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WEIGHTED SHARING AND UNIQUENESS OF

MEROMORPHIC FUNCTIONS

HARINA P. WAGHAMORE AND TANUJA ADAVISWAMY

Abstract. In this paper, we study with a weighted sharing method the uniqueness prob-

lem of [ f nP ( f )](k) and [g nP (g )](k) sharing one value and obtain some results which ex-

tend and improve the results due to Hong-Yan Xu and Ting-Bin Cao.

1. Introduction

Let f be a non-constant meromorphic function in the whole complex plane. We shall use

the following standard notations of the value distribution theory:

T (r, f ), m(r, f ), N (r, f ), N (r, f ), . . .

(See Hayman [3], Yang [6] and Yi and Yang [7]). We denote by S(r, f ) any quantity satisfying

S(r, f ) = o(T (r, f )),

as r →+∞, possibly outside of a set with finite measure. For any constant ′a′, we define

Θ(a, f ) = 1− limsup
r→∞

N
(

r, 1
( f −a)

)

T (r, f )
,

Let ′a′ be a finite complex number and k a positive integer. We denote by Nk)

(

r, 1
( f −a)

)

the

counting function for the zeros of f (z)−a with the multiplicity ≤ k , and by N k)

(

r, 1
( f −a)

)

the

corresponding one for which the multiplicity is not counted. Let N(k

(

r, 1
( f −a)

)

be the counting

function for the zeros of f (z)− a with multiplicity atleast k , and N (k

(

r, 1
( f −a)

)

be the corre-

sponding one for which the multiplicity is not counted. Set

Nk

(

r, 1
( f −a)

)

= N
(

r, 1
( f −a)

)

+N (2

(

r, 1
( f −a)

)

+·· ·+N (k

(

r, 1
( f −a)

)

.
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We define

δk (a, f )= 1− limsup
r→∞

N k

(

r, 1
( f −a)

)

T (r, f )
.

Let g be a meromorphic function. If f (z)− a and g (z)− a, assume the same zeros with

the same multiplicities then we say that f (z) and g (z) share the value ′a′ CM, where ′a′ is a

complex number. Similarly, we say that f and g share a IM, provided that f (z)−a and g (z)−a

have same multiplicities.

In 1996, Fang proved the following result.

Theorem A([1]). Let f and g be two non-constant entire functions and let n, k be two positive

integers with n > 2k+4. If [ f n](k) and [g n](k) share the value 1 CM, then either f (z) = c1ecz and

g (z) = c2e−cz where c1, c2 and c are three constants satisfying (−1)k (c1c2)n(nc)2k = 1 or f = t g

for a constant t such that t n = 1.

In 1997, Yang and Hua obtained a unicity theorem corresponding to above result.

Theorem B([8]). Let f and g be two nonconstant entire functions, n ≥ 6 a positive integer. If

f n f ′ and g n g ′ share 1 CM, then either f (z) = c1ecz and g (z) = c2e−cz where c1, c2 and c are

three constants satisfying (c1c2)n+1c2 = 1 or f = t g for a constant t such that t n+1 = 1.

In 2002, Fang proved the following result.

Theorem C([2]). Let f and g be two non-constant entire functions and let n, k be two positive

integers with n > 2k +8. If [ f n( f −1)](k) and [g n(g −1)](k) share the value 1 CM, then f ≡ g .

In 2008, Zhang and Lin, Zhang, Chen and Lin extended Theorem C and obtain the fol-

lowing results.

Theorem D([10]). Let f and g be two non-constant entire functions and let n, m and k be

three positive integers with n > 2k +m + 4, and λ, µ be constants such that |λ| + |µ| 6= 0. If

[ f n(µ f m +λ)](k) and [g n(µg m +λ)](k) share 1 CM, then

(i) when λµ 6= 0, f ≡ g .

(ii) when λµ = 0, either f ≡ t g , where t is a constant satisfying t n+m = 1, or f (z) = c1ecz

and g (z) = c2e−cz where c1, c2 and c are three constants satisfying (−1)kλ2(c1c2)n+m[(n+
m)c]2k = 1 or (−1)kµ2(c1c2)n+m[(n +m)c]2k = 1.

Theorem E([11]). Let f and g be two non-constant entire functions and let n, m and k be

three positive integers with n > 2k +m +4, and let P(z) = am zm +am−1zm−1 +·· ·+a1z +a0 or

P(z) ≡ c0, where a0 6= 0, a1, . . . , am−1, am 6= 0,c0 6= 0 are complex constants. If [ f nP( f )](k) and

[g nP(g )](k) share 1 CM, then
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(i) when P(z) = am zm + am−1zm−1 + ·· · + a1z + a0, either f ≡ t g for a constant t such that

t d = 1, where d = (n +m, . . . ,n +m − i , . . . ,n), am−i 6= 0 for some i = 0,1, . . . ,m, or f and g

satisfy the algebraic equation R( f , g ) ≡ 0, where R(ω1,ω2) =ωn
1 (amωm

1 +am−1ω
m−1
1 +·· ·+

a1ω1 +a0)−ωn
2 (amωm

2 +am−1ω
m−1
2 +·· ·+a1ω2 +a0);

(ii) when P(z) = c0, either f (z) = c1/ n
p

c0ecz , g (z) = c2/ n
p

c0e−cz , where c1, c2 and c are three

constants satisfying (−1)k (c1c2)n(nc)2k = 1, or f = t g for a constant t such that t n = 1.

In 2009, H.-Y. Xu and T.-B. Cao proved the following result.

Theorem F([5]). Let f and g be two nonconstant entire functions, and let n, m and k be three

positive integers with n ≥ 5k +5m +8. If [ f nP( f )](k) and [g nP(g )](k) share (1,0), then the con-

clusion of Theorem E still holds.

Theorem G([5]). Let f and g be two nonconstant entire functions, and let n, m and k be three

positive integers with n > 9
2 m + 4k + 9

2 . If [ f nP( f )](k) and [g nP(g )](k) share (1,1), then the

conclusion of Theorem E still holds.

Theorem H([5]). Let f and g be two nonconstant entire functions, and let n, m and k be

three positive integers with n ≥ 3m+3k +5. If [ f nP( f )](k) and [g nP(g )](k) share (1,2), then the

conclusion of Theorem E still holds.

In this paper, by introducing the notion of multiplicity, we reduce and improve Theorems

F, G and H. Also we extend these theorems to meromorphic functions and obtain the following

results.

Theorem 1.1. Let f and g be two non-constant meromorphic functions, whose zeros and poles

are of multiplicities atleast s, where s is a positive integer. Let P( f ) = am f m +am−1 f m−1 +·· ·+
a1 f + a0, (am 6= 0), and ai (i = 0,1, . . . ,m) is the first nonzero coefficient from the right, and

let n, k, m be three positive integers. If [ f nP( f )](k) and [g nP(g )](k) share (1, l ) and one of the

following conditions holds:

(i) l ≥ 2 and s(n +m)> 3k +10

(ii) l = 1 and s(n +m)> 5k +13

(iii) l = 0 and s(n +m)> 9k +16

then either f = t g for a constant t such that t d = 1, where d = (n +m, . . . ,n +m − i , . . . ,n),

am−i 6= 0 for some i = 0,1, . . . ,m, or f and g satisfy the algebraic equation R( f , g ) ≡ 0, where

R(ω1,ω2) =ωn
1 P(ω1)−ωn

2 P(ω2).

Theorem 1.2. Let f and g be two non-constant entire functions, whose zeros and poles are of

multiplicities atleast s, where s is a positive integer. Let P( f ) = am f m+am−1 f m−1+·· ·+a1 f +a0,
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(am 6= 0), and ai (i = 0,1, . . . ,m) is the first nonzero coefficient from the right, and let n, k, m

be three positive integers. If [ f nP( f )](k) and [g nP(g )](k) share (1, l ) and one of the following

conditions holds:

(i) l ≥ 2 and s(n +m)> 3k +5

(ii) l = 1 and s(n +m)> 4k +6

(iii) l = 0 and s(n +m)> 5k +8

then either f = t g for a constant t such that t d = 1, where d = (n +m, . . . ,n +m − i , . . . ,n),

am−i 6= 0 for some i = 0,1, . . . ,m, or f and g satisfy the algebraic equation R( f , g ) ≡ 0, where

R(ω1,ω2) =ωn
1 P(ω1)−ωn

2 P(ω2).

Remark. In Theorem 1.2, giving specific values for s, we get the following interesting cases:

(i) If s = 1, then for l ≥ 2 we get n > 3k +5−m, for l = 1 we get n > 4k +6−m and for l = 0

we get n > 5k +8−m.

(ii) If s = 2, then for l ≥ 2 we get n > 3k+5
2

−m, for l = 1 we get n > 2k +3−m and for l = 0 we

get n > 5k+8
2 −m.

We conclude that if f and g have zeros and poles of higher order multiplicity, then we can

reduce the value of n.

2. Some Lemmas

Lemma 2.1 ([3]). Let f be a nonconstant meromorphic function, let k be a positive integer, and

let c be a nonzero finite complex number. Then

T (r, f ) ≤ N (r, f )+N

(

r,
1

f

)

+N

(

r,
1

f (k) −c

)

−N

(

r,
1

f (k+1)

)

+S(r, f )

≤ N (r, f )+Nk+1

(

r,
1

f

)

+N

(

r,
1

f (k) −c

)

−N0

(

r,
1

f (k+1)

)

+S(r, f ).

where N0

(

r, 1
f (k+1)

)

is the counting function which only counts those points such that f (k+1) = 0

but f ( f (k) −c) 6= 0.

Lemma 2.2 ([9]). Let f be a nonconstant meromorphic function and P( f ) = a0 + a1 f + ·· · +
an f n ,where a0, a1,. . . ,an are constants and an 6= 0. Then

T (r,P( f )) = nT (r, f )+S(r, f ).
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Lemma 2.3 ([4, 12]). Let f be a non-constant meromorphic function and k be a positive integer,

then

Np

(

r,
1

f (k)

)

≤ Np+k

(

r,
1

f

)

+k N(r, f )+S(r, f )

≤ (p +k)N

(

r,
1

f

)

+k N (r, f )+S(r, f ).

This Lemma can be obtained immediately from the proof of Lemma 2.3 in [4] which is the case

p = 2.

Lemma 2.4 ([13]). Let F and G be two nonconstant meromorphic functions. If F and G share

1 IM, then N L(r, 1
F−1 ) ≤ N (r, 1

F )+N (r,F )+S(r,F ).

Lemma 2.5 ([5]). Let f and g be two nonconstant entire functions, and let k be a positive

integer. If f (k) and g (k) share (1, l ) (l = 0,1,2). Then

(i) If l = 0,

Θ(0, f )+δk (0, f )+δk+1(0, f )+δk+1(0, g )+δk+2(0, f )+δk+2(0, g ) > 5, then either f (k)g (k) =
1 or f ≡ g ;

(ii) If l = 1,
1
2

[

Θ(0, f )+δk (0, f )+δk+2(0, f )
]

+δk+1(0, f )+δk+1(0, g )+Θ(0, g )+δk (0, g ) > 9
2 , then either

f (k)g (k) = 1 or f ≡ g ;

(iii) If l = 2,

Θ(0, f )+δk (0, f )+δk+1(0, f )+δk+2(0, g ) > 3, then either f (k)g (k) = 1 or f ≡ g .

Lemma 2.6. Let f and g be two nonconstant meromorphic functions, k (≥ 1) and l (≥ 0) be

integers. If f (k) and g (k) share (1, l ) (l = 0,1,2). Then

(i) If l ≥ 2,

(k + 2)Θ(∞, f )+ 2Θ(∞, g )+Θ(0, f )+Θ(0, g )+δk+1(0, f )+δk+1(0, g ) > k + 7, then either

f (k)g (k) = 1 or f ≡ g ;

(ii) If l = 1,

(2k +3)Θ(∞, f )+2Θ(∞, g )+Θ(0, f )+Θ(0, g )+δk+1(0, f )+δk+1(0, g )+δk+2(0, f ) > 2k +9,

then either f (k)g (k) = 1 or f ≡ g ;

(iii) If l = 0,

(2k +3)Θ(∞, f )+ (2k +4)Θ(∞, g )+Θ(0, f )+Θ(0, g )+2δk+1(0, f )+3δk+1(0, g ) > 4k +13,

then either f (k)g (k) = 1 or f ≡ g .

Proof. Let

Φ(z) =
(

f (k+2)

f (k+1)
−2

f (k+1)

f (k) −1

)

−
(

g (k+2)

g (k+1)
−2

g (k+1)

g (k) −1

)

. (2.1)
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Suppose that Φ(z) 6= 0. If z0 is a common simple 1-point of f (k)(z) and f (k)(z), substituting

their Taylor series at z0 into (2.1), we can get Φ(z0)= 0. Thus we have,

N 1)
E

(

r,
1

f (k) −1

)

= N 1)
E

(

r,
1

g (k) −1

)

≤ N

(

r,
1

Φ

)

≤ T (r,Φ)+O(1)

≤ N (r,Φ)+S(r, f )+S(r, g ), (2.2)

where N 1)
E

(

r, 1
f (k)−1

)

denotes the counting function of common 1-points of f (k) and g (k).

According to our assumption, Φ(z) has simple poles only at zeros of f (k+1), f (k) −1 and

g (k+1), g (k) −1 as well as poles of f and g .

From Lemma 2.1, we have

T (r, f )+T (r, g ) ≤ N (r, f )+N (r, g )+Nk+1

(

r,
1

f

)

+Nk+1

(

r,
1

g

)

+N

(

r,
1

f (k) −1

)

+N

(

r,
1

g (k) −1

)

−N0

(

r,
1

f (k+1)

)

−N0

(

r,
1

g (k+1)

)

+S(r, f )+S(r, g ). (2.3)

Obviously,

N

(

r,
1

f (k)−1

)

≤ T (r, f (k))+0(1) ≤T (r, f )+k N (r, f )+S(r, f ). (2.4)

If l ≥ 2, we have

N (r,Φ) ≤ N (r, f )+N

(

r,
1

f

)

+N (r, g )+N

(

r,
1

g

)

+N (l+1

(

r,
1

f (k) −1

)

+N0

(

r,
1

f (k+1)

)

+N0

(

r,
1

g (k+1)

)

, (2.5)

and

N (l+1

(

r,
1

f (k) −1

)

+N

(

r,
1

f (k) −1

)

+N

(

r,
1

g (k) −1

)

≤ N1)

(

r,
1

g (k) −1

)

+N

(

r,
1

f (k) −1

)

. (2.6)

From (2.2)−(2.6) we deduce that

T (r, g ) ≤ (k +2)N (r, f )+2N (r, g )+N

(

r,
1

f

)

+N

(

r,
1

g

)

+Nk+1

(

r,
1

f

)

+ Nk+1

(

r,
1

g

)

+S(r, f )+S(r, g ).

Without loss of generality, we suppose that there exists a set I with infinite linear measure

such that T (r,F )≤ T (r,G) for r ∈ I . Hence

T (r, g ) ≤ [(k +2)(1−Θ(∞, f ))+2(1−Θ(∞, g ))+ (1−Θ(0, f ))
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+ (1−Θ(0, g ))+ (1−δk+1(0, f ))+ (1−δk+1(0, g ))+ε]T (r, g )+S(r, g ),

for r ∈ I and 0 < ε<∆1 − (k +7), that is [∆1 − (k +7)−ε]T (r, g ) ≤ S(r, g ).

ie.,

∆1 ≤ (k +7), (2.7)

If l = 1, then

N (r,Φ) ≤ N (r, f )+N

(

r,
1

f

)

+N (r, g )+N

(

r,
1

g

)

+N (2

(

r,
1

f (k) −1

)

+N0

(

r,
1

f (k+1)

)

+N0

(

r,
1

g (k+1)

)

. (2.8)

Obviously,

N

(

r,
1

f (k) −1

)

+N

(

r,
1

g (k) −1

)

≤ N 1)
E

(

r,
1

f (k) −1

)

+N

(

r,
1

f (k) −1

)

. (2.9)

Thus, we deduce from (2.2)−(2.4), (2.8) and (2.9) that

T (r, g ) ≤ (k +2)N (r, f )+2N (r, g )+N

(

r,
1

f

)

+N

(

r,
1

g

)

+Nk+1

(

r,
1

f

)

+Nk+1

(

r,
1

g

)

+N (2

(

r,
1

f (k) −1

)

+S(r, f )+S(r, g ). (2.10)

Note that l = 1, from Lemma 2.3, we have

N (2

(

r,
1

f (k) −1

)

≤ N

(

r,
1

f (k+1)

)

= N1

(

r,
1

f (k+1)

)

≤ Nk+2

(

r,
1

f

)

+ (k +1)N (r, f )+S(r, f ). (2.11)

The inequality (2.10) together with (2.11) yields

T (r, g ) ≤ (2k +3)N (r, f )+2N (r, g )+N

(

r,
1

f

)

+N

(

r,
1

g

)

+Nk+1

(

r,
1

f

)

+Nk+1

(

r,
1

g

)

+Nk+2

(

r,
1

f

)

+S(r, f )+S(r, g ).

Hence

T (r, g ) ≤ [(2k +3)(1−Θ(∞, f ))+2(1−Θ(∞, g ))+ (1−Θ(0, f ))

+(1−Θ(0, g ))+ (1−δk+1(0, f ))+ (1−δk+1(0, g ))+ (1−δk+2(0, f ))

+ε]T (r, g )+S(r, g ),

for r ∈ I and 0 < ε<∆2 − (2k +9), that is [∆2 − (2k +9)−ε]T (r, g ) ≤ S(r, g ),

ie.,

∆2 ≤ (2k +9). (2.12)
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If l = 0, i.e., f (k) and g (k) share 1 IM, at this circumstance, we have

N (r,Φ) ≤ N (r, f )+N

(

r,
1

f

)

+N (r, g )+N

(

r,
1

g

)

+N L

(

r,
1

f (k) −1

)

+N L

(

r,
1

g (k) −1

)

+N0

(

r,
1

f (k+1)

)

+N0

(

r,
1

g (k+1)

)

. (2.13)

From Lemma 2.4, we have

N L

(

r,
1

f (k) −1

)

+2N L

(

r,
1

g (k) −1

)

≤ N (r, f )+2N (r, g )+N

(

r,
1

f (k)

)

+2N

(

r,
1

g (k)

)

+S(r, f )+S(r, g ). (2.14)

From Lemma 2.3, we can deduce that

N

(

r,
1

f (k)

)

+2N

(

r,
1

g (k)

)

= N1

(

r,
1

f (k)

)

+2 N1

(

r,
1

g (k)

)

≤ Nk+1

(

r,
1

f

)

+2Nk+1

(

r,
1

g

)

+k N(r, f )+2k N (r, g )+S(r, f )+S(r, g ). (2.15)

When l = 0, we can get

N

(

r,
1

f (k) −1

)

+N

(

r,
1

g (k) −1

)

≤ N 1)
E

(

r,
1

f (k) −1

)

+N L

(

r,
1

g (k) −1

)

+N

(

r,
1

f (k) −1

)

.

From (2.2)−(2.4) and (2.13)−(2.15) and the above inequality, we can obtain

T (r, g ) ≤ (2k +3)N (r, f )+ (2k +4)N (r, g )+N

(

r,
1

f

)

+N

(

r,
1

g

)

+2Nk+1

(

r,
1

f

)

+3Nk+1

(

r,
1

g

)

+S(r, f )+S(r, g ). (2.16)

In the same way, we can also get

T (r, g ) ≤ [(2k +3)(1−Θ(∞, f ))+ (2k +4)(1−Θ(∞, g ))+ (1−Θ(0, f ))

+(1−Θ(0, g ))+2(1−δk+1 (0, f ))+3(1−δk+1(0, g ))+ε]T (r, g )+S(r, g ),

for r ∈ I and 0 < ε<∆3 − (4k +13), that is [∆3 − (4k +13)−ε]T (r, g ) ≤ S(r, g ), ie.,

∆3 ≤ (4k +13), (2.17)

Hence, we get Φ(z) ≡ 0, ie.,

f (k+2)

f (k+1)
−2

f (k+1)

f (k) −1
=

g (k+2)

g (k+1)
−2

g (k+1)

g (k) −1
.

Integration yields

1

f (k) −1
≡

bg (k) +a −b

g (k) −1
,

where a and b are two constants and a 6= 0. By using the same argument as in [13], we can

obtain f (k)g (k) ≡ 1 or f ≡ g , we here omit the detail. The proof of Lemma 2.6 is completed.
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Lemma 2.7. Let f and g be two non-constant meromorphic functions, and let n(≥ 1), k(≥ 1)

and m(≥ 1) be a integers. Then

[ f nP( f )](k)[g nP(g )](k) 6= 1.

Proof. Let

[ f nP( f )](k)[g nP(g )](k) ≡ 1. (2.18)

Let z0 be a zero of f of order p0. From (2.18) we get z0 is a pole of g . Suppose that z0 is a pole

of g of order q0. Again by (2.18), we obtain np0 −k = nq0 +mq0 +k ,

i.e., n(p0 −q0) =mq0 +2k .

which implies that q0 ≥ n−2k
m

and so we have p0 ≥ n+m−2k
m

.

Let z1 be a zero of f −1 of order p1, then z1 is a zero of [ f nP( f )](k) of order p1−k . There-

fore from (2.18) we obtain p1 −k = nq1 +mq1 +k

i.e., p1 ≥ (n +m)s +2k .

Let z2 be a zero of f ′ of order p2 that is not a zero of f P( f ), then from (2.18) z2 is a pole

of g of order q2. Again by (2.18) we get p2 − (k −1) =nq2 +mq2 +k

i.e., p2 ≥ (n +m)s +2k −1.

In the same manner as above, we have similar results for the zeros of [g nP(g )](k).

On other hand, suppose that z3 is a pole of f . From (2.18), we get that z3 is the zero of

[g nP(g )](k).

Thus

N (r, f ) ≤ N

(

r,
1

g

)

+N

(

r,
1

g −1

)

+N

(

r,
1

g ′

)

≤
1

p0
N

(

r,
1

g

)

+
1

p1
N

(

r,
1

g −1

)

+
1

p2
N

(

r,
1

g ′

)

≤
[

m

n +m −2k
+

1

(n +m)s +2k
+

2

(n +m)s +2k −1

]

T (r, g )+S(r, g ). (2.19)

By second fundamental theorem and equation (2.19), we have

T (r, f ) ≤ N

(

r,
1

f

)

+N

(

r,
1

f −1

)

+N (r, f )

≤
m

n +m −2k
N

(

r,
1

f

)

+
1

(n +m)s +2k
N

(

r,
1

f −1

)

+
[

m

n +m −2k
+

1

(n +m)s +2k
+

2

(n +m)s +2k −1

]

T (r, g )+S(r, g )+S(r, f ).

T (r, f ) ≤
[

m

n +m −2k
+

1

(n +m)s +2k

]

T (r, f )
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+
[

m

n +m −2k
+

1

(n +m)s +2k
+

2

(n +m)s +2k −1

]

T (r, g )+S(r, g )+S(r, f ). (2.20)

Similarly, we have

T (r, g ) ≤
[

m

n +m −2k
+

1

(n +m)s +2k

]

T (r, g )

+
[

m

n +m −2k
+

1

(n +m)s +2k
+

2

(n +m)s +2k −1

]

T (r, f )+S(r, g )+S(r, f ). (2.21)

Adding (2.20) and (2.21) we get

T (r, f )+T (r, g ) ≤
[

2m

n +m −2k
+

2

(n +m)s +2k
+

2

(n +m)s +2k −1

]

{T (r, f )+T (r, g )}

+S(r, g )+S(r, f ).

which is a contradiction. Thus Lemma proved.

3. Proofs of the Theorems

In this section we present the proofs of the main results.

Proof of Theorem 1.1. Let F = f nP( f ) and G = g nP(g ).

Consider

N

(

r,
1

F

)

= N

(

r,
1

f nP( f )

)

≤
1

s(n +m)
N

(

r,
1

F

)

≤
2

s(n +m)
[T (r,F )+O(1)].

Θ(0,F ) = 1− limsup
r→∞

N
(

r, 1
F

)

T (r,F )
≥ 1−

2

s(n +m)
. (3.1)

Similarly,

Θ(0,G) ≥ 1−
2

s(n +m)
. (3.2)

Θ(∞,F ) = 1− limsup
r→∞

N (r,F )

T (r,F )
≥ 1−

1

s(n +m)
. (3.3)

Similarly,

Θ(∞,G) ≥ 1−
1

s(n +m)
. (3.4)

Consider

Nk+1

(

r,
1

F

)

= Nk+1

(

r,
1

f nP( f )

)

= (k +1)N

(

r,
1

f nP( f )

)

≤
(k +1)

s(n +m)
[T (r,F )+O(1)].

Next, we have

δk+1(0,F ) = 1− limsup
r→∞

Nk+1

(

r, 1
F

)

T (r,F )
≥ 1−

(k +1)

s(n +m)
. (3.5)
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Similarly,

δk+1(0,G) ≥ 1−
(k +1)

s(n +m)
. (3.6)

Case(i) If l ≥ 2 and from (3.1) to (3.6) and also from Lemma 2.6, we get

∆1 = (k +2)Θ(∞, f )+2Θ(∞, g )+Θ(0, f )+Θ(0, g )+δk+1(0, f )+δk+1(0, g )

> (k +8)−
3k +10

s(n +m)

Since s(n +m)> 3k +10, we get ∆1 > k +7.

Therefore, by Lemma 2.6, we deduce that either F (k)G (k) ≡ 1 or F ≡G .

If F (k)G (k) ≡ 1, that is

[ f n(am f m+am−1 f m−1+·· ·+a1 f +a0)](k)[g n(am g m+am−1g m−1+·· ·+a1g +a0)](k) ≡ 1, (3.7)

then by Lemma 2.7 we can get a contradiction.

Hence, we deduce that F ≡G , that is

f n(am f m +am−1 f m−1 +·· ·+a1 f +a0)= g n(am g m +am−1g m−1 +·· ·+a1g +a0). (3.8)

Let h = f
g . If h is a constant, then substituting f = g h in (3.8) we obtain

am g n+m(hn+m −1)+am−1g n+m−1(hn+m−1 −1)+·· · +a0g n(hn −1) = 0,

which implies hd = 1, where d = (n +m, . . . ,n +m − i , . . . ,n), am−1 6= 0 for some i = 0,1, . . . ,m.

Thus f ≡ t g for a constant t such that t d = 1, where d = (n +m, . . . ,n +m − i , . . . ,n), am−i 6= 0

for some i = 0,1, . . . ,m.

If h is not a constant , then we know (3.8) that f and g satisfy the algebraic equation

R( f , g )= 0, where R(ω1,ω2) =ωn
1 P(ω1)−ωn

2 P(ω2).

Case(ii) If l = 1 and from (3.1) to (3.6) and also from Lemma 2.6, we get

∆2 = (2k +3)Θ(∞, f )+2Θ(∞, g )+Θ(0, f )+Θ(0, g )+δk+1(0, f )+δk+1(0, g )+δk+2(0, f )

> (2k +10)−
5k +13

s(n +m)

Since s(n +m)> 5k +13, we get ∆2 > 2k +9.

By continuing as in case(i), we get case(ii).

Case(iii) If l = 0 and from (3.1) to (3.6) and also from Lemma 2.6, we get

∆3 = (2k +3)Θ(∞, f )+ (2k +4)Θ(∞, g )+Θ(0, f )+Θ(0, g )+2δk+1(0, f )+3δk+1(0, g )

> (4k +14)−
9k +16

s(n +m)
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Since s(n +m)> 9k +16, we get ∆2 > 4k +13.

By continuing as in case(i), we get case(iii).

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Since f and g are entire functions we have N (r, f ) = N (r, g ) = 0. Pro-

ceeding as in the proof of Theorem 1.1 we can easily prove Theorem 1.2.
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