ON h-PURIFIABLE SUBMODULE OF QTAG-MODULE

M. ZUBAIR KHAN AND GARGI VARSHNEY

Abstract. Different concepts and decomposition theorems have been done for QTAG-modules by a number of authors. The concept of quasi h-pure submodules were introduced and different characterizations were obtained in [5]. The purpose of this paper is to obtain the relation between purifiability of a submodule and quasi h-pure submodules. Further we obtained results which shows that purifiability of a submodule is very much dependent on the purifiability of a h-pure and h-dense submodule of the given submodule.

0. Introduction

S. Singh [9] introduced the concept of QTAG-module and did different decomposition theorems. A module M_R is called QTAG-module if it satisfies the condition: Every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules. Since the different concepts for QTAG-modules have been introduced by different authors and various results based on those concepts have been obtained. In [5], Mohd. Z. Khan and A. Zubair introduced the concept of quasi h-pure submodules and obtained various characterizations and their consequences. In this paper we continue the similar study in term of purifiability of submodules and obtained a characterization. We have also established a necessary and sufficient condition for a submodule to be h-purifiable.

1. Preliminaries

Rings considered here are with unity ($1 \neq 0$) and modules are unital QTAG-module. A module in which the lattice of its submodules is totally ordered is called a serial module; in addition if it has finite composition length it is called uniserial module. An element $x \in M$ is called uniform if xR is a non zero uniform (hence uniserial) submodule of M. If $x \in M$ is uniform then $e(x) = d(xR)$ (The composition length of xR), $H_M(x) = \sup \{d(yR/xR) / x \in yR \}

Received June 12, 2011, accepted March 11, 2014.
2010 Mathematics Subject Classification. Primary 16D70, 20K10.

Key words and phrases. h-dense submodule, almost h-dense submodule, h-pure submodule, h-neat Submodule, h-pure hull.

Corresponding author: M. Zubair Khan.
and \(y \in M \) is uniform \(x \) and height of \(x \) in \(M \) respectively. For any \(n \geq 0, H_n(M) = \{ x \in M | H_M(x) \geq n \} \). A submodule \(N \) of \(M \) is called \(h \)-pure in \(M \) if \(H_k(N) = N \cap H_k(M) \) for all \(k \geq 0, N \) is \(h \)-neat in \(M \) if \(H_1(N) = N \cap H_1(M) \). The module \(M \) is called \(h \)-divisible if \(H_1(M) = M \). For other basic concepts of QTAG-module one may see [2, 3, 4, 7, 8, 9].

2. Purifiability

Firstly we recall the following:

\textbf{Lemma A ([2])}. If \(A \) and \(B \) are any two uniserial submodules of a QTAG-module \(M \) such that \(A \cap B \neq 0 \) and \(d(A) \leq d(B) \). Then there exists a monomorphism \(\sigma : A \rightarrow B \), which is identity on \(A \cap B \).

\textbf{Definition 2.1 ([8])}. A submodule \(N \) of a QTAG-module \(M \) is called \(h \)-dense if \(M/N \) is \(h \)-divisible.

\textbf{Definition 2.2 ([7])}. A submodule \(N \) of a QTAG-module \(M \) is said to be almost \(h \)-dense in \(M \) if for every \(h \)-pure submodule \(K \) of \(M \) containing \(N \), \(M/K \) is \(h \)-divisible.

Now we restate the following:

\textbf{Theorem 2.3 ([7], Theorem 5)}. A submodule \(N \) of a QTAG-module \(M \) is almost \(h \)-dense in \(M \) if and only if \(N + H_n(M) \supseteq \text{Soc}(H_{n-1}(M)) \) for all \(n \geq 1 \).

Now before defining the \(h \)-purifiable submodule, we would like to adopt the following notations and results from [5].

\textbf{Notation 2.4 ([5])}. For any non-negative integer \(t \) and for a submodule \(N \) of a QTAG-module \(M \), we denote by \(N^t(M) \) the submodule \((N + H_{t+1}(M)) \cap \text{Soc}(H_t(M)) \), by \(N_t(M) \) the submodule \((N \cap \text{Soc}(H_t(M))) + \text{Soc}(H_{t+1}(M)) \) and by \(Q_t(M, N) = N^t(M)/N_t(M) \).

It is trivial to see that

\[N^t(M) = (N + H_{t+1}(M)) \cap \text{Soc}(H_t(M)) = \text{Soc}(N \cap H_t(M) + H_{t+1}(M)) \]

and

\[N_t(M) = (N \cap \text{Soc}(H_t(M))) + \text{Soc}(H_{t+1}(M)) = (\text{Soc}(N))^t(M) \]
Theorem 2.5 ([5], Theorem 4.2). If N and K are submodules of QTAG-module M such that $N \subseteq K$ and K is h-pure in M, then the module $Q_n(M, N)$ and $Q_n(K, N)$ are isomorphic, for all n.

Theorem 2.6 ([5], Theorem 4.3). If N is h-neat submodule of M, then N is h-pure in M if and only if $Q_n(M, N) = 0$ for all $n \in Z^+$.

Now we define h-purifiable submodule:

Definition 2.7. A submodule N of a QTAG-module M is called h-purifiable in M if there exists a submodule K of M minimal among the h-pure submodules of M containing N.

Such K is called h-pure hull of N in M.

Now we restate the following:

Theorem 2.8 ([6]). A submodule N of a QTAG-module M is h-purifiable in M if and only if there exists a h-pure submodule K of M such that $Soc(H_n(K)) \subseteq N \subseteq K$ for some $n \in Z^+$.

Proposition 2.9. If N is a h-purifiable submodule of a QTAG-module M; then there exists $m \in Z^+$ such that $Q_n(M, N) = 0$ for all $n \geq m$.

Proof. If N itself is an h-pure submodule, then by [5, Theorem 4.7], $Q_n(M, N) = 0$ for all $n \geq 0$. Now appealing Theorem 2.8, we get an h-pure submodule K of M and $m \in Z^+$ such that $Soc(H_m(K)) \subseteq N \subseteq K$. Now for $n \geq m$ it is trivial to see that $N^n(K) = (N + H_{n+1}(K)) \cap Soc(H_n(K)) = Soc(H_n(K)) = N_n(K)$. Hence, $Q_n(K, N) = 0$ for all $n \geq m$. Therefore from Theorem 2.5, we get $Q_n(M, N) = 0$ for all $n \geq m$.

Now we generalize [1, Theorem 66.3] and is of very interesting nature.

Theorem 2.10. If M is a QTAG-module then every h-dense subsocle of M supports an h-pure and h-dense submodule.

Proof. Let S be a subsocle of M and S be h-dense; then $Soc(M) = S + Soc(H_k(M))$ for all $k \in Z^+$. Let N be maximal with the property $Soc(N) = S$. Firstly we show that N is h-neat submodule of M. Let x be a uniform element in $N \cap H_1(M)$, then for a uniform element $y \in M$, we have $d(yR/xR) = 1$. If $y \in N$, then $x \in H_1(N)$. Let $y \notin N$ then $S \subseteq Soc(N + yR)$. Hence, there exists a uniform element $z \in Soc(N + xR)$ such that $z \notin S$ and $z = u + yr$ where $u \in N$ and $r \in R$. Trivially $yrR = yR$, hence without any loss of generality we can assume $z = u + y$. Define $\eta : yR \rightarrow uR$ such that $\eta(yr) = ur$. Let $yr = 0$, then $zr = ur$. If $zrR = zR$ then $z \in S$, a contradiction, therefore $zr = 0$ and we get $ur = 0$, consequently η is a well defined epimorphism. Therefore, uR is a uniform submodule. Since $u+y \in Soc(M)$, $H_1(uR) =$
$H_1(yR)$, but xR is a maximal submodule of M; hence $H_1(yR) = xR$ and we get $x \in H_1(N)$. Thus, $N \cap H_1(M) = H_1(N)$. Now suppose $N \cap H_n(M) = H_n(N)$ and let x be a uniform element in $N \cap H_{n+1}(M)$; then $d(yR/xR) = 1$ for some uniform element $y \in H_n(M)$. Since N is h-neat in M, there is a uniform element $y' \in N$ such that $d(y'xR/xR) = 1$. Hence by Lemma A, there is an isomorphism $\sigma : yR \to y'R$ which is identity on xR. The map $\eta : yR \to (y - y')R$ where $\sigma(y) = y'$ is an epimorphism with $xR \subseteq \ker \eta$. Hence, $e(y - y') \leq 1$ and we get $y - y' \in \soc(M) = S + \soc(H_n(M))$. Therefore, $y - y' = s + t$ for some $s \in S, t \in H_n(M)$. Consequently, $y - t = y' + s \in N \cap H_n(M) = H_n(N)$. Since $y - y' = s \in \soc(M), H_1(yR) = H_1((y' + s)R) \subseteq H_{n+1}(N)$. Hence, $x \in H_{n+1}(N)$. Therefore, N is h-dense submodule of M.

Now let $\tilde{x} \in \soc(M/N) = (\soc(M) + N)/N$ be a uniform element; then by [Lemma 3.9, 9] there exists a uniform element $x' \in M$ such that $\tilde{x} = \tilde{x}'$ and $e(x') = 1$. Since $\soc(M) = S + \soc(H_k(M))$ for all k, we get $\tilde{x} \in H_k(M/N)$ for every k. Hence, $\tilde{x} \in \cap_{k=1}^{\infty} H_k(M/N)$

Observation: Using the notations used earlier, the h-purity can be established as: Since $\soc(M) = \soc(N) + \soc(H_k(M))$ for all $k \in Z^+$, it is easy to see that $N^n(M) = N_n(M)$ and $Q_n(M, N) = 0$ for all $n \in Z^+$. Since N is h-neat, therefore by [5, Theorem 4.7], N is h-pure in M.

Theorem 2.11. If N is almost h-dense submodule of a QTAG-module M. Then N is h-purifiable in M if and only if there exists $m \in Z^+$ such that $Q_n(M, N) = 0$ for all $n \geq m$.

Proof. Let N be h-purifiable then by Theorem 2.9, we get $Q_n(M, N) = 0$ for all $n \geq m$. Conversely, suppose that $Q_n(M, N) = 0$ for all $n \geq m$ and N is almost h-dense in M. Then $N^n(M) = N_n(M) = \soc(N \cap H_n(M)) + \soc(H_{n+1}(M))$. Since N is almost h-dense in M, therefore by Theorem 2.3, we get $\soc(H_n(M)) = \soc(N \cap H_n(M)) + \soc(H_{n+1}(M))$ for all $n \geq m$. Therefore, $\soc(N \cap H_m(M))$ is h-dense subsocle of $H_m(M)$. Now appealing to Theorem 2.10, we can find an h-pure submodule K of $H_m(M)$ such that $\soc(K) \subseteq N \cap H_m(M) \subseteq K$. It is easy to see that $H_m(M)/K$ is h-divisible submodule of M/K and $H_m(M)/K \cap (N + K)/K = 0$. Hence there exists a submodule T/K such that $(N + K)/K \subseteq T/K$ and $M/K = H_m(M)/K \oplus T/K$. Now by [Proposition 2.5, 4], T is h-pure submodule of M. Trivially $T \cap H_m(M) = K$, but $T \cap H_m(M) = H_m(T)$; so $H_m(T) = K$. Hence, $\soc(H_m(K)) \subseteq \soc(K) \subseteq N$. Hence by Theorem 2.8, we get N to be h-purifiable.

3. Role of h-pure and h-dense submodules

In this section we show that h-purifiability of a submodule depends upon the h-purifiability of an h-pure and h-dense submodule of the given submodule.
Firstly we prove the following results for obtaining a necessary and sufficient condition for h-purifiability.

Theorem 3.1. *If B is an h-pure and h-dense submodule of a submodule K of a QT AG-module M, then $Q_n(M, N) = Q_n(M, B)$ for all $n \in \mathbb{Z}^+$.***

Proof. Since B is h-dense in K, then we have $K = B + H_{n+1}(K)$ for all $n \geq 0$ and hence, $K + H_{n+1}(M) = B + H_{n+1}(M)$. Therefore, $K^n(M) = B^n(M)$ for all $n \geq 0$.

Further, $K_n(M) = (\text{Soc}(K))^n(M) = (\text{Soc}(K) + H_{n+1}(M)) \cap \text{Soc}(H_n(M))$. Now appealing to [3, Prop.6], we get

$$K_n(M) = \left(\text{Soc}(B) + \text{Soc}(H_{n+1}(K)) + H_{n+1}(M)\right) \cap \text{Soc}(H_n(M))$$

$$= \left(\text{Soc}(B) + H_{n+1}(M)\right) \cap \text{Soc}(H_n(M))$$

$$= B_n(M)$$

Hence, $Q_n(M, K) = Q_n(M, B)$.

Proposition 3.2. *If B is an h-pure and h-dense submodule of a submodule K of a QT AG-module M. If K is h-purifiable in M, then B is h-purifiable in M.***

Proof. Let T be a h-pure hull of K in M. Since B is h-dense in K we get, K/B is h-divisible, so $T/B = K/B \oplus L/B$. Appealing to [Proposition 2.5, 4] we get, L to be a h-pure submodule of T and hence L is h-pure in M. Let N be a h-pure submodule of M such that $B \subseteq N \subseteq L$. Then we claim that $K + N$ is a h-pure submodule of M. Since $K = B + H_n(K)$, we have $K + N = H_n(K) + N$. Therefore,

$$(K + N) \cap H_n(M) = (H_n(K) + N) \cap H_n(M)$$

$$= H_n(K) + (N \cap H_n(M))$$

$$= H_n(K) + H_n(N)$$

$$= H_n(K + N)$$

for all $n \geq 0$.

Since T is a h-pure hull of K in M, we have $K + N = T$ and

$$L = (K + N) \cap L = N + (K \cap L) = N + B = N$$

Therefore, L is a h-pure hull of B in M.

Proposition 3.3. *If B is a h-pure and h-dense submodule of a submodule K of a QT AG-module M and if N be a h-pure hull of B in M and $\text{Soc}(N) = \text{Soc}(B)$, then $K + N$ is a h-pure hull of K in M.***
Proof. Since \(K/B \) is \(h \)-divisible, we have \(K = B + H_n(K) \). Now \(K + N = B + H_n(K) + N = N + H_n(K) \) and hence \((K + N) \cap H_n(M) = (N + H_n(K)) \cap H_n(M) = H_n(K) + N \cap H_n(M) = H_n(K) + H_n(N) = H_n(K + N) \) for all \(n \geq 0 \). Therefore, \(K + N \) is \(h \)-pure submodule of \(M \). Since \(\text{Soc}(N) = \text{Soc}(B) \), so \(\text{Soc}(K \cap N) = \text{Soc}(B) \), so \(N \cap K \) is an essential extension of \(B \) in \(K \). Since \(h \)-pure submodules have no proper essential extensions, therefore we get, \(K \cap N = B \). Now we show that \(\text{Soc}(K + N) = \text{Soc}(K) \), which will yield that \(N + K \) is \(h \)-pure hull of \(K \) in \(M \). Using [Lemma 1, 2] we can proceed as: If \(x \in \text{Soc}(K + N) \) then \(H_1(xR) = 0 \) and \(x = k + t \) where \(k \in K, t \in N \), then \(H_1(tR) = H_1(kR) \subseteq N \cap K = B \cap H_1(K) = H_1(B) \). Hence, \(H_1(tR) = H_1(kR) = H_1(bR) \) for \(b \in B \). Hence, \(k - b \in \text{Soc}(K) \) and \(t + b, t - b \in \text{Soc}(N) = \text{Soc}(B) \). Hence \(x = k - b + b + t \in \text{Soc}(K) \) and we get \(\text{Soc}(K + N) = \text{Soc}(K) \).

Proposition 3.4. If \(K \) is a \(h \)-pure hull of a submodule \(N \) of a QTAG-module \(M \) such that \(\text{Soc}(K) \neq \text{Soc}(N) \). Then there exists \(m \in \mathbb{Z}^+ \) such that \(Q_m(M, N) \neq 0 \).

Proof. From Theorem 2.8 and Theorem 2.3, there exists \(n \in \mathbb{Z}^+ \) such that \(\text{Soc}(H_n(K)) \subseteq N \) and \(\text{Soc}(H_t(K)) \subseteq N + H_{t+1}(K) \) for all \(t \geq 0 \). Since \(\text{Soc}(K) \neq \text{Soc}(N) \), the smallest \(n \) such that \(\text{Soc}(H_n(K)) \subseteq N \), we have \(n \neq 0 \).

Now taking \(n = m - 1, N^m(K) = \text{Soc}(H_m(K)) \) while \(N_m(K) \subseteq N \). Therefore, \(N^m(K) \neq N_m(K) \) but by [5, Theorem 2.1], \(Q_m(M, N) \equiv Q_m(M, K) \neq 0 \). Hence, \(Q_m(M, N) \neq 0 \).

Proposition 3.5. Let \(N \) be a submodule of a QTAG-module \(M \). If \(N \) is \(h \)-purifiable in \(M \), then \(N \cap H_n(M) \) is \(h \)-purifiable in \(H_n(M) \) for all \(n \geq 0 \). Conversely, if \(N \cap H_n(M) \) is \(h \)-purifiable in \(H_n(M) \) for some \(n \geq 1 \), then \(N \) is \(h \)-purifiable in \(M \).

Proof. Let \(K \) be \(h \)-pure hull of \(N \) in \(M \), then trivially \(H_n(K) \) is \(h \)-pure submodule \(H_n(M) \) for all \(n \in \mathbb{Z}^+ \). Also \(H_n(K) = K \cap H_n(M) \supseteq N \cap H_n(M) \).

Now we claim that \(H_n(K) \) is \(h \)-pure hull of \(N \cap H_n(M) \) in \(H_n(M) \). Let \(T \) be \(h \)-pure submodule of \(H_n(M) \) such that \(H_n(K) \supseteq T \supseteq N \cap H_n(M) \). Trivially \(N \cap H_n(K) \subseteq N \cap H_n(M) \) and \(N \cap H_n(K) \supseteq T \cap N \supseteq N \cap H_n(M) \); consequently \(H_n(K) \supseteq T \supseteq N \cap H_n(M) = N \cap H_n(K) \). Now appealing to [Theorem 4.12, 5], we can extend \(N + T \) to an \(h \)-pure submodule \(D \) of \(K \) such that \(D \cap H_n(K) = T \) (we can note that \((N + T) \cap H_n(K) = T + N \cap H_n(K) = T \)). Thus, \(D = K \) and we get \(H_n(K) = T \). Hence, \(H_n(K) \) is \(h \)-pure hull of \(N \cap H_n(M) \) in \(H_n(M) \). Conversely, let \(N \cap H_n(M) \) be \(h \)-purifiable in \(H_n(M) \) and \(T \) be \(h \)-pure hull of \(N \cap H_n(M) \) in \(H_n(M) \). Then as done above \((N + T) \cap H_n(M) = T \) and \(N + T \) can be extended to an \(h \)-pure submodule \(K \) of \(M \) such that \(K \cap H_n(M) = T \). Clearly \(T = H_n(K) \). Appealing to Theorem 2.8 there exists \(m \in \mathbb{Z}^+ \) such that \(\text{Soc}(H_m(T)) \subseteq H_n(M) \); so \(\text{Soc}(H_m+1(K)) \subseteq N \subseteq K \). Hence by Theorem 2.8, \(N \) is \(h \)-purifiable in \(M \).

Theorem 3.6. If \(N \) is a submodule of a QTAG-module \(M \). Then \(N \) is \(h \)-purifiable if and only if all basic submodules of \(N \) are \(h \)-purifiable.
Proof. Let all basic submodules of N be h-purifiable. Then by Theorem 3.1 and Theorem 2.11, there exists $m \in \mathbb{Z}^+$ such that $Q_n(M, N) = 0$ for all $n \geq m$. Hence $Q_n(H_m(M), N \cap H_m(M)) = 0$ for all $n \geq 0$. Let B be a basic submodule of $N \cap H_n(M)$; then $N/B = (N \cap H_n(M))/B \oplus T/B$ and we get T to be h-pure in N (see [Proposition 2.5, 4]) also $T/B \cong N/(N \cap H_m(M)) \cong (N + H_m(M))/H_m(M)$ is trivially bounded. Hence, T is also a direct sum of uniserial modules and we get T to be a basic submodule of N. As given, T is h-purifiable in M, therefore $T \cap H_m(M) = B$ is h-purifiable in $H_m(M)$ by Proposition 3.5; consequently B is h-purifiable basic submodule of $N \cap H_m(M)$ in $H_m(M)$, and $Q_n(H_m(M), B) = 0$ for all $n \geq 0$. Now let L be a h-pure hull of B in $H_m(M)$, then $Q_n(L, B) = 0$ for all $n \geq 0$, and by Proposition 3.4, $Soc(L) = Soc(B)$. Hence by Proposition 3.3, $N \cap H_m(M)$ is h-purifiable in $H_m(M)$ and so by Proposition 3.5, N is h-purifiable in M. The converse follows from Theorem 3.2.

Lastly we prove the following result which is of particular interest.

Theorem 3.7. If N is almost h-dense submodule of a QTAG-module M and K is h-pure hull of $Soc(N)$. Then $Q_n(M, N) \cong (Soc(H_n(M)) + K)/(Soc(H_{n+1}(M)) + K)$ for all $n \in \mathbb{Z}^+$.

Proof. As N is almost h-dense in M, then appealing to Theorem 2.3, we have $N^n(M) = Soc(H_n(M))$ Since K is h-pure hull of $Soc(N)$ in M, $Soc(K) = Soc(N)$. Therefore, $N_n(M) = Soc(N \cap H_n(M)) + Soc(H_{n+1}(M)) = Soc(H_n(K)) + Soc(H_{n+1}(M))$. So we get $Q_n(M, N) = Soc(H_n(M))/(Soc(H_n(K)) + Soc(H_{n+1}(M)))$. Now we define a map $\eta : Q_n(M, N) \longrightarrow (Soc(H_n(K)) + K)/(Soc(H_{n+1}(M)) + K)$ given as $\eta(x + Soc(H_n(K)) + Soc(H_{n+1}(M))) = x + Soc(H_{n+1}(M)) + K$. Then trivially η is well defined and onto homomorphism. Now we show that η is one-one. Let $x + Soc(H_n(K)) + Soc(H_{n+1}(M)) \in Ker \eta$, then $x \in Soc(H_{n+1}(M)) + K$, so $x = y + k$, $y \in Soc(H_{n+1}(M))$, $k \in K$ and we get $x - y = k \in K \cap Soc(H_n(M))$ but K is h-pure in M; hence $x - y \in Soc(H_n(K))$, which yields $x \in Soc(H_n(K)) + Soc(H_{n+1}(M))$. Therefore, Ker $\eta = 0$ and we get η to be an isomorphism.

References

Department of Mathematics, Aligarh Muslim University, Aligarh, India.
E-mail: mz_alig@yahoo.com

Department of Applied Sciences and Humanities, ABES Engineering College, Ghaziabad, India.
E-mail: gargi2110@gmail.com