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COEFFICIENT ESTIMATE FOR A SUBCLASS OF CLOSE-TO-CONVEX
FUNCTIONS WITH RESPECT TO SYMMETRIC POINTS

B. S. MEHROK, GAGANDEEP SINGH AND DEEPAK GUPTA

Abstract. Forreals A,B,C,Dsuchthat—1<D<B< A< C<1,asubclass Ks(A, B; C, D) of
analytic functions f(z) = z+22°:2 akzk in the open unit disc E = {z : |z| < 1} is introduced.
The object of the present paper is to determine the coefficient estimate for functions f(z)
belonging to the class K(A, B; C, D).

1. Introduction
Let U denote the class of functions

w2 =Y 2 (1.1)
k=1

which are regular in the unit disc E = {z: |z| < 1} and satisfying the conditions
w(0)=0and |w(z)|<1, =z€E.

Let S be the class of functions

f@=2+) az* 1.2)
k=2

which are regular and univalent in E.
Let S denote the class of functions f(z) € S and satisfying the condition
/
Re (7Zf (@
f@-f(=2)

These functions are called Starlike with respect to symmetric points and were introduced
by Sakaguchi [4]. After this Goel and Mehrok [2] introduced by a sub-class S; (A, B) of Sj.
Si (A, B) be the class of functions f(z) € S which satisfy the condition

)>O, z€E.

2zf'(z) <1+Az
f(@-f(-z) 1+Bz’
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—-1<B<A<1, z€E.
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Let Ks(A, B; C, D) be the class consisting of functions f(z) € S and satisfying the condition

2zf'(2) - 1+Cz
(g(z)-g(-2) 1+Dz’

-1=D=B<A=sC=<sl, z€eE

where

ge)=z+ )Y bpz*eSi(AB).
k=2

Obviously K; = Ks(1,-1;1,-1) and Ks(A, B) = Ks(A, B;1,-1).
By definition of subordination it follows that f € K(A, B; C, D) if and only if

2zf'(z2)  1+Cw(2)
g(z)—g(-2) T 1+Dw(z)

=P(2), w(@eU (1.3)

where

P() =1+ piz". 1.4)
k=1

We obtain the coefficient estimate for the class K(A, B; C, D).
2. Some preliminary lemmas
We shall require the following lemmas.

Lemma 2.1. IfP(z) is given by (1.3), then

|pnl = (C-D).

This lemma is due to Goel and Mahrok [2].
Lemma2.2. Lerg(z) =z+Y57, byz* € S¥(A,B), thenforn=1,

(A-B) !
(A-B+2j)
n2n ]Ul

|b2n| =

and
(A-B) "=}

|bypi1l < ——— [[ (A-B+2)).
nl2n - 5

This result was established by Goel and Mahrok [2].
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3. Main result

Theorem 3.1. Let f € K;(A,B;C,D), thenforn=1,

(C-D) =} .
|a2nl < — 5 j]:[l(A—B+2])

1 (A-B) 1 n-l ]
@zl = 3 {| €=+ H(n—l)!zn—le:[l(A_B”])]}'

Proof. As g € S; (A, B), it follows that

22g'(z) = (g(2) — g(-2))K(z) forzeE

where K(z) = 1+diz+doz®+dsz®+---.
On equating the coefficients of like powers of z in (3.3), we get

2by=dy,  2b3=dy,
4b4=d3+b3d1, 4b5=d4+b3d2,

Continuing in this way , we have

2nbyy = dyp-1+bzdrp_3+bsdyy 5+ +boy_1ds,

2nbop1 = dop+b3dap_n+bsdzp_s+--+brp_1do.

From (1.3) and (1.4), we have

2+2a22° +3a32° + - +2nax,2°" + Cn+ Dasy1 22+ -

2n 2n+1 o)

= (Z+b3Z3+b5Z5+'“+b2n_1Z _1+b2n+1Z +

Z2n+1 o).

(U prz+ paz’+-++ Pz + Pania
On equating the coefficients, we otain

2a; = p1, 3az = po + b,

4ay = p3s+ bsp1, 5as = py + b3 p2 + bs,
and so on

2nazy, = pan-1+b3pan-—3+bspop_s+---+bap_1p1,

2n+1)azn1 = pan+b3pan—r2+bspon—s+---+bap_1p2+bopy1.

Using Lemma 2.1 and equation (3.8), we get

A-B
2lap| = C—-D, 3|a3|S(C—D)+( > ).
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Again applying Lemma 2.1 and using equation (3.4) and (3.5), we obtain from (3.9)

(C—D)(A-B+2) (A—B+2)[(A—B)+4(C - D)]
4lay| < 5 , 5|as| < 8 .

It follow that (3.1) and (3.2) hold for n =1, 2.

We now prove (3.1) and (3.2) by induction.
(3.10) and (3.11) in conjunction with Lemma 2.1 yield

1

( [1+n |b2k+1|] (3.12)

lasnl <

and

1 n—1
|dgns1] < m{(C—D)[H];lbzml] +|b2n+1|}~. (3.13)

Again by using Lemma 2.1 in (3.7), we have

(A-B) n-1
D] < 14 Y 1bokal |- (3.14)
k=1
From (3.13) and (3.14), we obtain
@l < 5 {[ €= D)+ ][1+Z|bzk+1|]}~ (3.15)
We assume that (3.1) and (3.2) holds for k =3,4,...,(n—1).
Using Lemma 2.2 in (3.12) and (3.15), we obtain
C-D. "A-Bi .
|Gzl < 1+ Y ——— H(A—B+2])] (3.16)
k=1 K285
and 1
(A-B) X
Iazn+1|52n {(C D)[1+ L Tk ]]_[(A B+2])]
+(A_B)[1 ZI(A B)Ii_[l(A—B+2')]} (3.17)
2n o ki2k o Pl '
In order to prove (3.1) , it is sufficient to show that
(C-D) =l (A-B) K - D) "5 ; B
- [1+k§1 oF ]H(A B+2 )] o JI_I(A—B+2]), (m=3,4,..) (3.18)

(3.18) is valid for m = 3.

Let us suppose that (3.18) is true for all m, 3 < m < (n—1). Then from (3.16) , we have

vy LD

(C-D) —(A-B)k
- 1 Y ]_[(A B+2j)
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— C-— n-2
- 1){;(11—?)[“-,;(12! f)]]_[(A B+2j)|}

(C-D) (A-B) F
- i 1)|2n1H(A B+2j)

(n—l) (C-D) "2
= o 1)'2,11]—[(A B+2))

n

(C-D) (A-B) "=
+ T 1)'2n1]_[(A B+2j)

_ (C-D) "= (A-B+2(n-1))
T L H(A B+2j) o
C-D
- Ta-s a2,

j:
Thus (3.18) holds for m = n and hence (3.1) follows.

Now from (3.17), we have

nl(A_ )
& kizk

@zl = {[(C D)+ —Hl H(A B+2pll. 619
J=

From (3.18) , we have

1+ZI(A B)H(A B+2j)= ;rﬁm—l_ﬂz') (3.20)
& kL D= et g '

From (3.19) and (3.20), we have

(A- B)] [ 1 n-l

H(A—B+2j)]}

|a2ne1] < {[(c D)+ o 1]

which proves (3.2).
Putting A= C=1and B =D = -1 in the above result, we get the following

Corollary 1. Let f(z) be schlicht and starlike with respect to symmetric points in the unit disc
E, having the form f(z) = z+ ¥, arz®, then

lay| < 1 for any natural number n.

This result was proved by Das and Singh [1].
For C =1 and D = -1, we have the following result for the class K;(A, B).
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Corollary 2. Let f € K¢(A, B), then forn =1,

— n—1
(ol = 2n1+ 1 { [2 ! (Aan) ] [ (n—- 11)!2”‘1 JEIl(A_ ’ +2j)] }

Remark. Janteng and Halim [3] proved that, for f € K;(A,B) andforn=1,

(A-B) n-l .
lagn+1l < G Do ]l:[1 (A-B+2j).

This result is not justified.
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