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LYAPUNOV-TYPE INEQUALITY FOR THIRD-ORDER

HALF-LINEAR DIFFERENTIAL EQUATIONS

JOZEF KISEL’ÁK

Abstract. In this paper, we give a proof of a Lyapunov-type inequality for third-order half-
linear differential equations. Then some applications, e.g. the distance between consec-
utive zeros of a solution, are studied with the help of the inequality.

1. Introduction

In this paper, we generalize the Lyapunov inequality for linear third-order differential

equation

y ′′′+p(t ) y = 0 (1)

for a class of half-linear differential equations of the third-order. It is well known [6] that

if p ∈ C [a,b] and x(t ) is nonzero solution of (1) s.t. x(a) = x(b) = 0 (a < b) and there exist

d ∈ [a,b] s.t. y ′′(d ) = 0, then the following inequality holds:

∫b

a
|p(t )|ds >

4

(b −a)2
. (2)

Such result has found many practical uses in problems as oscillation theory or eigenvalue

problems (spectral properties of differential equations). There are several generalizations in

the literature. For higher-order linear differential equations see e.g. [1, 8] and for certain

nonlinear higher-order differential equations see [5]. Development of theory of differential

equations together with practical problems bring also delayed type of equations. If one is in-

terested along this line see [7], where authors handle with the third-order delay differential

equations. We study here a special type of nonlinear differential equations, of which the so-

lution space possesses homogeneity property but lacks for additivity property. Second-order

half-linear differential equations have been widely studied in recent years and there is a nice
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overview in the monograph [2]. Less literature exists, which deals with such equations of

higher-order (especially odd-order differential equations), but one can see for example [4].

2. Main results

We are concerned with the third-order half-linear differential equation

(

1

r2(t )
Φα2

[(

1

r1(t )
Φα1 [y ′]

)′])′
+q(t )Φβ[y] = 0, (E )

where α1 > 0, α2 > 0, q ∈ C ([a,b],R), and Φα[x] := |x|α−1 x, α > 0, known as signed-power

function. Moreover we assume that (rk )−1 ∈C 3−k ([a,b], (0,∞)), k = 1,2, and to preserve men-

tioned homogeneity property we also demand that β=α1α2. Equation (E ) can be written by

means of quasi-derivatives with respect to the coefficients ri and functions Φαi
, i = 1,2. We

will denote them as follows:

D(0) y(t ) = y(t ),

D(i ) y(t ) =
1

ri (t )
Φαi

[

d

dt
D(i−1) y(t )

]

i = 1,2 (4)

D(3) y(t ) =
d

dt
D(2) y(t ).

A solution of (E ) is said to be oscillatory (nonoscillatory) if it has (has not) a sequence of ze-

ros converging to infinity. Equation (E ) is oscillatory if all its solutions are oscillatory and

nonoscillatory otherwise. If a solution of (E) has two consecutive zeros a < b, then there can

two cases occur. Either there exist a d ∈ [a,b] s.t. d
dt

D(1) y(d )= 0 or d
dt

D(1) y(t ) 6= 0 for t ∈ [a,b].

The first case illustrates the following assertion.

Theorem 2.1. If y(t ) is a nonzero solution of (E ) satisfying y(a) = y(b) = 0 and there exist a

d ∈ [a,b] s.t.
d

dt
D(1) y(d )= 0. Then

2

(
∫b

a
|q(t )|dt

)

1
β

> min
c∈[a,b]

h(c) , (5)

where h(c)=
1

∫c
a r

1
α1

1 dt
(

∫c
a r2(t )

1
α2 dt

)

1
α1

+
1

∫b
c r

1
α1

1 dt
(

∫b
c r2(t )

1
α2 dt

)

1
α1

.

Proof. We first define functions yk , k = 0,1,2, as follows:

y0 :=D(0) y,

yi :=D(i ) y(t )=
1

ri (t )
Φαi

[

d

dt
yi−1

]

, i = 1,2 (6)
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Equation (E ) is then equivalent to the following differential system:

y ′
i = ri+1(t )

1
αi+1Φ

−1
αi+1

[

yi+1
]

, i = 0,1

y ′
2 =−q(t )Φβ[y0]. (7)

Condition y0(a)= y0(b)=0 gives us existence of c∈(a,b) s.t. y ′
0(c)=0 and |y0(c)|= max

t∈[a,b]
|y0(t )|.

It follows from the latter that y1(c) = 0. By integrating the first equation of the system (7) from

a to c we obtain

y0(c) =
∫c

a
r

1
α1

1 (t )Φ−1
α1

[y1(t )]dt ,

which implies

|y0(c)| ≤
∫c

a
r

1
α1

1 (t ) |y1(t )|
1
α1 dt . (8)

Now let t be in [a,c]. From the fact that y1(c)= 0 and y1(t ) =
∫t

c y ′
1(s)ds we get

|y1(t )| ≤
∫c

a
r

1
α2

2 (t ) |y2(t )|
1
α2 dt . (9)

Further, from the second condition of the assumptions and relations (6) or (7), we know that

y2(d ) = 0, which implies y2(t )=−
∫t

d
q(s)Φβ[y0(s)]ds for t ∈ [a,c]. Moreover we have

|y2(t )| < |y0(c)|β
∫b

a
|q(t )|dt . (10)

Combining inequalities (8)-(10), we get

|y0(c)| < |y0(c)|
∫c

a
r

1
α1

1 (t )dt

(
∫c

a
r

1
α2

2 (t )dt

)
1
α1

(
∫b

a
|q(t )|dt

)

1
β

,

which implies

1 <
∫c

a
r

1
α1

1 (t )dt

(
∫c

a
r

1
α2

2 (t )dt

)
1
α1

(
∫b

a
|q(t )|dt

)

1
β

. (11)

Analogously, we can get

1 <
∫b

c
r

1
α1

1 (t )dt

(
∫b

c
r

1
α2

2 (t )dt

)

1
α1

(
∫b

a
|q(t )|dt

)

1
β

. (12)

But (11) and (12) together imply (5). Moreover, it is obvious that h takes its minimum in (a,b),

since it is continuous there and lim
c→a+

h(c)= lim
c→b−

h(c)=∞. ���

In the case that d
dt

D(1) y(t ) 6= 0 for t ∈ [a,b], we consider three consecutive zeros of y(t ).

We give only sketch of the proof as it is almost copy of the previous one.
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Theorem 2.2. If y(t ) is a nonzero solution of (E ) satisfying y(a)= y(d )= y(b)= 0, d
dt D(1) y(t ) 6=

0 for t ∈ [a,d ] and y(t ) 6= 0 for t ∈ (a,d )∪ (d ,b). Then inequality (5) holds.

Proof. Conditions y0(a) = y0(d ) = y0(b) = 0 give us existence of c1 ∈ (a,d ), c2 ∈ (d ,b), s.t.

y1(c1) = y1(c2) = 0 and further application of Rolle’s theorem gives us existence of e ∈ (c1,c2),

s.t. y2(e) = 0. Denoting by c ∈ (a,d )∪ (d ,b) a point where max
t∈[a,b]

|y0(t )| = |y0(c)| and using

previous procedure it can be proved that inequality (5) holds. Notice, that there can not be

problem with continuity of h on (a,b). ���

Remark 2.1. Put r1(t )= r2(t )= 1. Since h attains minimum at c = a+b
2 , then (5) reduces to

∫b

a
|q(t )|dt >

(

2

b −a

)α2(α1+1)

.

Notice that in case α1 = α2 = 1 this inequality reduces to (2), which appears in the classical

result.

Remark 2.2. Put r1(t )= r2(t )= r (t ) and α1 =α2 =α then (5) reduces to

∫b

a
|q(t )|dt >

(

2
∫b

a r (t )
1
α dt

)α(α+1)

,

since
∫c

a r (t )
1
α dt =

∫b
c r (t )

1
α dt = 1

2

∫b
a r (t )

1
α dt must hold for c in order to minimize h on (a,b)

(

c =R−1
(

R(b)+R(a)
2

)

, where R is antiderivative of r
1
α

)

.

3. Applications

Further we introduce some applications of the previous results for reduced equation (E ).

Theorem 3.1. Let y(t ) be an oscillatory solution of the reduced (r1(t ) = r2(t ) = 1) equation

(E ) with increasing sequence of zeros {tk }∞
k=1 and q ∈ Lµ([0,∞],R), µ ∈ [1,∞). Then distances

between consecutive zeros {tk+1− tk } or {tk+2− tk } goes to infinity.

Proof. In a proof by contradiction we suppose that, in the case that d
dt

D(1) y(t ) = 0 for some

t ∈ [tk , tk+1] for every large k , is not true that {tk+1−tk} →∞. Hence, there exist a subsequence

{tkn
}∞n=1 s.t. (tkn+1 − tkn

) < K for every n, (K > 0). Let d
dt D(1) y(ckn

) = 0 for ckn
∈ [tkn

, tkn+1 ] and

max
t∈

[

tkn ,tkn+1

]

|y(t )| = |y(dkn
)| where dkn

∈ (tkn
, tkn+1 ). Without loss of generality we can assume

that ckn
< dkn

. Then it follows that

∫tkn+1

tkn

|q(t )|dt >
(

2

dkn
− tkn

)β+α2

.
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From integrability of q we have

∫∞

tkn

|q(t )|µ dt <
(

2β+α2

K
β+α2+ 1

µ̃

)µ

,

for sufficiently large n and 1
µ + 1

µ̃ = 1. Therefore using Hölder inequality we obtain

1 <
(

dkn
− tkn

2

)β+α2 ∫tkn+1

tkn

|q(t )|dt ≤
(tkn+1 − tkn

)β+α2+ 1
µ̃

2β+α2

(
∫tkn+1

tkn

|q(t )|µ dt )

)

1
µ

≤

≤
(tkn+1 − tkn

)β+α2+ 1
µ̃

2β+α2

(
∫∞

tkn

|q(t )|µdt )

)
1
µ

<
K

β+α2+ 1
µ̃

2β+α2

(

2β+α2

K
β+α2+ 1

µ̃

)

= 1,

a contradiction.

Now suppose that d
dt

D(1) y(t ) 6= 0 for t ∈ [tk , tk+1] (for some large k). In this case we con-

sider three consecutive zeros tk < tk+1 < tk+2. Suppose that there exist subsequence {tkn
}∞n=1

s.t. (tkn+1−tkn
) < M for every n, (M > 0) and d

dt
D(1) y(t ) 6= 0 for t ∈ [tkn

, tkn+1 ]. Since y(tkn+2 )= 0,

there exists a ckn
∈ [tkn+1 , tkn+2 ] such that d

dt D(1) y(ckn
) = 0. Now set max

t∈
[

tkn ,tkn+2

]

|y(t )| = |y(dkn
)|

where dkn
∈ (tkn

, tkn+1 )∪ (tkn+1 , tkn+2 ). If dkn
∈ (tkn+1 , tkn+2 ) then we can proceed as in the previ-

ous part of the proof. If dkn
∈ (tkn

, tkn+1 ), then it follows that

∫tkn+2

tkn

|q(t )|dt >
(

2

dkn
− tkn

)β+α2

.

Therefore using Hölder inequality we obtain a contradiction as in the first part of the

proof. ���

The following theorems give us an estimation (upper bound) of the number of zeros of

an oscillatory solution of reduced equation (E ) on bounded interval [0,T ].

Theorem 3.2. If y(t ) is an oscillatory solution of reduced (r1(t ) = r2(t ) = 1) equation (E ) with

zeros 0 < t1 < t2 < ·· · < tN ≤ T and d
dt D(1) y(ek ) = 0 for some ek ∈ [tk , tk+1], k = 1,2, . . . , N −1.

Moreover let β+α2 ≥ 1, then

T β+α2

∫T

0
|q(t )|dt > 2β+α2 (N −1)β+α2+1.

Proof. We know that
∫tk+1

tk

|q(t )|dt >
(

2

tk+1− tk

)β+α2

, k = 1, . . . , N −1. Thus,

∫T

0
|q(t )|dt ≥

∫tN

t1

|q(t )|dt >
N−1
∑

k=1

(

2

tk+1− tk

)β+α2

.
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Now, using known inequality for the power mean with exponent β+α2 and arithmetic mean

and inequality
1

n

n
∑

i=1
Ai ≥

(

n
∏

i=1
Ai

)
1
n

≥
(

1

n

n
∑

i=1

1

Ai

)−1

, Ai > 0, 1 ≤ i ≤n, we obtain

N−1
∑

k=1

(

1

tk+1− tk

)β+α2

≥ (N −1)

(

1

N −1

N−1
∑

k=1

1

tk+1− tk

)β+α2

≥ (N −1)β+α2+1

(

N−1
∑

k=1

(tk+1− tk )

)−β−α2

= (N −1)β+α2+1(tN − t1)−β−α2 >
(N −1)β+α2+1

T β+α2
.

This completes the proof. ���

Theorem 3.3. If y(t ) is an oscillatory solution of reduced (r1(t ) = r2(t ) = 1) equation (E ) with

zeros 0 < t1 < t2 < ·· · < t2 N+1 ≤ T and d
dt D(1) y(t ) 6= 0 for t ∈ [t2 k−1, t2 k], k = 1,2, . . . , N . More-

over let β+α2 ≥ 1, then

T β+α2

∫T

0
|q(t )|dt > 2β+α2 Nβ+α2+1.

The proof can be omitted as one can proceed similarly as in Theorem 3.2. We left the case

β+α2 ∈ (0,1) as an open problem.

Example 3.1. For simplicity we consider exponents α1, α2 to be the quotients of two odd

numbers. Moreover, let the coefficients of the quasi-derivatives be identically constant. We

study the following generalized Euler’s differential equation on R+

([([y ′]α1 )′]α2 )′+
γ

(t +1)β+α2+1
yβ = 0. (13)

We can proceed using the analogy with the linear Euler differential equation. If we denote as

D = (α1+α2)2+4β (β+α2), then the roots of an algebraic (indical) equation corresponding to

a solution tλ are

λ± =
α1 +2β(1+α1)+α2 ±

p
D

2α1 (1+β+α2)
.

Although it has not been proven yet and it is only a conjecture, see [3], we believe that it can

be shown the following. Constants γ± =λ
β
± (λ±−1)α2 α

α2
1 (β(λ±−1)−α2) decide whether (13)

is oscillatory or not (notice, that in the linear case γ± = 2
p

3/9). Be more precise, a conjecture

states that if γ ∈ [γ−,γ+] then equation (13) is nonoscillatory, otherwise it is oscillatory. Thus

we can state at least estimate for γ. So, from the previous reflections we have

|γ|(1− (T +1)−β−α2 )T β+α2

β+α2
> 2β+α2 (N −1)β+α2+1.
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Example 3.2. Finally we give an application of the obtained result for the following eigenvalue

problem

D(3) y ±λq(t )Φβ[y]= 0,

y(a)= y(c)= y(b)= 0, a < c < b. (14)

Let the assumptions of Theorem 2.1 be fulfilled, then it follows that

|λ| >
Hβ

2β
∫b

a |q(t )|dt
,

where H = min
c∈[a,b]

h(c) and h is function defined in Theorem 2.1. Especially for the reduced

problem (r1(t ) = r2(t )= 1) we obtain

|λ| >
2β+α2

(b −a)β+α2
∫b

a |q(t )|dt
.

References

[1] D. Çakmak, Lyapunov-type integral inequalities for certain higher order differential equations, Appl. Math.
Comput., 216(2010), 368–373.
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