TAMKANG JOURNAL OF MATHEMATICS Volume 38, Number 1, 85-92, Spring 2007

STRONG CONVERGENCE THEOREM FOR TWO ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS WITH ERRORS IN BANACH SPACE

G. S. SALUJA

Abstract. In this paper, we study strong convergence of common fixed points of two asymptotically quasi-nonexpansive mappings and prove that if K is a nonempty closed convex subset of a real Banach space E and let $S, T: K \to K$ be two asymptotically quasi-nonexpansive mappings with sequences $\{u_n\}, \{v_n\} \subset [0, \infty)$ such that $\sum_{n=1}^{\infty} u_n < \infty$ and $\sum_{n=1}^{\infty} v_n < \infty$, and $F = F(S) \cap F(T) = \{x \in K : Sx = Tx = x\} \neq \phi$. Suppose $\{x_n\}_{n=1}^{\infty}$ is generated iteratively by $x_1 \in K$, and

$$\begin{aligned} x_{n+1} &= (1 - \alpha_n) x_n + \alpha_n S^n y_n + l_n \\ y_n &= (1 - \beta_n) x_n + \beta_n T^n x_n + m_n, \quad \forall n \in N \end{aligned}$$

where $\{l_n\}_{n=1}^{\infty}$, $\{m_n\}_{n=1}^{\infty}$ are sequences in K satisfying $\sum_{n=1}^{\infty} ||l_n|| < \infty$, $\sum_{n=1}^{\infty} ||m_n|| < \infty$ and $\{\alpha_n\}, \{\beta_n\}$ are real sequences in [0, 1]. It is proved that $\{x_n\}_{n=1}^{\infty}$ converges strongly to some common fixed point of S and T. Our result is significant generalization of corresponding result of Ghosh and Debnath [3], Petryshyn and Williamson [7] and Qihou [8].

1. Introduction and preliminaries

Let K be a nonempty subset of a real normed space E. Let T be a self mapping of K. Then T is said to be asymptotically nonexpansive with sequence $\{u_n\} \subset [0, \infty)$ if $\lim_{n\to\infty} u_n = 0$ and

$$||T^n x - T^n y|| \le (1 + u_n)||x - y||$$

for all $x, y \in K$ and $n \ge 1$; and is said to be asymptotically quasi-nonexpansive with sequence $\{u_n\} \subset [0, \infty)$ if $F(T) = \{x \in K : Tx = x\} \neq \phi$, $\lim_{n \to \infty} u_n = 0$ and

$$||T^n x - x^*|| \le (1 + u_n) ||x - x^*||$$

for all $x \in K$, $x^* \in F(T)$ and $n \ge 1$.

The mapping T is called nonexpansive if

$$||Tx - Ty|| \le ||x - y||$$

Received June 22, 2006; revised December 5, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 47H10.

Key words and phrases. Asymptotically quasi-nonexpansive mapping, common fixed point, the modified Ishikawa iterative sequence with errors, Banach space.

G. S. SALUJA

for all $x, y \in K$, and is called quasi-nonexpansive if $F(T) \neq \phi$ and

$$||Tx - x^*|| \le ||x - x^*||$$

for all $x \in K$ and $x^* \in F(T)$. It is therefore clear that a nonexpansive mapping with a nonempty fixed point set is quasi-nonexpansive and an asymptotically nonexpansive mapping with a nonempty fixed point set is asymptotically quasi-nonexpansive. The converse do not hold in general.

The class of asymptotically nonexpansive maps was introduced by Goebel and Kirk [1] as an important generalization of the class of nonexpansive maps. They established that if K is a nonempty closed convex bounded subset of a uniformly convex Banach space E and T is an asymptotically nonexpansive self mapping of K, then T has a fixed point. In [2], they extended this result to the broader class of uniformly L-Lipschitzian mappings with $L < \lambda$, where λ is sufficiently near 1.

In 1973, Petryshyn and Williamson [7], established a necessary and sufficient condition for a Mann iterative sequence to converge to a fixed point of a quasi-nonexpansive mapping. Subsequently, Ghosh and Debnath [3] extended Petryshyn and Williamson's results and established some necessary and sufficient conditions for an Ishikawa-type iterative sequence to converge to a fixed point of a quasi-nonexpansive mappings. Recently, in [8, 9], Qihou extended the results of Ghosh and Debnath to the more general class of quasi-nonexpansive mapping (i.e. asymptotically quasi-nonexpansive mappings).

The Ishikawa iteration process with errors $\{x_n\}_{n=1}^{\infty}$ (see, e.g., [5]) in K defined as follows

$$x_1 \in K,$$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n y_n + l_n$$

$$y_n = (1 - \beta_n)x_n + \beta_n T^n x_n + m_n$$
(1)

where $\{l_n\}_{n=1}^{\infty}$, $\{m_n\}_{n=1}^{\infty}$ are sequences in K satisfying $\sum_{n=1}^{\infty} ||l_n|| < \infty$, $\sum_{n=1}^{\infty} ||m_n|| < \infty$ and $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are two real sequences in [0, 1] satisfying certain conditions.

It is clear that the Ishikawa iteration process with errors is a generalized case of the Ishikawa iteration process [4], while for all $n \in N$, setting $\beta_n = 0$, it reduces to the Mann iteration process with errors which is a generalized case of the Mann iteration process [6].

Let K be a nonempty subset of a real Banach space X and $S, T : K \to K$ be two asymptotically quasi-nonexpansive mappings. Consider the following modified Ishikawa iteration process with errors $\{x_n\}_{n=1}^{\infty}$ defined as follows:

$$x_1 \in K,$$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n S^n y_n + l_n$$

$$y_n = (1 - \beta_n)x_n + \beta_n T^n x_n + m_n$$
(2)

where $\{l_n\}_{n=1}^{\infty}$, $\{m_n\}_{n=1}^{\infty}$ are sequences in K satisfying $\sum_{n=1}^{\infty} ||l_n|| < \infty$, $\sum_{n=1}^{\infty} ||m_n|| < \infty$ and $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are two real sequences in [0, 1] satisfying certain conditions.

It is clear that if we put S = T, then iterative sequences defined by (2) reduces to the sequences defined by (1).

In this paper, we establish a necessary and sufficient conditions for the convergence of the modified Ishikawa iterative sequence with errors involving two asymptotically quasi-nonexpansive mappings defined by (2) to a common fixed point of the mappings defined on a nonempty closed convex subset of a Banach space. Our result is significant generalization of Ghosh and Debnath [3], Petryshyn and Williamson [7] and Qihou [8].

We need the following Lemmas to prove our main result:

Lemma 1.0.1. Let E be a real Banach space and K a nonempty closed convex subset of E. Let $S, T : K \to K$ be two asymptotically quasi-nonexpansive mappings with sequences $\{u_n\}, \{v_n\} \subset [0, \infty)$ such that $\sum_{n=1}^{\infty} u_n < \infty$ and $\sum_{n=1}^{\infty} v_n < \infty$ and $F = F(S) \cap F(T) = \{x \in K : Sx = Tx = x\} \neq \phi$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in [0, 1]. Starting from arbitrary $x_1 \in K$, define the sequence $\{x_n\}$ iteratively by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n S^n y_n + l_n$$

$$y_n = (1 - \beta_n)x_n + \beta_n T^n x_n + m_n, \quad \forall n \in N$$
(A)

where $\{l_n\}_{n=1}^{\infty}$, $\{m_n\}_{n=1}^{\infty}$ are sequences in K satisfying $\sum_{n=1}^{\infty} ||l_n|| < \infty$, $\sum_{n=1}^{\infty} ||m_n|| < \infty$. Then

- (a) $||x_{n+1} x^*|| \le (1+b_n)||x_n x^*|| + t_n$, for all $n \ge 1$, $x^* \in F = F(S) \cap F(T)$, where $b_n = u_n + v_n + u_n v_n$ with $\sum_{n=1}^{\infty} b_n < \infty$ and $t_n = (1+u_n)||m_n|| + ||l_n||$.
- (b) There exists a constant M > 0 such that

$$||x_{n+m} - x^*|| \le M ||x_n - x^*|| + M \sum_{k=n}^{n+m-1} t_k$$

for all $n, m \ge 1$ and $x^* \in F$.

Proof. (a) Let $x^* \in F$. Then we have from (A)

$$\|x_{n+1} - x^*\| = \|(1 - \alpha_n)x_n + \alpha_n S^n y_n + l_n - x^*\|$$

$$= \|(1 - \alpha_n)(x_n - x^*) + \alpha_n (S^n y_n - x^*) + l_n\|$$

$$\leq (1 - \alpha_n)\|x_n - x^*\| + \alpha_n \|S^n y_n - x^*\| + \|l_n\|$$

$$\leq (1 - \alpha_n)\|x_n - x^*\| + \alpha_n (1 + u_n)\|y_n - x^*\| + \|l_n\|$$
(3)

and

$$||y_n - x^*|| = ||(1 - \beta_n)x_n + \beta_n T^n x_n + m_n - x^*|| = ||(1 - \beta_n)(x_n - x^*) + \beta_n (T^n x_n - x^*) + m_n|| \leq (1 - \beta_n)||x_n - x^*|| + \beta_n ||T^n x_n - x^*|| + ||m_n|| \leq (1 - \beta_n)||x_n - x^*|| + \beta_n (1 + v_n)||x_n - x^*|| + ||m_n|| \leq [1 - \beta_n + \beta_n (1 + v_n)]||x_n - x^*|| + ||m_n|| \leq (1 + v_n)||x_n - x^*|| + ||m_n||$$
(4)

G. S. SALUJA

from (3) and (4), we have

$$\begin{aligned} \|x_{n+1} - x^*\| &\leq (1 - \alpha_n) \|x_n - x^*\| + \alpha_n (1 + u_n) [(1 + v_n) \|x_n - x^*\| + \|m_n\|] + \|l_n\| \\ &\leq [1 - \alpha_n + \alpha_n (1 + u_n) (1 + v_n)] \|x_n - x^*\| + \alpha_n (1 + u_n) \|m_n\| + \|l_n\| \\ &\leq [1 + \alpha_n (u_n + v_n + u_n v_n)] \|x_n - x^*\| + \alpha_n (1 + u_n) \|m_n\| + \|l_n\| \\ &\leq [1 + u_n + v_n + u_n v_n] \|x_n - x^*\| + (1 + u_n) \|m_n\| + \|l_n\| \\ &\leq (1 + b_n) \|x_n - x^*\| + t_n \end{aligned}$$

where $b_n = u_n + v_n + u_n v_n$ with $\sum_{n=1}^{\infty} b_n < \infty$ and $t_n = (1 + u_n) ||m_n|| + ||l_n||$. This completes the proof of (a).

(b) Since $1 + x \le e^x$ for all x > 0. Then from (a) it can be obtained that

$$\begin{aligned} \|x_{n+m} - x^*\| &\leq (1+b_{n+m-1}) \|x_{n+m-1} - x^*\| + t_{n+m-1} \\ &\leq e^{b_{n+m-1}} \|x_{n+m-1} - x^*\| + t_{n+m-1} \\ &\leq e^{(b_{n+m-1}+b_{n+m-2})} \|x_{n+m-2} - x^*\| + e^{b_{n+m-1}} t_{n+m-2} + t_{n+m-1} \\ &\leq e^{(b_{n+m-1}+b_{n+m-2})} \|x_{n+m-2} - x^*\| + e^{b_{n+m-1}} (t_{n+m-1} + t_{n+m-2}) \\ &\leq \cdots \\ &\leq e^{\sum_{k=n}^{n+m-1} b_k} \|x_n - x^*\| + e^{\sum_{k=n}^{n+m-1} b_k} \sum_{k=n}^{n+m-1} t_k \\ &\leq M \|x_n - x^*\| + M \sum_{k=n}^{n+m-1} t_k, \quad \text{where } M = e^{\sum_{k=n}^{\infty} b_k} \end{aligned}$$

This completes the proof of (b).

Lemma 1.0.2. ([9, Lemma 2]) Let $\{a_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{r_n\}_{n=1}^{\infty}$ be sequences of nonnegative real numbers satisfying

$$a_{n+1} \le (1+r_n)a_n + \beta_n, \quad \forall n \in N.$$

If $\sum_{n=1}^{\infty} r_n < \infty$, $\sum_{n=1}^{\infty} \beta_n < \infty$. Then (i) $\lim_{n \to \infty} a_n$ exists.

(ii) If $\liminf_{n\to\infty} a_n = 0$, then $\lim_{n\to\infty} a_n = 0$.

2. Main result

Theorem 2.0.3. Let E be a real Banach space and K a nonempty closed convex subset of E. Let $S, T : K \to K$ be to asymptotically quasi-nonexpansive mappings (S and T need not be continuous) with sequences $\{u_n\}, \{v_n\} \subset [0, \infty)$ such that $\sum_{n=1}^{\infty} u_n < \infty$ and $\sum_{n=1}^{\infty} v_n < \infty$, and $F = F(S) \cap F(T) = \{x \in K : Sx = Tx = x\} \neq \phi$. Let $\{\alpha_n\}$ and

88

 $\{\beta_n\}$ be sequences in [0,1]. From arbitrary $x_1 \in K$, define the sequence $\{x_n\}$ iteratively by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n S^n y_n + l_n$$

$$y_n = (1 - \beta_n)x_n + \beta_n T^n x_n + m_n, \quad \forall n \in N$$

where $\{l_n\}_{n=1}^{\infty}$, $\{m_n\}_{n=1}^{\infty}$ are sequences in K satisfying $\sum_{n=1}^{\infty} ||l_n|| < \infty$, $\sum_{n=1}^{\infty} ||m_n|| < \infty$. Then $\{x_n\}$ converges strongly to some common fixed point of S and T if and only if $\liminf_{n\to\infty} d(x_n, F) = 0$.

Proof. Suppose $\{x_n\}_{n=1}^{\infty}$ converges strongly to some common fixed point z of S and T. Then

$$\liminf_{n \to \infty} d(x_n, F) = 0.$$

Conversely, suppose

$$\liminf_{n \to \infty} d(x_n, F) = 0.$$

Then from Lemma 1.0.1, we have

$$||x_{n+1} - x^*|| \le (1+b_n)||x_n - x^*|| + t_n, \quad \forall n \in N, \quad \forall x^* \in F$$
(5)

Since $\sum_{n=1}^{\infty} u_n < \infty$, $\sum_{n=1}^{\infty} v_n < \infty$, $\sum_{n=1}^{\infty} \|l_n\| < \infty$, $\sum_{n=1}^{\infty} \|m_n\| < \infty$, thus we know $\sum_{n=1}^{\infty} b_n < \infty$ and $\sum_{n=1}^{\infty} t_n < \infty$. So from (5), we obtain

$$d(x_{n+1}, F) \le (1+b_n)d(x_n, F) + t_n,$$

since $\liminf_{n\to\infty} d(x_n, F) = 0$ and from Lemma 1.0.2, we have $\lim_{n\to\infty} d(x_n, F) = 0$.

Next we will show that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence. For all $\varepsilon > 0$, from Lemma 1.0.1, it can be known that there must exists a constant M > 0, such that

$$\|x_{n+m} - x^*\| \le M \|x_n - x^*\| + M \sum_{k=n}^{n+m-1} t_k, \quad \forall x^* \in F, \quad \forall m, n \in N$$
(6)

since $\lim_{n\to\infty} d(x_n, F) = 0$ and $\sum_{k=n}^{\infty} t_k < \infty$, then there must exists a constant N_1 , such that when $n \ge N_1$

$$d(x_n, F) < \frac{\varepsilon_1}{3M}$$
, and $\sum_{k=n}^{\infty} t_k < \frac{\varepsilon_1}{6M}$.

So there must exists $w^* \in F$, such that

$$d(x_{N_1}, w^*) = \|x_{N_1} - w^*\| < \frac{\varepsilon_1}{3M}.$$

From (6), it can be obtained that when $n \ge N_1$

$$\|x_{n+m} - x_n\| \le \|x_{n+m} - w^*\| + \|x_n - w^*\|$$

$$\le M \|x_{N_1} - w^*\| + M \|x_{N_1} - w^*\| + 2M \sum_{k=N_1}^{\infty} t_k$$

$$< M \frac{\varepsilon_1}{3M} + M \frac{\varepsilon_1}{3M} + 2M \frac{\varepsilon_1}{6M}$$

$$< \varepsilon_1$$

that is

$$\|x_{n+m} - x_n\| < \varepsilon_1.$$

This shows that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence and so is convergent, since E is complete. Let $\lim_{n\to\infty} x_n = y^*$. Then $y^* \in K$. It remains to show that $y^* \in F$. Let $\varepsilon_2 > 0$ be given. Then there exists a natural number N_2 such that

$$||x_n - y^*|| < \frac{\varepsilon_2}{2.max\{2 + u_1, 2 + v_1\}}, \quad \forall n \ge N_2.$$

Since $\lim_{n\to\infty} d(x_n, F) = 0$, there must exists a natural number $N_3 \ge N_2$ such that for all $n \ge N_3$, we have

$$d(x_n, F) < \frac{\varepsilon_2}{3.max\{2+u_1, 2+v_1\}},$$

and in particular we have

$$d(x_{N_3}, F) < \frac{\varepsilon_2}{3.max\{2+u_1, 2+v_1\}}$$

Therefore, there exists $z^* \in F$ such that

$$||x_{N_3} - z^*|| < \frac{\varepsilon_2}{2.max\{2 + u_1, 2 + v_1\}}.$$

Consequently, we have

$$\begin{split} \|Sy^* - y^*\| &= \|Sy^* - z^* + z^* - x_{N_3} + x_{N_3} - y^*\| \\ &\leq \|Sy^* - z^*\| + \|z^* - x_{N_3}\| + \|x_{N_3} - y^*\| \\ &\leq (1 + u_1)\|y^* - z^*\| + \|z^* - x_{N_3}\| + \|x_{N_3} - y^*\| \\ &\leq (1 + u_1)\|y^* - x_{N_3} + x_{N_3} - z^*\| + \|z^* - x_{N_3}\| + \|x_{N_3} - y^*\| \\ &\leq (1 + u_1)[\|y^* - x_{N_3}\| + \|x_{N_3} - z^*\|] + \|z^* - x_{N_3}\| + \|x_{N_3} - y^*\| \\ &\leq (2 + u_1)\|y^* - x_{N_3}\| + (2 + u_1)\|x_{N_3} - z^*\| \\ &\leq (2 + u_1) \cdot \frac{\varepsilon_2}{2 \cdot max\{2 + u_1, 2 + v_1\}} + (2 + u_1) \cdot \frac{\varepsilon_2}{2 \cdot max\{2 + u_1, 2 + v_1\}} \\ &< \varepsilon_2. \end{split}$$

This implies that $y^* \in F(S)$.

90

Similarly, we have

$$\begin{split} \|Ty^* - y^*\| &= \|Ty^* - z^* + z^* - x_{N_3} + x_{N_3} - y^*\| \\ &\leq \|Ty^* - z^*\| + \|z^* - x_{N_3}\| + \|x_{N_3} - y^*\| \\ &\leq (1 + v_1)\|y^* - z^*\| + \|z^* - x_{N_3}\| + \|x_{N_3} - y^*\| \\ &\leq (1 + v_1)\|y^* - x_{N_3} + x_{N_3} - z^*\| + \|z^* - x_{N_3}\| + \|x_{N_3} - y^*\| \\ &\leq (1 + v_1)[\|y^* - x_{N_3}\| + \|x_{N_3} - z^*\|] + \|z^* - x_{N_3}\| + \|x_{N_3} - y^*\| \\ &\leq (2 + v_1)\|y^* - x_{N_3}\| + (2 + v_1)\|x_{N_3} - z^*\| \\ &\leq (2 + v_1).\frac{\varepsilon_2}{2.max\{2 + u_1, 2 + v_1\}} + (2 + v_1).\frac{\varepsilon_2}{2.max\{2 + u_1, 2 + v_1\}} \\ &\leq \varepsilon_2. \end{split}$$

This implies that $y^* \in F(T)$. Hence we conclude that $y^* \in F = F(S) \cap F(T)$, that is, y^* is a common fixed point of S and T. Thus $\{x_n\}_{n=1}^{\infty}$ converges strongly to some common fixed point of S and T. This completes the proof.

Remark 1. If we put $l_n = m_n = 0$, $\forall n \in N$, S = T and $u_n = v_n$, then Theorem 1 of Qihou [8, p.2] is a corollary to the Theorem 2.0.3.

Remark 2. Theorem 2.0.3 contains as special cases of the main result of Qihou [8, Theorem 1, p.2] together with [8, Corollaries 1 and 2], which are themselves extensions of the results of Ghosh and Debnath [3] Petryshyn and Williamson [7].

Remark 3. Theorem 2.0.3 remains true for the subclass of asymptotically nonexpansive mappings.

References

- K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171–174.
- [2] K. Goebel and W.A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Mathematica 47 (1973), 135–140.
- [3] M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterations of quasi-nonexpansive mappings, J. Math. Anal. Appl. 207 (1997), 96–103.
- [4] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147–150.
- [5] L.S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), 114–125.
- [6] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
- [7] W. V. Petryshyn and T. E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973), 459–497.
- [8] L. Qihou, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 259 (2001), 1–7.

G. S. SALUJA

[9] L. Qihou, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl. 259 (2001), 18–24.

Department of Mathematics & I.T., Govt. College of Science, Raipur (C.G.). E-mail: saluja_1963@rediffmail.com