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RECOVERING SINGULAR DIFFERENTIAL OPERATORS

ON NONCOMPACT STAR-TYPE GRAPHS

FROM WEYL FUNCTIONS

V. YURKO

Abstract. Bessel-type differential operators on noncompact star-type graphs are stud-

ied. We establish properties of the spectral characteristics and then we investigate the

inverse problem of recovering the operator from the so-called Weyl vector. For this in-

verse problem we prove a uniqueness theorem and propose a procedure for constructing

the solution using the method of spectral mappings.

1. Introduction

Analysis on graphs and other similar structures has been developing for quite some time

due to various applications in applied sciences. In particular in recent years it has experi-

enced a significant boost in terms of new applications arising and new methods developed

and studied.

In this paper we present the solution of an inverse spectral problem for Bessel-type dif-

ferential operators on noncompact star-type graphs. This inverse problem consists in recov-

ering the potential of the Bessel operator on a graph from the given spectral characteristics.

We recall that differential operators on graphs (networks, trees) often appear in mathematics,

mechanics, physics, geophysics, physical chemistry, biology, electronics, nanoscale technol-

ogy and other branches of natural sciences and engineering (see [1]-[4] and the references

therein). Recently there has been increasing interest in spectral theory of differential equa-

tions on graphs (for a good review of such publications see [5]-[6]). Most of the works in this

direction are devoted to the so-called direct problems of studying properties of the spectrum

and the root functions. Inverse spectral problems, because of their nonlinearity, are more

difficult for investigating. For Sturm-Liouville operators on compact graphs inverse problems

were studied in [7]-[14] and other works. Noncompact case for Sturm-Liouville operators was

considered in [15]-[17]. Bessel operators on graphs have not been studied yet.

2000 Mathematics Subject Classification. 34A55 34B45 34B40 47E05.
Key words and phrases. Singular differential equations, noncompact graphs, inverse spectral problems,

method of spectral mappings.

223

http://dx.doi.org/10.5556/j.tkjm.42.2011.223-236


i

i

i

i

224 V. YURKO

In this paper we provide a formulation and the solution of the inverse problem of re-

covering singular potential of the Bessel operator on noncompact star-type graphs which is a

natural generalization of the well-known inverse problems for differential operators on an

interval (see the monographs [18]-[27] and the references therein). As the main spectral char-

acteristic we introduce and study the so-called Weyl vector which is a generalization of the

Weyl function (m-function) for the classical Sturm-Liouville operator (see [28]). We show that

the specification of the Weyl vector uniquely determines the potential, and we provide a con-

structive procedure for the solution of the inverse problem from the given Weyl vector. Here

we face with a singular case having more complicated behavior of the spectrum which leads

to new qualitative difficulties for studying direct and inverse problems. For definiteness, we

confine ourselves to graphs with one infinite edge.

For studying the inverse problem on noncompact graphs we develop the ideas of the

method of spectral mappings [23], [25]. This method allows one to solve inverse problems for

a wide class of operators on graphs. Note that the obtained results are valid not only for the

selfadjoint case but also for the non-selfadjoint one when the potential is a complex-valued

function on the graph.

The paper is organized as follows: In section 2 we introduce the main notions and formu-

late a boundary value problem. In order to define boundary conditions at singular boundary

vertices we use ideas from [29]. In Section 3 properties of the spectrum are studied. In par-

ticular, Theorems 1-5 describe the continuous and the discrete spectrum and connections

between them. In Section 4 the solution of the inverse problem is given.

2. Boundary value problem

Consider a noncompact star-type graph T in RN with the set of vertices V = {v0, . . . , vp },

and the set of edges E = {e0, . . . ,ep }, where e j = [v j , v0], j = 1, p , are finite segments, and e0 =

[v0, vp+1) is an infinite ray, vp+1 :=∞.

Let l j be the length of the edge e j , j = 1, p . Each edge e j , j = 1, p , is parameterized by

the parameter x j ∈ [0, l j ] such that the initial point v j corresponds to x j = 0, and the terminal

point v0 corresponds to x j = l j . The ray e0 = [v0,∞) is parameterized by the parameter x0 ∈

[0,∞) such that x0 = 0 corresponds to the vertex v0.

A function Y on T may be represented as Y = {y j } j=0,p , where the function y j (x j ), is

defined on the edge e j . Consider the differential equation on T :

ℓ j y j (x j ) :=−y ′′
j (x j )+Q j (x j )y j (x j ) =λy j (x j ), Q j (x j ) =

ω j

x2
j

+q j (x j ), j = 0, p , (1)

where λ is the spectral parameter, ω j are real numbers, and Q = {Q j } j=0,p is a real-valued

function on the graph T. For definiteness, we assume that ω j = ν2
j
−1/4, ν j > 0, ν j ∉ N, ν0 =



i

i

i

i

RECOVERING SINGULAR DIFFERENTIAL OPERATORS 225

1/2, q j (x j )x
1−2ν j

j
are integrable on e j (other cases are treated similarly). The function Q on

the graph T is called the potential.

In order to define boundary conditions at the boundary vertices v j , j = 1, p , we will use

ideas from [29]. For this purpose, we consider the Bessel-type fundamental system of solu-

tions {S j m(x j ,λ)}m=1,2 of equation (1) on the edge e j , j = 1, p , with the following properties

(see [30]):

(a) For each fixed x j ∈ (0, l j ), the functions S
(ξ)
j m

(x j ,λ), ξ= 0,1, are entire in λ.

(b) For x j → 0,

S j m(x j ,λ) ∼ c j mx
µ j m

j
,

where µ j m = (−1)mν j +1/2, c j 1c j 2 = (2ν j )−1.

(c) The following relation holds

〈S j 1(x j ,λ),S j 2(x j ,λ)〉 ≡ 1, (2)

where 〈y(x), ỹ(x)〉 := y(x)ỹ ′(x)− y ′(x)ỹ(x) is the Wronskian of y and ỹ .

Similar to [29] we introduce the linear forms

σ j k (y j ) := (−1)k−1
〈y j (x j ),S j ,3−k(x j ,λ)〉|x j=0, k = 1,2, j = 1, p .

It follows from (2) that

σ j k (S j m) = δkm , m,k = 1,2, (3)

where δkm is the Kronecker symbol. We note that for the classical Sturm-Liouville equation

on e j one has ν j = 1/2 (i.e. ω j = 0); hence in this case σ j k (y j ) = y (k−1)
j

(0), k = 1,2, i.e., the

boundary functionals have the classical form. Let h = [h j ] j=1,p be the vector, where h j are

real numbers. Denote U j (y j ) =σ j 2(y j )−h jσ j 1(y j ), V j (y j ) =σ j 1(y j ), ϕ j 1(x j ,λ) = S j 1(x j ,λ)+

h j S j 2(x j ,λ), ϕ j 2(x j ,λ) = S j 2(x j ,λ). In view of (3), σ j 1(ϕ j 1) = 1, σ j 2(ϕ j 1) = h j , U j (ϕ j 1) = 0. It

follows from (2) that

〈ϕ j 1(x j ,λ),ϕ j 2(x j ,λ)〉 ≡ 1.

Consider equation (1) on T, where

y j , y ′
j ∈ AC (0, l j ], j = 1, p ; y0, y ′

0 ∈ ACloc [0,∞), (4)

and Y = {y j } j=0,p satisfy the following matching conditions in the internal vertex v0:

y j (l j )= y0(0) for all j = 1, p (continuity condition),

p
∑

j=1

y ′
j (l j ) = y ′

0(0) (Kirchhoff’s condition).



















(5)
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The matching conditions (5) are called the standard matching conditions. Moreover, we ad-

ditionally require that the function Y = {y j } j=0,p satisfies the following boundary conditions

at the boundary vertices:

U j (y j )= 0, j = 1, p . (6)

We consider the operator

L′ : D(L′) →L2(T ), Y = {y j } j=0,p → L′Y := {ℓ j y j } j=0,p ,

where the domain of definition D(L′) consists of functions Y = {y j } j=0,p satisfying (4)-(6), and

y0,ℓ0 y0 ∈ L2(0,∞), ℓ j y j ∈ L2(0, l j ), j = 1, p . We denote the corresponding boundary value

problem (1), (4)-(6) by L.

3. Properties of the spectrum

Let λ = ρ2, and let for definiteness Imρ ≥ 0. Put Ω0 = {ρ : Imρ > 0}, Ω = {ρ : Imρ ≥

0, ρ 6= 0}. Denote by Π the λ-plane with the cut λ ≥ 0, and Π1 = Π \ {0}; notice that here Π

and Π1 must be considered as subsets of the Riemann surface of the square-root-function.

Then, under the map ρ → ρ2 = λ, Π1 corresponds to the domain Ω, and Π corresponds to

Ω0. Denote by e(x0,ρ), x0 ≥ 0, the Jost solution of equation (1) on the edge e0 (see [23, Sec.

2.1]).

Lemma 1. The function e(x0,ρ) has the following properties:

(1) For each fixed x0 ≥ 0, and ν = 0,1, the functions e (ν)(x0,ρ) are analytic for ρ ∈Ω0, and are

continuous for ρ ∈Ω.

(2) For x0 →∞, ν= 0,1,

e (ν)(x0,ρ)= (iρ)νexp(iρx0)(1+o(1)).

For ρ ∈Ω0, e(x0,ρ) ∈L2(0,∞). Moreover, e(x0,ρ) is the unique solution of (1) on e0 (up to

a multiplicative constant) having this property.

(3) For |ρ|→∞, ρ ∈Ω, ν= 0,1,

e (ν)(x0,ρ)= (iρ)νexp(iρx0)
(

1+O(ρ−1)
)

,

uniformly for x0 ≥ 0.

(4) For real ρ 6= 0, the functions e(x0,ρ) and e(x0,−ρ) form a fundamental system of solutions

for equation (1) on the edge e0, and

〈e(x0,ρ),e(x0,−ρ)〉 =−2iρ. (7)
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(5) For real ρ 6= 0, e (ν)(x0,ρ)= e (ν)(x0,−ρ).

The proof of Lemma 1 is given in [23, Sec. 2.1].

Let T0 := T \ {e0} be the compact graph with the edges e1, . . . ,ep and with the vertices

v0, . . . , vp . Denote by L0 be the boundary value problem for equation (1) on the graph T0 with

the matching conditions

y j (l j ) = yi (li ), i , j = 1, p ,
p
∑

j=1

y ′
j (l j ) = 0, (8)

and with the boundary conditions (6). Moreover, denote by Lk , k = 1, p , the boundary value

problem for equation (1) on the graph T0 with the matching conditions (8) and with the

boundary conditions

Vk (yk ) = 0, U j (y j ) = 0, j = 1, p \ k .

Consider the functions

G0(λ) =
p
∏

j=1

ϕ j 1(l j ,λ), g0(λ) =G0(λ)
p
∑

j=1

ϕ′
j 1

(l j ,λ)

ϕ j 1(l j ,λ)
. (9)

Let Gk (λ) and gk (λ) are obtained from G0(λ) and g0(λ), respectively, by replacing ϕ
(ξ)
k1

(lk ,λ)

with ϕ
(ξ)

k2
(lk ,λ), ξ = 0,1. The functions Gk (λ) and gk (λ), k = 0, p are entire in λ of order 1/2.

Zeros of gk (λ), k = 0, p coincide with the eigenvalues of the boundary value problem Lk . The

function gk (λ) is called the characteristic function for Lk .

Denote
∆(ρ)=G0(λ)e ′(0,ρ)− g0(λ)e(0,ρ),

∆k (ρ)=Gk (λ)e ′(0,ρ)− gk (λ)e(0,ρ).







(10)

The next assertion follows from (10) and Lemma 1.

Theorem 1. The functions ∆(ρ) and ∆k (ρ), k = 1, p , are analytic in Ω0, and continuous in Ω.

For real ρ 6= 0,

∆(ρ)=∆(−ρ). (11)

Fix k = 1, p . Let Ψk = {ψk j } j=0,p be the solution of equation (1) on the graph T satisfying

the matching conditions

ψk j (l j ,λ) =ψk0(0,λ), j = 1, p ,
p
∑

j=1

ψ′
k j (l j ,λ) =ψ′

k0(0,λ), (12)

and boundary conditions

U j (ψk j ) =δk j , j = 1, p , ψk0(x0,λ) =O(exp(iρx0)), x0 →∞. (13)
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The function Mk (λ) := Vk (ψkk ) is called the Weyl function with respect to the boundary ver-

tex vk , and the vector M (λ) = [Mk(λ)]k=1,p is called the Weyl vector. The inverse problem is

formulated as follows.

Inverse problem 1. Given the Weyl vector M (λ), construct the potential Q on the graph T and

the vector h.

We mention that the notion of the Weyl vector M is a generalization of the notion of

the Weyl function (m-function) for the classical Sturm-Liouville operator on an interval, and

Inverse problem 1 is a generalization of the classical inverse problems for Sturm-Liouville

operator from the Weyl function, and (which is equivalent) from the spectral measure (see

[23, Ch.1]). Inverse problem 1 will be solved in Section 4.

Taking (13) into account we infer that the Weyl solution Ψk = {ψk j } j=0,p has the form

ψkk (xk ,λ) =ϕk2(xk ,λ)+Mk (λ)ϕk1(xk ,λ),

ψk j (x j ,λ) = Mk j (λ)ϕ j 1(x j ,λ), j = 1, p \ k ,

ψk0(x0,λ) = Mk0(λ)e(x0,ρ),























(14)

where Mk j (λ), j = 0, p \ k do not depend on x j . Substituting (14) into (12) we obtain the

linear algebraic system sk with respect to Mk (λ) and Mk j (λ), j = 0, p \ k . The determinant of

the system sk is ∆(ρ). Solving sk by Cramer’s rule we get

Mk (λ) =−
∆k (ρ)

∆(ρ)
, (15)

Mk j (λ) =
p
∏

s=1

ϕs1(ls ,λ)
e(0,ρ)

∆(ρ)ϕ j 1(l j ,λ)ϕk1(lk ,λ)
, j = 1, p \ k , (16)

Mk0(λ) =
p
∏

s=1

ϕs1(ls ,λ)
1

∆(ρ)ϕk1(lk ,λ)
. (17)

Denote by Λ := {λ = ρ2 : ρ ∈Ω, ∆(ρ) = 0} the set of zeros of ∆(ρ) in Ω. Then Λ=Λ
′∪Λ

′′,

where

Λ
′ := {λ= ρ2 : ρ ∈Ω0, ∆(ρ)= 0}, Λ

′′ := {λ=ρ2 : Imρ = 0, ρ 6= 0, ∆(ρ)= 0}.

The following assertion follows from (15), (10) and Theorem 1.

Theorem 2. The Weyl functions Mk (λ), k = 1, p , are analytic in Π\Λ′ and continuous in Π1 \Λ.

The set of singularities of M (λ) (as an analytic function) coincides with the set S := {λ : λ ≥

0}∪Λ.
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Definition 1. The set of singularities of the Weyl vector M (λ) is called the spectrum of L. The

value of the parameter λ for which (1) has nontrivial solutions satisfying (5)-(6) and yr (∞) = 0

(i.e. limxr →∞ y(xr )= 0), are called eigenvalues of L, and the corresponding solutions are called

eigenfunctions.

Theorem 3. Let λ0 = ρ2
0, ρ0 ∈ Ω0, i.e. λ0 ∉ [0,∞). For λ0 to be an eigenvalue of L on T , it is

necessary and sufficient that λ0 ∈Λ
′.

Proof. Let λ0 = ρ2
0 ∈Λ

′. On the graph T we consider the function Y = {y j } j=0,p of the form

y j (x j ) =α j 1ϕ j 1(x j ,λ0)+α j 2ϕ j 2(x j ,λ0), j = 1, p ,

y0(x0) =α0e(x0,ρ0).







(18)

Clearly, Y is a solution of equation (1) for λ=λ0. Substituting (18) into (5) and (6) we obtain a

homogeneous linear algebraic system s0 with respect to α j 1,α j 2, j = 1, p and α0. The deter-

minant of the system s0 is ∆(ρ0). Since ∆(ρ0) = 0, it follows that the system s0 has a nontrivial

solution. This means that Y = {y j } j=0,p is an eigenfunction, and λ0 is an eigenvalue of L.

Conversely, let λ0 = ρ2
0 ∉ [0,∞) be an eigenvalue of L, and let Y = {y j } j=0,p be a corre-

sponding eigenfunction. Then Y has the form (18), where α j 1,α j 2, j = 1, p and α0 satisfy the

system s0. Since Y is not identically zero, it follows that the system s0 has a nontrivial solution,

and consequently, ∆(ρ0) = 0. ���

Since q j (x j ),ω j and h j are real, it is known that the operator L′ is self-adjoint and bound-

ed from below (see [31]). Together with Theorem 3 this yields that Λ′ ⊂ (−∞,0) lies on the

negative real half-axis, and Λ
′ is a bounded set of eigenvalues of L. Denote by Λ0 the set of

common positive zeros of g0(λ) and G0(λ).

Theorem 4. Λ
′′ =Λ0.

Proof. Let λ0 ∈ Λ
′′. Then λ0 = ρ2

0 > 0 and ∆(ρ0) = 0. It follows from (11) that ∆(−ρ0) = 0.

Together with (7) and (10) this yields g0(λ0) =G0(λ0) = 0, i.e. λ0 ∈Λ0.

Conversely, let λ0 ∈Λ0. Then λ0 = ρ2
0 > 0 and g0(λ0) =G0(λ0) = 0. It follows from (10) that

∆(ρ0)= 0, i.e. λ0 ∈Λ
′′. ���

Theorem 5. Let λ0 = ρ2
0 > 0. For λ0 to be an eigenvalue of L, it is necessary and sufficient that

λ0 ∈Λ
′′.

Proof. Let λ0 = ρ2
0 > 0 be an eigenvalue, and let Y = {y j } j=0,p be a corresponding eigen-

function. According to (7) the functions {e(x0,ρ0),e(x0,−ρ0)} form a fundamental system of
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solutions of (1) on e0, and consequently, y0(x0)= Ae(x0,ρ0)+Be(x0,−ρ0). For x0 →∞ we have

y0(x0) ∼ 0, e(x0,±ρ0) ∼ exp(±iρ0x0). But this is possible only if A =B = 0, i.e. y0(x0)≡ 0.

Clearly, Y 0 := Y \{y0} = {y j } j=1,p is an eigenfunction of the boundary value problem L0 on

the graph T0, and consequently, g0(λ0) = 0. Furthermore, one has U j (y j ) = 0 and y j (l j ) = 0;

hence y j (x j ) = A jϕ j 1(x j ,λ0) and A jϕ j 1(l j ,λ0) = 0, j = 1, p . Since Y 0 is not identically zero, it

follows that there exists m such that Am 6= 0, and consequently, ϕm1(lm ,λ0) = 0. In view of (9),

this yields G0(λ0) = 0, i.e. λ0 ∈Λ0. Taking Theorem 4 into account we get λ0 ∈Λ
′′.

Conversely, let λ0 ∈ Λ
′′. According to Theorem 4, λ0 ∈ Λ0, i.e. g0(λ0) = G0(λ0) = 0. By

virtue of (9), there exist m1, . . . ,ms such that ϕ j 1(l j ,λ0) = 0 for j =m1, . . . ,ms , and ϕ j 1(l j ,λ0) 6=

0 for j 6= m1, . . . ,ms . Put Y = {y j } j=0,p , where y0(x0) ≡ 0, y j (x j ) ≡ 0 for j 6= m1, . . . ,ms , and

y j (x j ) = A jϕ j 1(x j ,λ0) for j =m1, . . . ,ms . Choose the constants A j such that Y satisfies Kirch-

hoff’s condition in v0. Then Y is an eigenfunction of L, and λ0 is an eigenvalue of L. ���

Thus, the spectrum of L coincides with S, and it consists of the positive half-line {λ :

λ ≥ 0}, and the discrete real bounded from below set Λ =Λ
′∪Λ

′′. We note that the set Λ′′ of

positive eigenvalues can be empty, finite or an infinite unbounded set (see example).

Example. Let p = 2, ω j = 0, l j = 1, q j (x j ) ∈L2(0,1). Then

∆(ρ)=ϕ11(1,λ)ϕ21(1,λ)e ′(0,ρ)− (ϕ11(1,λ)ϕ′
21(1,λ)+ϕ′

11(1,λ)ϕ21(1,λ))e(0,ρ),

i.e. G0(λ) = ϕ11(1,λ)ϕ21(1,λ), g0(λ) = ϕ11(1,λ)ϕ′
21(1,λ)+ϕ′

11(1,λ)ϕ21(1,λ). In this case Λ0 is

the set of the common positive eigenvalues of the two scalar problems

−y ′′
j +q j (x j )y j =λy j , x j ∈ (0,1), y ′

j (0)−h j y j (0) = y j (1) = 0, j = 1,2. (19)

It follows from the theory of inverse spectral problems (see, for example, [23, Ch.1]) that for

arbitrary sequences of real numbers {λn j }n≥1, j = 1,2, of the form

λn j =π2(n +1/2)2
+c j +κn j , {κn j } ∈ l2, c j ∈ R, j = 1,2,

there exist real potentials q j ∈L2(0,1) for which {λn j }n≥1, j = 1,2, are the sequences of eigen-

values of the boundary value problems (19). This means that we can choose q1 and q2 such

that the set Λ′′ will be either empty, finite or an infinite unbounded set.

4. Inverse problems

In this section we study the Inverse problem 1 for Bessel differential operators on the

graph T. We prove the corresponding uniqueness theorem and provide a constructive proce-

dure for the solution of the inverse problem considered.
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Fix k = 1, . . . , p, and consider the following auxiliary inverse problem on the boundary

edge ek , which is called Problem IP(k).

Problem IP(k). Given Mk (λ), construct Qk on the edge ek and hk .

First we prove the uniqueness theorem for the inverse problem IP(k).

Theorem 6. The specification of the Weyl function Mk uniquely determines the potential Qk

on the edge ek and the coefficient hk .

Proof. On each edge e j , j = 1, p there exists a special fundamental system of solution {y j k (x j ,

ρ)}k=1,2 (see [30]) such that for each fixed x j ∈ (0, l j ],

y
(ξ)

j k
(x j ,ρ)= (ρRk)ξ exp(ρRk x j )[1], R1 = i , R2 =−i , ξ= 0,1, ρ ∈Ω, |ρ|→∞, (20)

and the relations

ϕ j m(x j ,λ) =
2

∑

k=1

D j mk (ρ)y j k(x j ,ρ), (21)

y j k (x j ,ρ) =
2

∑

m=1

B j km(ρ)ϕ j m(x j ,λ) (22)

hold, where [1] = 1+O(ρ−β), β=min(1,2ν1, . . . ,2νp ), [D j mk (ρ)]m,k=1,2 = ([B j km(ρ)]k ,m=1,2)−1,

B j 1m(ρ) = b j mρµ j m [1], B j 2m(ρ)= b j m exp(iπµ j m)ρµ j m [1], b j 1b j 2 =−(i sinπν j )−1,

D j m1(ρ)= d j m exp(−iπµ j m)ρ−µ j m [1], D j m2(ρ)= d j mρ−µ j m [1],

d j 1 = b j 2/(2i ), d j 2 =−b j 2/(2i ).























(23)

Denote Ωδ := {ρ : arg ρ ∈ [δ,π−δ]}, δ> 0. It follows from (20), (21) and (23) that for each fixed

x j ∈ (0, l j ], ξ= 0,1,

ϕ
(ξ)
j 1

(x j ,λ) = (2i )−1b j 2ρ
ν j−1/2(−iρ)ξexp(−iρx j )[1], ρ ∈Ωδ, |ρ|→∞,

ϕ
(ξ)
j 2

(x j ,λ) =−(2i )−1b j 1ρ
−ν j−1/2(−iρ)ξexp(−iρx j )[1], ρ ∈Ωδ, |ρ|→∞.











(24)

Substituting (24) into (10) and using Lemma 1, we get for ρ ∈Ωδ, |ρ|→∞:

∆(ρ)=
(p +1)(iρ)

(2i )p

(

p
∏

j=1

b j 2

)

ρν1+...+νp−p/2 exp(−iρ(l1 + . . .+ lp ))[1],

∆k (ρ)=−
(p +1)(iρ)bk1

(2i )p bk2

(

p
∏

j=1

b j 2

)

ρν1+...+νp−p/2−2νk exp(−iρ(l1 + . . .+ lp ))[1].



























(25)
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By virtue of (15)-(17) and (24)-(25) one has for k = 1, p , ρ ∈Ωδ, |ρ|→∞:

Mk (λ) =
bk1[1]

bk2ρ2νk
,

Mk j (λ) =
(2i )2 exp(iρ(lk + l j ))[1]

i (p +1)bk2b j 2ρ
νk+ν j

, j 6= k .























(26)

Using the fundamental system of solutions {y j k (x j ,ρ)}k=1,2 we have

ψk j (x j ,λ) = ak j 1(ρ)y j 1(x j ,ρ)+ak j 2(ρ)y j 2(x j ,ρ), j = 1, p ,

ψk0(x0,λ) = ak0(ρ)e(x0,ρ).











(27)

It follows from (22) and (27) that

ψk j (x j ,λ) =
2

∑

s=1

ak j s(ρ)
2

∑

m=1

B j sm(ρ)ϕ j m(x j ,λ) =
2

∑

m=1

ϕ j m(x j ,λ)
2

∑

s=1

ak j s(ρ)B j sm(ρ).

Comparing with (14) we obtain

ak j 1(ρ)B j 11(ρ)+ak j 2(ρ)B j 21(ρ)= Mk j (λ),

ak j 1(ρ)B j 12(ρ)+ak j 2(ρ)B j 22(ρ)= δk j ,











(28)

where Mkk(λ) := Mk (λ). Solving this linear algebraic system and using (23), (26), we get for

ρ ∈Ωδ, |ρ|→∞:

akk1(ρ) =
[1]

bk2ρ
νk+1/2

,

ak j 1(ρ)=O(ρ−νk−1/2 exp(iρ(lk + l j ))), j 6= k .















(29)

We note that system (28) is not convenient for calculating ak j 2(ρ). In order to estimate ak j 2(ρ)

we substitute (27) into the matching conditions (12):

ak j 1(ρ)y j 1(l j ,ρ)+ak j 2(ρ)y j 2(l j ,ρ)−ak0(ρ)e(0,ρ)= 0, j = 1, p ,

p
∑

j=1

(ak j 1(ρ)y ′
j 1(l j ,ρ)+ak j 2(ρ)y ′

j 2(l j ,ρ))−ak0(ρ)e ′(0,ρ) = 0.



















(30)

Taking (30), (29) and (20) into account we infer

akk2(ρ) =O(ρ−νk−1/2 exp(2iρlk)), ρ ∈Ωδ, |ρ|→∞.

Together with (27) and (29) this yields, in particular,

ψ
(ξ)
kk

(xk ,λ) =
(iρ)ξexp(iρxk )[1]

bk2ρνk+1/2
, xk ∈ (0, lk ), ξ= 0,1, ρ ∈Ωδ, |ρ|→∞. (31)
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Together with L = L(Q ,h) we consider a boundary value problem L̃ = L(Q̃ , h̃) of the same

form but with Q̃ and h̃ instead of Q and h. Everywhere below if a symbol α denotes an object

related to L, then α̃ will denote the analogous object related to L̃.

According to assumptions of the theorem we assume that Mk (λ) ≡ M̃k (λ). Consider the

functions
Pk1(xk ,λ) =ϕk1(xk ,λ)ψ̃′

kk
(xk ,λ)−ψkk (xk ,λ)ϕ̃′

k1
(xk ,λ),

Pk2(xk ,λ) =ψkk (xk ,λ)ϕ̃k1(xk ,λ)−ϕk1(xk ,λ)ψ̃kk (xk ,λ).







(32)

Using (24), (31) and (32) we infer

Pks (xk ,λ) = δ1s +O(ρ−β), xk ∈ (0, lk ), ρ ∈Ωδ, |ρ|→∞. (33)

Since 〈ϕk1(xk ,λ),ϕk2(xk ,λ)〉 ≡ 1, it follows from (14) that

〈ϕk1(xk ,λ),ψkk (xk ,λ)〉 ≡ 1.

By virtue of (32) this yields

Pk1(xk ,λ)ϕ̃k1(xk ,λ)+Pk2(xk ,λ)ϕ̃′
k1(xk ,λ) =ϕk1(xk ,λ). (34)

Substituting (14) into (32) we obtain

Pk1(xk ,λ) =ϕk1(xk ,λ)ϕ̃′
k2(xk ,λ)−ϕk2(xk ,λ)ϕ̃′

k1(xk ,λ)

+(M̃k (λ)−Mk (λ))ϕk1(xk ,λ)ϕ̃′
k1(xk ,λ),

Pk2(xk ,λ) =ϕk2(xk ,λ)ϕ̃k1(xk ,λ)−ϕk1(xk ,λ)ϕ̃k2(xk ,λ)

+(Mk (λ)− M̃k (λ))ϕk1(xk ,λ)ϕ̃k1(xk ,λ).

Since Mk (λ) ≡ M̃k (λ), it follows that for each fixed xk , the functions Pks(xk ,λ) are entire in

λ of order 1/2. Together with (33) this yields Pk1(xk ,λ) ≡ 1, Pk2(xk ,λ) ≡ 0. Substituting these

relations into (34) we get ϕk1(xk ,λ) ≡ ϕ̃k1(xk ,λ) for all xk and λ, and consequently, Qk (xk ) =

Q̃k (xk ) a.e. on (0, lk ) and hk = h̃k . ���

Using the method of spectral mappings [25] for the Sturm-Liouville operator on the edge

ek one can get a constructive procedure for the solution of the inverse problem I P(k). Here we

only explain ideas briefly; for details and proofs see [25]. Choose L̃ such that ν̃k = νk . Denote

by λ′ the minimal eigenvalue of L and L̃, and take a fixed δ > 0. In the λ- plane we consider

the contour θ (with counterclockwise circuit) of the form θ = θ+ ∪ θ− ∪ θ′, where θ± = {λ :

±Imλ = δ; Reλ ≥ λ′}, θ′ = {λ : λ−λ′ = δexp(iα), α ∈ (π/2,3π/2)}. For each fixed xk ∈ (0, lk ),

the function ϕk1(xk ,λ) is the unique solution of the following linear integral equation

ϕk1(xk ,λ) = ϕ̃k1(xk ,λ)+
1

2πi

∫

θ
D̃k (xk ,λ,µ)ϕk1(xk ,µ)dµ, (35)
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where

D̃k (x,λ,µ) =
〈ϕ̃k1(xk ,λ),ϕ̃k1(xk ,µ)〉

λ−µ
M̂k (µ)d t , M̂k (µ) := Mk (µ)− M̃k (µ).

The potential Qk on the edge ek and the coefficient hk can be constructed from the solution

of the integral equation (35):

Qk (xk ) =λ+
ϕ′′

k1
(xk ,λ)

ϕk1(xk ,λ)
, hk =σk2(ϕk1).

The solution of Inverse problem 1 can be found by the following algorithm.

Algorithm 1.

(1) For each fixed k = 1, p , we solve I P(k) and find the potential Qk on the edge ek and the

coefficient hk .

(2) Calculate ϕkm(xk ,λ), m = 1,2, and ψkk (xk ,λ) via (14).

(3) Find ψk j (lk ,λ) for j ,k = 1, p using (12).

(4) Construct Mk j (λ), j = 1, p \ k by (14).

(5) Calculate ∆(ρ)/e(0,ρ) from (16).

(6) Construct G0(λ) and g0(λ) via (9).

(7) Find M0(λ) := e ′(0,ρ)/e(0,ρ) using (10).

(8) Construct the potential Q on e0 by solving classical inverse Sturm-Liouville problem on

the half-line from the Weyl function M0(λ) (see [23]).

Thus, executing Algorithm 1 we obtain the solution of Inverse problem 1 and prove its

uniqueness.
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