .

Corresponding to a matrix transformation Z let us define Z k and Zk as the linear opera-

tors from λ(X ) to µk (Y ) and to µ(Y ) respectively, given by

Z k(x) = (
∞
∑

j=1

Z1 j x j ,
∞
∑

j=1

Z2 j x j , . . . ,
∞
∑

j=1

Zk j x j )
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and

Zk (x) = {
∞
∑

j=1

Z1 j x j ,
∞
∑

j=1

Z2 j x j , . . . ,
∞
∑

j=1

Zk j x j ,0,0. . .};

for x = {xi } ∈λ(X ).

For each k ∈ N, we also consider the projection and inclusion maps Pk , λ(X ) : λ(X ) → X ,

P k
λ(X )

: λ(X ) →λk (X ), Ik , λ(X ) : X →λ(X ) and I k
λ(X )

: λk (X ) →λ(X ), defined as

Pk ,λ(X )(x) = xk , x = {xk } ∈λ(X );

P k
λ(X )(x) = (x1, x2, . . . , xk ), x = {xk } ∈ λ(X );

Ik , λ(X )(x) = δx
k , x ∈ X

and

I k
λ(X )(x1, x2, . . . , xk ) = {x1, x2, . . . , xk ,0,0, . . .}, (x1, x2, . . . , xk ) ∈λk (X ).

Note that the norm of any of the maps defined above can not exceed one. Assuming that

Z : λ(X )→ µ(Y ) is a matrix transformation with {
∑∞

j=1‖Zi j‖}∞
i=1

∈µ, we begin with

Proposition 2.1. For a fixed k ∈N,

an(Z k ) = an(Zk ), ∀ n ∈N.

Proof. Note that Z k = P k
µ(Y )

· Zk and Zk = I k
µ(Y )

· Z k . The result now follows from the mul-

ticlicative property of approxmation numbers. ���

Proposition 2.2. For a fixed k ∈N,

an(Zk ) ≤ an(Z ), ∀ n ∈N.

Proof. Since Zk = I k
µ(Y )

·P k
µ(Y )

·Z , applying the multiplicative property of approximation num-

bers, the required inequality follows. ���

Corollary 2.3. For each n ∈N,

an(Z )= lim
k→∞

an(Zk ).

Proof. To get this result, use additive property of approximation numbers to get the following

inequality

0 ≤ an(Z )−an(Zk ) ≤ ‖(0, . . . ,0,
∞
∑

j=1

‖Z(k+1) j‖,
∞
∑

j=1

‖Z(k+2) j‖, . . .)‖µ,

for any n, k ∈N and the AK-ness of µ. ���

However, the validity of the above result doesn’t yield {
∑

∞
j=1‖Zi j‖}∞

i=1
∈ µ or the AK-ness

of µ, as illustrated in
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Example 2.4. If Z is the identity mapping on ℓp , 1 ≤ p ≤∞, then we have

an(Z )= lim
k→∞

an(Zk ).

But ℓ∞ is not an AK-space and {
∑

∞
j=1‖Zi j‖}∞

i=1
is not in ℓp for 1 ≤ p <∞.

Theorem 2.5. For each n ∈N, an(Zi j ) ≤ an(Z ), ∀ i , j ∈N.

Proof. Since Zi j = Pi , µ(Y ) · Z · I j , λ(X ), the result follows from the multiplicative property of

approximation numbers. ���

The above result immediately leads to

Corollary 2.6. If Z = [Zi j ] from λ(X ) to µ(Y ) is an approximable matrix transformation then

Zi j : X → Y is approximable (hence compact), for each i , j ∈N.

The converse of Theorem 2.5 holds in the following form-

Theorem 2.7. For fixed k ∈N,

akn(Z k ) ≤‖e (k)
‖µ max

1≤i≤k
{an(Zi i )+

∑

j 6=i

‖Zi j‖}, n ∈N ;

where e (k) represents the k t h section of e = {1,1, . . . ,1, . . .}.

Proof. First we note that
∑

∞
j=1‖Zi j‖ <∞, for each i ∈N, since the sequence {

∑

∞
j=1‖Zi j‖}∞

i=1
∈

µ⊆ ℓ∞. Now ∀ ǫ> 0, we can find an operator Ai j ∈L (X ,Y ) of rank m, m < n such that

‖Zi j − Ai j‖≤ an(Zi j )+ǫ.

For any x = {xi } ∈λ(X ), define

Ak (x)= (A11(x1), . . . , Akk (xk )).

Then rank(Ak ) < kn and so

akn(Z k ) ≤ ‖Z k
− Ak

‖ ≤ ‖e (k)
‖µ max

1≤i≤k
{an(Zi i )+

∑

j 6=i

‖Zi j‖}, n ∈N.

Indeed, ∀ x = {xi } ∈Uλ(X ) we have

‖(Z k
− Ak )(x)‖µk (Y ) ≤ ‖e (k)

‖µ max
1≤i≤k

{‖Zi i (xi )− Ai i (xi )‖Y +
∑

j 6=i

‖Zi j‖}.

���
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Corollary 2.8. If {αi } ∈ µ is such that αi = 0, 1 ≤ i ≤ k and αi =
∑∞

j=1‖Zi j‖, for each i > k, then

akn(Z ) ≤ ‖{αi }‖µ + ‖e (k)
‖µ max

1≤i≤k
{an(Zi i )+

∑

j 6=i

‖Zi j‖}.

Remark 2.9. In case of a diagonal operator Z , the above inequality reduces to the following

form

akn(Z ) ≤
∞

sup
i=k+1

‖Zi i‖+‖e (k)
‖µ

k
max
i=1

(an(Zi i )).

Now we prove

Theorem 2.10. The diagonal operator Z : λ(X ) → λ(Y ) is approximable if and only if Zi i is

approximable, for each i ∈N and ‖Zi i‖→ 0 as i →∞.

Proof. It is clear from Theorem 2.5 that each Zi i , i ∈N, is approximable if Z is approximable.

Further note that for any ǫ> 0, we can find {xi } ⊆UX such that

‖Zi i‖< ‖Zi i (xi )‖Y +
ǫ

2
.

Since Z is compact (being approximable), we can find m1,m2, . . . ,mn ∈N such that for every

i ∈N we have

‖Z (δ
xi

i
)−Z (δ

xmk
mk

)‖λ(Y ) <
ǫ

2
,

for some 1 ≤ k ≤ n.

By choosing N0 =max{m1,m2, . . . ,mn} and using the monotonicity of ‖.‖λ we get

‖Zi i (xi )‖Y ≤ ‖Z (δ
xi

i
)−Z (δ

xmk
mk

)‖λ(Y ) <
ǫ

2
, ∀ i > N0.

Hence ‖Zi i‖→ 0 as i →∞. For the converse note that for any given ǫ> 0, there exists a ko ∈N

such that
∞

sup
i=ko+1

‖Zi i‖ ≤ ǫ/2,

and approximability of Zi i ’s imply that there exists no ∈N depending upon ko such that

an(Zi i ) ≤ ǫ/(2‖e (ko)
‖µ), ∀ i = 1,2, . . . ,ko , ∀ n ≥no .

Hence, from Remark 2.9, we get ano ko
(Z )≤ ǫ. Thus

a j (Z )≤ ǫ , ∀ j ≥noko , j ∈N.

⇒ Z is approximable. ���
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3. Approximation numbers of inclusion maps

In this section we compute the approximation numbers of the inclusion maps between

spaces of the type ℓp(X ), 1 ≤ p ≤∞, using the results proved in the preceding section and thus

conclude that these maps are not approximable. Besides generalizing the results to vector-

valued ℓp (X ) spaces, we prove in the following result how the dimension of the underlying

space affects the value of the approximation number of the inclusion map. Indeed, we prove

Theorem 3.1. For the inclusion map I : ℓ1(X )→ ℓ∞(X ),

1

2
≤ an(I ) ≤ 1, ∀ n ≥ 2, n ∈N. (3.1)

Further, an(I ) = 1, ∀ n ∈N, in case X is an infinite dimensional Banach space. If dim(X ) = k,

we have an(I )= 1, 1 ≤ n ≤ k and an(I )= 1
2 , ∀ n > k.

Proof. Since a1(I )= ‖I‖= 1, we have an(I )≤ 1, ∀ n ∈N.

If there exists n ∈N, n ≥ 2 with an(I )< 1
2

, choose ǫ> 0 such that

an(I )<
1

2
−ǫ.

For this ǫ> 0, there exists A ∈L (ℓ1(X ),ℓ∞(X )) with rank (A) < n such that

‖I − A‖ < an(I )+
ǫ

2
<

1

2
−

ǫ

2
. (3.2)

We now fix x ∈ X with ‖x‖= 1 and let A(δx
i

) = {y x
i j

}, ∀ i ∈N.

Then from (3.2), for each i ∈N, we get

max{sup
j 6=i

‖y x
i j‖X , ‖x − y x

i i‖X } <
1

2
−

ǫ

2
.

Since A is a finite rank operator, the set

S
A
= {y ∈ A(ℓ1(X )) : ‖y‖ℓ∞(X ) ≤ ‖A‖}

is relatively compact. Also note that for each i ∈N, the element A(δx
i

) ∈S
A. Hence for a fixed

x ∈ X with ‖x‖X = 1 and i , j ∈N with i 6= j we have

‖A(δx
i )− A(δx

j )‖ℓ∞(X ) ≥‖y x
i k − y x

j k‖X ,

for each k ∈N.

In particular when i = k , we get

‖A(δx
i )− A(δx

j )‖ℓ∞(X ) ≥ ‖y x
i i − y x

j i‖X ≥ ‖y x
i i‖X −‖y x

j i‖X . (3.3)
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Since ‖x − y x
i i
‖X <

1
2 −

ǫ
2 and ‖y x

j i
‖X <

1
2 −

ǫ
2 , from (3.3) we get,

‖A(δx
i )− A(δx

j )‖ℓ∞(X ) > ‖x‖X −
1

2
+

ǫ

2
−

1

2
+

ǫ

2
= ǫ> 0,

for each i 6= j . This contradicts the fact that S
A is relatively compact and hence (3.1) holds.

Since each component operator of I is the identity operator on X , using the Property [5]

of approximation numbers and Theorem 2.5, we conclude that an(I ) = 1, ∀ n ∈N, in case X

is infinite dimensional space.

If dim(X ) = k , let {u1,u2, . . . ,uk } be a basis of X . If x ∈ X is such that x =
∑k

i=1α j u j , we assume

that the norm on X is given by ‖x‖X =
∑k

i=1
|α j |. Note that ‖u j‖ = 1, ∀ j = 1,2, . . . ,k . Let us

take x = {xi } ∈ ℓ1(X ), where xi =
∑k

j=1αi j u j . Since
∑∞

i=1‖u j‖X <∞, we get
∑∞

i=1

∑k
j=1 |αi j | =

M <∞. For 1 ≤ j ≤ k , define

β j =
1

2

∞
∑

i=1

αi j .

Then β j is well defined and
k
∑

j=1

|β j | <

k
∑

j=1

∞
∑

i=1

|αi j | < ∞.

Write z =
∑k

j=1β j u j and z = {z, z, z, . . . }. Then

‖z‖ℓ∞(X ) = ‖z‖X =

k
∑

j=1

|β j | ≤
1

2
M <∞.

⇒ z ∈ ℓ∞(X ). Define A : ℓ1(X ) → ℓ∞(X ) as

A(x) = {z, z, . . . , z, . . .}.

Then, rank(A) = k ; indeed the elements u j = (u j ,u j , . . . ,u j , . . .), 1 ≤ j ≤ k , would span the

range of A. Also, for any x = {xi } ∈ ℓ1(X ) with ‖x‖ℓ1(X ) = 1, we have ‖(I−A)x‖ℓ∞(X ) = sup∞
i=1

‖xi−

z‖X . If xi is given by
∑k

j=1αi j u j , for each i ∈N, we have

∞
sup
i=1

‖xi − z‖X ≤
1

2

∞
∑

i=1

k
∑

j=1

|αi j | =
1

2
.

⇒‖I − A‖ ≤ 1
2 . Hence an(I )= 1

2 , ∀ n > k .

To show that an(I ) = 1, 1 ≤ n ≤ k , note that a1(I ) = 1. If 1 < n ≤ k , we can conclude that

ak (I ) = 1, making use of Property [5] of approximation numbers, the fact that each com-

ponent operator of I is the identity operator on X and Theorem 2.5. Since approximation

numbers are decreasing in nature, we get the required result. ���
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Remark 3.2. One can prove this result with respect to any norm on a finite dimensional

normed linear space X of dimension k , which is monotone in the sense of its co-ordinate rep-

resentation with respect to a basis {u1,u2, . . . ,uk } such that ‖ui‖X = 1, for each i = 1,2, . . . ,k .

Theorem 3.3. For the inclusion map I : ℓp (X )→ ℓ∞(X ), 1 < p ≤∞,

an(I ) = 1, ∀ n ∈N.

Proof. When p =∞, the map under consideration is the identity map on ℓ∞(X ) and in this

case we get an(I ) = 1, ∀ n ∈N using the Property [5] of approximation numbers. For 1 < p <

∞, we always have an(I )≤ 1.

If an(I ) < 1, for some n ∈N, then we can find ǫ> 0 such that an(I ) < 1−ǫ. For this ǫ> 0, there

exists A ∈L (ℓp (X ),ℓ∞(X )) of rank m < n such that

‖I − A‖ < 1−
ǫ

2
. (3.4)

Note that A can be expressed as A(x) =
∑m

i=1 fi (x)y i , ∀ x ∈ ℓ1(X ), where fi = { fi j } ∈ [ℓp (X )]∗ =

ℓq (X ∗) (cf. [5][11]) and y i = {yi j } ∈ ℓ∞(X ), for each i = 1,2, . . . ,m.

Let us fix x ∈ X with ‖x‖X = 1. We then have

∑

j≥1

| fi j (x)|q ≤
∑

j≥1

‖ fi j‖
q , ∀ i = 1,2, . . . m.

From equation (3.4) we get

‖x −

m
∑

i=1

fi (δx
j )yi j‖X ≤‖(I − A)δx

j ‖ℓ∞(X ) < 1−
ǫ

2
, ∀ j ∈N. (3.5)

Let M = max1≤i≤m ‖y i‖ℓ∞(X ). Note that M > 0. From (3.5) we get

ǫ

2
< ‖

m
∑

i=1

fi (δx
j )yi j‖X ≤ M ·

m
∑

i=1

| fi (δx
j )|.

Hence we have
m
∑

i=1

| fi (δx
j )| =

m
∑

i=1

| fi j (x)| >
ǫ

2M
, ∀ j ∈N. (3.6)

On the other hand, there is jo ∈N such that

∑

j≥ jo

| fi j (x)|q < (
ǫ

2mM
)q ,

for each i = 1,2, . . . m. Hence
m
∑

i=1

| fi jo
(x)| <

ǫ

2M
.

This is a contradiction to (3.6). Thus the result holds. ���
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Theorem 3.4. For 1 ≤ p ≤ q <∞, if I : ℓp (X ) → ℓq (X ), is the natural injection, then an(I ) =

1, ∀ n ∈N.

Proof. We consider two cases for the proof of the result.

Case 1: Let 1 < p ≤ q < ∞. Denote by Ir the natural injection from ℓr (X ) to ℓ∞(X ). Then

Ip = Iq · I . Hence an(I ) ≥ 1. Since an(I ) ≤ a1(I )= 1, ∀ n ∈N, result is proved in this case.

Case 2: Let p = 1. Assume an(I ) < 1 for some n ∈N. Then we can find ǫ > 0 and A : ℓ1(X ) →

ℓq (X ) with rank(A) <n such that

‖I − A‖ < 1−
ǫ

2
.

Let S
A = {x ∈ A(ℓ1(X )) : ‖x‖ℓq (X ) ≤ ‖A‖}. Note that A(δx

i
) ∈ S

A, ∀ i ∈ N and x ∈ X with

‖x‖X = 1. Since S
A is relatively compact, choose ǫ

6
-net {yk = {yk j } : k = 1,2, . . . ,m} for S

A. We

can now find a jo ∈N such that

(
∑

j≥ jo

‖yk j‖
q

X
)1/q

< ǫ/6, ∀ k = 1,2, . . . ,m. (3.7)

For a fixed x ∈ X with ‖x‖X = 1 and each i ∈N there exists 1 ≤ mi ≤ m such that

‖A(δx
i )− ymi

‖ℓq (X ) < ǫ/6.

Let A(δx
i

) = {ax
i j

} for each i ∈N. Then

(
∑

j≥1

‖ax
i j − ymi j‖

q

X )1/q
< ǫ/6. (3.8)

Using Minkowski’s inequality, from (3.7) and (3.8) we get

(
∑

j≥ jo

‖ax
i j‖

q

X
)1/q

< ǫ/3, ∀ i ∈N⇒‖ax
i j‖X < ǫ/3, ∀ j ≥ jo .

Also, for each i ∈N

{‖x −ax
i i‖

q

X
+

∑

j 6=i

‖ax
i j‖

q

X
}1/q

= ‖(I − A)δx
i ‖ℓq (X ) ≤ ‖I − A‖< 1−

ǫ

2
.

⇒ ‖ax
i i‖X >

ǫ

2
, ∀ i ∈N.

This contradicts that ‖ax
i j
‖X <

ǫ
2 , ∀ i ≥ j0. ���

Note: Theorems 3.1, 3.3 and 3.4 include the results of Hutton [9] given on p. 58−60 as partic-

ular case when X is the field of scalars.
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