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LYAPUNOV-TYPE INEQUALITY FOR THIRD-ORDER
HALF-LINEAR DIFFERENTIAL EQUATIONS

JOZEF KISELAK

Abstract. In this paper, we give a proof of a Lyapunov-type inequality for third-order half-
linear differential equations. Then some applications, e.g. the distance between consec-
utive zeros of a solution, are studied with the help of the inequality.

1. Introduction

In this paper, we generalize the Lyapunov inequality for linear third-order differential
equation
y'+py=0 1

for a class of half-linear differential equations of the third-order. It is well known [6] that
if p € Cla, b] and x(¥) is nonzero solution of (1) s.t. x(a) = x(b) = 0 (a < b) and there exist
d € la,b] s.t. y"(d) =0, then the following inequality holds:

b
f Ip(t)|ds> )

4
(b-a)*
Such result has found many practical uses in problems as oscillation theory or eigenvalue
problems (spectral properties of differential equations). There are several generalizations in
the literature. For higher-order linear differential equations see e.g. [1, 8] and for certain
nonlinear higher-order differential equations see [5]. Development of theory of differential
equations together with practical problems bring also delayed type of equations. If one is in-
terested along this line see [7], where authors handle with the third-order delay differential
equations. We study here a special type of nonlinear differential equations, of which the so-
lution space possesses homogeneity property but lacks for additivity property. Second-order
half-linear differential equations have been widely studied in recent years and there is a nice
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overview in the monograph [2]. Less literature exists, which deals with such equations of

higher-order (especially odd-order differential equations), but one can see for example [4].

2. Main results

We are concerned with the third-order half-linear differential equation

(0 [ oa )
no T |\ Pe

where a; >0, a; >0, g€ C([a,b],R), and Oy[x] := |x|*1x, @ > 0, known as signed-power

) +q (1) Pplyl =0, (E)

function. Moreover we assume that (r;) ! € C3k([a, b, (0,00)), k=1,2, and to preserve men-
tioned homogeneity property we also demand that 8 = a; @,. Equation (E) can be written by
means of quasi-derivatives with respect to the coefficients r; and functions ®,,, i =1,2. We
will denote them as follows:

D@ﬂn=ﬂm

0= —
"y ri(0) Pa;

d
3) _
J/(t) = _dtD J/(t)-

z 1)
dt y(t)] 1,2 (4)

A solution of (E) is said to be oscillatory (nonoscillatory) if it has (has not) a sequence of ze-
ros converging to infinity. Equation (E) is oscillatory if all its solutions are oscillatory and
nonoscillatory otherwise. If a solution of (E) has two consecutive zeros a < b, then there can
two cases occur. Either there exista d € [a, D] s.t. %D(D y(d)=0or %D(D y(t) #0for t € [a,b].
The first case illustrates the following assertion.

Theorem 2.1. If y(t) is a nonzero solution of (E) satisfying y(a) = y(b) = 0 and there exist a
d (1)
dela,b]s.t. ED y(d)=0. Then

==

b
2(] Iq(t)ldt) > H[lir},]h(‘:)’ ®)

1 1

where h(c) = -

+ .
L L 4 L
Jarytde (f,f ra ()7 dt) o fhyide (fcb ro(£)72 dt) g
Proof. We first define functions yi, k=0,1,2, as follows:
¥0:=Dy,
d

dtyl 1] i=12 (6)

y D(l) y(t) 1 a [
0l
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Equation (E) is then equivalent to the following differential system:

_1
Vi=rin@ @) [yin], i=0,1
Y2 ==q() @pyol. (7)

Condition yg(a) = yo(b) =0 gives us existence of ce (a, b) s.t. y(’)(c) =0and |yy(c)|= n[la)lg] [Vo(B)].
tela,

It follows from the latter that y; (¢) = 0. By integrating the first equation of the system (7) from
ato ¢ we obtain

c 1
Yole) = f r (0@ [ (01dy,
a
which implies

1300 sf FI () |y (0] d. ®)

Now let  be in [a, c]. From the fact that y;(c) =0 and y;(¢) = fct y;(s)ds we get

|y1(t)|5f FEE (0)1y2(0)] dt. 9)

Further, from the second condition of the assumptions and relations (6) or (7), we know that

t
¥2(d) =0, which implies y,(t) = —/ q(s)®glyo(s)lds for ¢ € [a, c]. Moreover we have
d

b
I)’z(t)|<|J/0(C)|ﬁf lg(n)|dt. (10)

Combining inequalities (8)-(10), we get

c L c L a (b
|yo(c)|<|yo(c)|f r{”mdr(f r;Z(t)dt) (f Iq(t)ldt) ,

c oL c L a (b
1<f rl‘”(t)dt(f rz“z(t)dt) (f Iq(t)ldt) : (1n

Analogously, we can get

=l

which implies

>

b L b L % b %
1<f rlal(t)dt(f rzaz(t)dt) (f Iq(t)ldt) . (12)

But (11) and (12) together imply (5). Moreover, it is obvious that h takes its minimum in (a, b),

since it is continuous there and lim+ h(c) = liril h(c) = oco. Oa
c—a c—b~

In the case that %D(” y(t) #0 for t € [a, b], we consider three consecutive zeros of y(f).

We give only sketch of the proof as it is almost copy of the previous one.
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Theorem 2.2. If y(¥) is a nonzero solution of (E) satisfying y(a) = y(d) = y(b) =0, d%D(D y(t) #
0 fortela,d] and y(t) #0 for t € (a,d) U (d, b). Then inequality (5) holds.

Proof. Conditions yy(a) = yo(d) = yo(b) = 0 give us existence of ¢, € (a,d), ¢ € (d, D), s.t.
y1(c1) = y1(c2) = 0 and further application of Rolle’s theorem gives us existence of e € (cy, ¢2),
s.t. y2(e) = 0. Denoting by c € (a,d) U (d, b) a point where tIeI[lz%J [v0()| = yo(c)| and using
previous procedure it can be proved that inequality (5) holds. Notice, that there can not be
problem with continuity of & on (a, b). a

Remark 2.1. Put r1 () = r»(t) = 1. Since h attains minimum at ¢ = %b, then (5) reduces to

b 2 as(a+1)
f q(o)ldt > (—) .
a b_a

Notice that in case a; = a2 = 1 this inequality reduces to (2), which appears in the classical
result.

Remark 2.2. Put r1(t) = ro(t) = r(t) and a; = a, = a then (5) reduces to

b 2 a(a+1)
f lg(n)|dt > (ﬁ) )
a S r(nadr

a

since f; r(t)é dtr= fcb r(t)é dr = %fab r(t)é dt must hold for ¢ in order to minimize h on (a, b)

(c =R7! (W) , where R is antiderivative of rﬁ).

3. Applications
Further we introduce some applications of the previous results for reduced equation (E).

Theorem 3.1. Let y(t) be an oscillatory solution of the reduced (r\(t) = ro(t) = 1) equation
(E) with increasing sequence of zeros {132, and q € LF([0,00],R), p € [1,00). Then distances
between consecutive zeros {ty.1 — tx} or {tx+2 — ti} goes to infinity.

Proof. In a proof by contradiction we suppose that, in the case that %D(D y(t) = 0 for some
t € [tg, ty4+1] for everylarge k, is not true that {f;,1 — 5} — co. Hence, there exist a subsequence
{tr, Y0, s-t. (fx,,, — Ix,) < K for every n, (K> 0). Let %D(D y(ck,) =0 for ¢y, € [tx,, tk,,,] and

max |y(#)| = |y(dy,)| where dy, € (ty,, tx

te[tkn’tknﬂ

that ¢, < di,. Then it follows that

f gl 2
(n|dt > (7
iy q dkn - tkn

). Without loss of generality we can assume

n+1

)ﬁ+a2
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From integrability of g we have

0o 2,B+a2 H
f lgoFde<|——] ,
tkn Kﬁ+(l2+ﬁ

for sufficiently large n and % + %t = 1. Therefore using Hélder inequality we obtain

1 1
di — ty Praz et (tr,., — Lk )ﬁ+a2+ﬁ Tknan ;7
1< |——=2 nidr< —24——-" f t “dt) <
(F3) [ aw ([ awran
(tk — 1t )ﬁ+a2+,% oo ﬁ Kﬁ"'az*'% 2ﬁ+a2
< st ~ P (f Iq(t)l”dt)) < =1
2pB+a: fh 20+, Kﬁ+a2+ﬁ

a contradiction.

Now suppose that d%D(l) y(t) #0 for t € [ty, tx+1] (for some large k). In this case we con-

sider three consecutive zeros i < fx41 < lx+2. Suppose that there exist subsequence {172,

s.t. (fx,., — tx,) < Mforeveryn, (M >0)and $DW y(r) #0for t € [1,, tx 0,

there exists a ¢, € [fx,.,, Ik,,,] such that %D(D ¥(ck,) =0. Nowset max |y(#)|=Ily(dx,)l
LE | lkprThyyyn
where dy, € (tx,, tk,.,) U (tk,.,» tk,.,)- If di, € (tk,., tk,.,) then we can proceed as in the previ-

el .. Since y(fg,.,) =

ous part of the proof. If di, € (i, tk,,,), then it follows that

tkn+2 | |d 2
(0)|dt > (—
ftk,, 1 dr, — tk,

Therefore using Holder inequality we obtain a contradiction as in the first part of the

),34'062

proof. O

The following theorems give us an estimation (upper bound) of the number of zeros of

an oscillatory solution of reduced equation (E) on bounded interval [0, T].

Theorem 3.2. If y(t) is an oscillatory solution of reduced (r,(t) = ro(t) = 1) equation (E) with
zerosO< 1 <th<---<ty<T and d%D(l)y(ek) =0 for some ey € [ty, tyk+1), k=1,2,..., N-1.

Moreover let f+ay =1, then

T
T/”“Zf lg(0)|de> 2P+ (N —1)frazt],
0

[538] ﬁ+a2
Proof. Weknowthatf |q(t)|dt>( ) ,k=1,...,N—1. Thus,
1y ler1— Tk
T In N-1 2 B+az
[Frawnaez [Tigenar> ¥ (——] .
0 t k=1 \Tk+1— Ik
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Now, using known inequality for the power mean with exponent 8 + @, and arithmetic mean

n n 121 -1
L E(Z;A_

, A; >0, 1<i<n,weobtain

1 n
and inequality - Y A=
i=1

N- p+a N-1 fra prapn [\ p-a
> (N-1) > (N —1)P+az (tre1 — 1)
gl(tk+1_tk) (N—lk:1 tk+1—tk) (k; !
L (N 1)ﬁ+a2+1
= (N=DP e oy = ) % > —— e
This completes the proof. O

Theorem 3.3. If y(t) is an oscillatory solution of reduced (r,(t) = ro(t) = 1) equation (E) with
zeros0< ) <tp<---<tons1 < T and d%D(Dy(t) #0 fort€ [trp_1,t2¢], k=1,2,...,N. More-
overlet B+as =1, then

T
Tﬁ+a2f |q(t)|dt> 2ﬁ+(l2 Nﬁ+¢x2+1.
0

The proof can be omitted as one can proceed similarly as in Theorem 3.2. We left the case

B+ as € (0,1) as an open problem.

Example 3.1. For simplicity we consider exponents a1, a» to be the quotients of two odd
numbers. Moreover, let the coefficients of the quasi-derivatives be identically constant. We
study the following generalized Euler’s differential equation on R*

(119 1%) + —L P =0, (13)

(t+1)B+az+
We can proceed using the analogy with the linear Euler differential equation. If we denote as
D = (a; + @)% +4 B (B+ ay), then the roots of an algebraic (indical) equation corresponding to

a solution t* are
a+2B(1+ay)+a+vVD
2a; 1+ B+ a)

Ai:

Although it has not been proven yet and it is only a conjecture, see [3], we believe that it can
be shown the following. Constants y. = )Lﬁ Ay —1)% (x‘lxz (B(A+ —1) — ap) decide whether (13)
is oscillatory or not (notice, that in the linear case y. = 21/3/9). Be more precise, a conjecture
states that if y € [y_,y+] then equation (13) is nonoscillatory, otherwise it is oscillatory. Thus

we can state at least estimate for y. So, from the previous reflections we have

Iyl (1= (T +1)~P~%) ph+a:

ﬁ+ >2ﬁ+a2 (N—l)ﬁ+a2+1.
an
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Example 3.2. Finally we give an application of the obtained result for the following eigenvalue

problem

D® y+Aq(t) @ply] =0,
y@=yl)=yMb)=0, a<c<bhb. (14)

Let the assumptions of Theorem 2.1 be fulfilled, then it follows that
HP

IAl> —————,
28 [Vlg(p)dt

where H = rr[lirz] h(c) and h is function defined in Theorem 2.1. Especially for the reduced
cela,

problem (r(t) = r2(¢) = 1) we obtain

2ﬁ+a2
Al >

(b—a)p+e [P1qn1dr
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