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THE SECOND HANKEL DETERMINANT FOR A CLASS OF

ANALYTIC FUNCTIONS ASSOCIATED WITH THE

CARLSON-SHAFFER OPERATOR

A. K. MISHRA AND S. N. KUND

Abstract. In this paper a new class of analytic functions, associated with the Carlson-

Shaffer operator, is investigated. The sharp estimate for the Second Hankel determinant

and class preserving transforms are studied.

1. Introduction

Let A be the class of analytic functions in the open unit disc

U := {z : z ∈C, |z| < 1} .

We denote by A0, the subclass of A consisting of normalized functions of the form:

f (z) = z +
∞
∑

n=2

an zn (z ∈U). (1.1)

For the functions f and g in A given by the series expansion:

f (z) =
∞
∑

n=0

an zn , g (z) =
∞
∑

n=0

bn zn (z ∈U),

the Hadamard product (or Convolution) f ∗ g , is defined by

( f ∗ g )(z) =
∞
∑

n=0

anbn zn
= (g ∗ f )(z) (z ∈U).

The function f ∗ g ∈A . We recall that the Carlson- Shaffer operator [3]

L (α,β) : A0 →A0 (α ∈C,β ∈C\Z−
0 ; Z−

0 : {0,−1,−2, . . . })
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is defined by:

L (α,β) f (z) =φ(α,β; z)∗ f (z) (z ∈U, f ∈A ), (1.2)

where

φ(α,β; z) =
∞
∑

k=0

(α)k

(β)k
zk+1 (z ∈U) (1.3)

and (λ)k is the Pochhammer symbol (or shifted factorial) defined in terms of the Gamma func-

tion by

(λ)k =
Γ(λ+k)

Γ(λ)
:=







1 (k = 0)

λ(λ+1). . . (λ+k −1) (k ∈N= {1,2, . . . }).

It can be readily verified that L (α,α) is the identity operator; the operators L (α,β) and

L (γ,δ) commute, that is

L (α,β)L (γ,δ) f (z) =L (γ,δ)L (α,β) f (z) ( f ∈A0)

and the following transitive property holds true:

L (α,β)L (β,γ) f =L (α,γ) f (β,γ ∈C\Z−
0 , f ∈A0).

In the particular case α= 2, β= 1, the operator L (α,β) reduces to the Alexander’s transform:

L (2,1) f (z) = z f ′(z) ( f ∈A0).

Moreover, the popular Owa-Srivastava fractional differential operator

Ω
λ
z : A0 →A0 (0 ≤λ< 1, z ∈U)

is related to the Carlson-Shaffer operator by the formula:

Ω
λ
z f (z) =L (2,2−λ) f (z)

(see [23, 24, 25], also see [18, 19]). By using the Carlson-Shaffer operator we introduce the

following class of functions:

Definition 1. The function f ∈ A0 is said to be in the class Rα,β(θ,ρ) (−π
2 < θ <

π
2 , 0 ≤ ρ <

1, α ∈C, β ∈C\Z−
0 ) if

ℜ

{

e iθL (α,β) f (z)

z

}

> ρ cosθ (z ∈U). (1.4)
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The class Rα,β(θ,ρ) generalizes several well known subclasses of A0. For example, tak-

ing α = β; α = 2,β = 1 and α = 2, β = 2−λ (0 ≤ λ < 1) respectively, we get the following

interesting classes:

Rα,α(θ,ρ)=

{

f ∈A0 : ℜ

(

e iθ f (z)

z

)

> ρ cosθ

}

:=R0(θ,ρ) (1.5)

⋃

θ

R0(θ,ρ) =R0(ρ),

R2,1(θ,ρ) =
{

f ∈A0 : ℜ
(

e iθ f ′(z)
)

> ρ cosθ
}

:=R1(θ,ρ)
⋃

θ

R1(θ,ρ) =R1(ρ)

and

R2,2−λ(θ,ρ) =

{

f ∈A0 : ℜ

(

e iθΩ
λ
z f (z)

z

)

> ρ cosθ

}

:=Rλ(θ,ρ)

⋃

θ

Rλ(θ,ρ) =Rλ(ρ).

It is well known that the functions in the class R1(ρ) are univalent close-to-convex [4]. More-

over, if 0≤µ<λ< 1 then

R1(ρ)⊂Rλ(ρ)⊂Rµ(ρ)⊂R0(ρ)

(cf. [16, 20]). For initial seminal work on the class R1(0) := R1 one may see the classical

paper of Macgregor [17]. The family of functions Rα,β(θ,ρ) is characterized by the following

function class:

P := {p ∈A : p(0) = 1, ℜ(p(z)) > 0, z ∈U}.

Infact, it follows from (1.4) that the function f ∈A0 is in the class Rα,β(θ,ρ) if and only if

e iθL (α,β) f (z)

z
= [(1−ρ)p(z)+ρ]cosθ+ i sinθ (1.6)

for some function p ∈P .

For the complex sequence an , an+1, an+2, . . . , the Hankel matrix, named after Herman

Hankel (1839-1873), is the infinite matrix whose (i , j )t h entry ai j is defined by

ai j = an+i+ j−2 (i , j ,n ∈N).

The q t h Hankel matrix (q ∈N\ {1}), is by definition, the following q ×q square sub matrix:





















an an+1 an+2 . . . an+q−1

an+1 an+2 an+3 . . . an+q

an+2 an+3 an+4 . . . an+q+1

...
...

...
...

an+q−1 an+q an+q+1 . . . an+2q−1
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We observe that the Hankel matrix has constant positive slopping diagonals whose entries

also satisfy:

ai j = ai−1, j+1 (i ∈N\ {1}; j ∈N).

This also describes the Hankel matrix without reference to a particular sequence. The deter-

minant of the q t h Hankel matrix, usually denoted by Hq (n), is called the q t h Hankel deter-

minant (cf. [22]). In the particular cases q = 2, n = 1, a1 = 1 and q = 2, n = 2, the Hankel

determinant simplifies respectively to

H2(1) = a3 −a2
2 and H2(2) = a2a4 −a2

3.

We refer to H2(2) as the Second Hankel determinant.

It is fairly well known that for the univalent function of the form (1.1) the sharp inequal-

ity |H2(1)| = |a3 − a2
2| ≤ 1 holds true [4]. For a family ℑ of functions in A0, the more general

problem of finding sharp estimates for the functional |µa2
2 − a3| (µ ∈ R or µ ∈ C) is popu-

larly known as the Fekete-Szegö problem for ℑ. The Fekete-Szegö problem for the families of

univalent functions, starlike functions, convex functions, close-to-convex functions has been

completely settled in [5, 11, 12, 13]. For related results also see [19].

Recently Janteng et.al.[8] and the first author and Gochhayat [20] obtained sharp esti-

mates on the Second Hankel determinant for the families R1(ρ) and Rλ(θ,ρ) respectively.

For some more recent work see [1, 6, 7, 9, 10, 21]. In this paper we generalize the results of [8]

and [20] by finding sharp bounds for |H2(2)| = |a2a4 −a2
3| for f in Rα,β(θ,ρ). We also obtain

here some basic properties such as class preserving transforms for the class Rα,β(θ,ρ).

2. Preliminaries

Each of the following results will be required in our present investigation:

Lemma 2.1. (cf. [4]) Let the function p ∈P be given by the series

p(z)= 1+c1z +c2z2
+ . . . (z ∈U). (2.1)

Then,

|ck | ≤ 2 (k ∈N). (2.2)

The estimate (2.2) is sharp.

Lemma 2.2. (cf.[15], p.254, also see [14]) Let the function p ∈ P be given by the power series

(2.1). Then,

2c2 = c2
1 +x(4−c2

1 ) (2.3)

and

4c3 = c3
1 +2(4−c2

1 )c1x − (4−c2
1 )c1x2

+2(4−c2
1 )(1−|x|2)z (2.4)

for some complex numbers x, z satisfying |x| ≤ 1 and |z| ≤ 1.
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Lemma 2.3. (cf. [26]) Let f and g be univalent convex functions in U. Then, f ∗ g is also a

univalent convex function in U.

Lemma 2.4. (cf. [26], also see [16]) Let f and g be starlike of order 1/2. Then, for each function

F (z) satisfying ℜ(F (z)) >λ (0 ≤λ< 1, z ∈U),

ℜ

(

f (z)∗F (z)g (z)

f (z)∗ g (z)

)

>λ (z ∈U). (2.5)

3. Main results

We state and prove the following:

Theorem 3.1. Let the function f , given by (1.1), be in the class Rα,β(θ,ρ) (0 ≤ ρ < 1,−π
2
< θ<

π
2

). If 0 <β< 2, 0 <β≤α<
2+5β
2−β

, then

|a2a4 −a2
3| ≤

4β2(β+1)2(1−ρ)2 cos2θ

α2(α+1)2
. (3.1)

The estimate (3.1) is sharp.

Proof. Let f ∈Rα,β(θ,ρ) (0 ≤ρ < 1, −
π
2
< θ <

π
2

). Then using (1.2), (1.3), and (1.6) we write

e iθL (α,β) f (z)

z
= e iθ

[

1+
∞
∑

n=2

(α)n−1

(β)n−1
an zn−1

]

=
[

(1−ρ)p(z)+ρ
]

cosθ+ i sinθ (3.2)

where p ∈P and is given by (2.1).

A comparison of the coefficients, in (3.2) gives

α e iθ

β
a2 = c1(1−ρ)cosθ,

(α)2 e iθ

(β)2
a3 = c2(1−ρ)cosθ, (3.3)

(α)3 e iθ

(β)3
a4 = c3(1−ρ)cosθ.

Therefore, (3.3) yields the following:

|a2a4 −a2
3| =

β2(β+1)(1−ρ)2 cos2θ

α2(α+1)

∣

∣

∣

∣

β+2

α+2
c1c3 −

β+1

α+1
c2

2

∣

∣

∣

∣

.

Since the functions p(z) and p(e iθz) (θ ∈R) are members of the class P simultaneously, we

assume without loss of generality that c1 > 0. For convenience of notation, we take c1 = c (c ∈

[0,2]).
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Using Lemma 2.2, we get

|a2a4 −a2
3| =

β2(β+1)(1−ρ)2 cos2θ

α2(α+1)

×

∣

∣

∣

β+2

4(α+2)
c{c3

+2(4−c2)cx −c(4−c2)x2
+2(4−c2)(1−|x|2)z}

−
β+1

4(α+1)
{c2

+x(4−c2)}2
∣

∣

∣

=
β2(β+1)(1−ρ)2 cos2θ

α2(α+1)

∣

∣

∣

β+2

4(α+2)
c4

+
(β+2)(4−c2)c2

2(α+2)
x −

(β+2)(4−c2)c2

4(α+2)
x2

+
(β+2)(4−c2)c(1−|x|2)z

2(α+2)
−

β+1

4(α+1)
c4

−
(β+1)(4−c2)c2

2(α+1)
x −

(β+1)(4−c2)2

4(α+1)
x2

∣

∣

∣.

=
β2(β+1)(1−ρ)2 cos2θ

α2(α+1)

∣

∣

∣

(α−β)c4

4(α+1)2
+

(4−c2)c2(α−β)

2(α+1)2
x

−
4−c2

4

(

c2(β+2)

(α+2)
+

(β+1)(4−c2)

(α+1)

)

x2
+

c(4−c2)(β+2)(1−|x|2)

2(α+2)
z
∣

∣

∣.

An application of triangle inequality and replacement of |x| by µ, give

|a2a4 −a2
3| ≤

β2(β+1)(1−ρ)2 cos2θ

α2(α+1)

[(α−β)c4

4(α+1)2
+

(4−c2)c2(α−β)

2(α+1)2
µ

+
4−c2

4

(

c2(β+2)

(α+2)
+

(β+1)(4−c2)

(α+1)

)

µ2
+

c(4−c2)(β+2)

2(α+2)
−

c(4−c2)(β+2)

2(α+2)
µ2

]

.

=
β2(β+1)(1−ρ)2 cos2θ

α2(α+1)

[(α−β)c4

4(α+1)2
+

c(4−c2)(β+2)

2(α+2)

+
(4−c2)c2(α−β)

2(α+1)2
µ+

(4−c2)(2−c){2(α+2)(β+1)−c(α−β)}

4(α+1)2
µ2

]

= F (c ,µ) (say) (3.4)

where 0 ≤ c ≤ 2 and 0 ≤µ≤ 1.

We next maximize the function F (c ,µ) on the closed rectangle [0,2]× [0,1]. We first as-

sume that 0 <β<α. A routine calculation gives

∂F

∂µ
=

β2(β+1)(1−ρ)2(4−c2)(α−β)cos2θ

2α2(α+1)2(α+2)

[

c2
+ (c −2)

{

c −
2(α+2)(β+1)

(α−β)

}

µ

]

=
β2(β+1)(1−ρ)2(4−c2)(α−β)cos2θ

2α2(α+1)2(α+2)

[

c2
+ (c −2)

{

α(c −2)−β(c +4)−2αβ−4

(α−β)

}

µ

]

.

Therefore, for 0 < c < 2 and 0 <µ< 1, we have ∂F
∂µ > 0. Thus F (c ,µ) cannot have a maximum

in the interior of the closed rectangle [0,2]× [0,1]. Moreover, for fixed c ∈ [0,2],

max
0≤µ≤1

F (c ,µ)=F (c ,1).
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Set

F (c ,1) =H (c) (say).

Again a routine calculation gives

H ′(c)=
−8c(α−β)β2(β+1)(1−ρ)2 cos2θ

[

c2 +
α(β−2)+5β+2

α−β

]

4α2(α+1)2(α+2)
.

Since 0 < β < α <
2+5β
2−β , we get

[

c2 +
α(β−2)+5β+2

α−β

]

> 0, so that H ′(c) < 0 for 0 < c < 2. Also

H (c) > H (2). Therefore max0≤c≤2 H (c) occurs at c = 0 and the upper bound of (3.4) corre-

sponds to µ= 1 and c = 0. Next, taking 0 <β=α in (3.4) we have

F (c ,µ) =
(1−ρ)2(4−c2)

2

{

c + (2−c)µ2
}

cos2θ,

∂F

∂µ
= (1−ρ)2(4−c2)(2−c)µcos2θ> 0

and

H (c) = (1−ρ)2(4−c2)cos2θ.

Hence, the maximum of F (c ,µ) occurs at c = 0 and µ= 1.

Therefore,

|a2a4 −a2
3| ≤

4β2(β+1)2(1−ρ)2 cos2θ

α2(α+1)2
.

This is the assertion of (3.1). Equality holds for the function

f (z) =φ(β,α; z)∗e−iθ

[

z

(

1+ (1−2ρ)z2

1− z2
cosθ+ i sinθ

)]

.

The proof of the theorem is completed. ���

Taking 0<β=α in Theorem 3.1 we have the following:

Corollary 3.2. Let the function f given by (1.1), be a member of the class R0(ρ) (0 ≤ ρ < 1).

Then

|a2a4 −a2
3| ≤ 4(1−ρ)2.

Equality holds for the function

z

(

1+ (1−2ρ)z2

1− z2

)

.

Taking α= 2 and β= 1 Theorem 3.1 we get the following:
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Corollary 3.3. Let the function f , given by (1.1) be in the class R1(ρ) (0 ≤ ρ < 1). Then

|a2a4 −a2
3| ≤

4(1−ρ)2

9
.

Equality holds for the function

f (z) =φ(1,2; z)∗

{

z

(

1+ (1−2ρ)z2

1− z2

)}

.

The choice ρ = 0 in Corollary 3.3 gives a result of Janteng et. al. [8] for the class R1.

Similarly the choice α= 2, β= 2−λ, ( 0 ≤λ≤ 1), in Theorem 3.1 gives the following recent result

of Mishra and Gochhayat [20] for the class Rλ(θ,ρ).

Corollary 3.4. Let the function f , given by (1.1), be in the class Rλ(θ,ρ), (0 ≤ λ ≤ 1, 0 ≤ ρ <

1, −
π
2 < θ <

π
2 ). Then

|a2a4 −a2
3| ≤

(1−ρ)2(2−λ)2(3−λ)2 cos2θ

9
.

The estimate is sharp, for the function

f (z) =φ(2−λ,2; z)∗e−iθ

[

z

(

1+ (1−2ρ)z2

1− z2

)

cosθ+ i sinθ

]

.

Corollary 3.5. Let the function f , given by (1.1), be a member of the class Rα,β(ρ) (0 < β < 2,

0 <β<α<
2+5β

2−β
). Then

|a2a4 −a2
3| ≤

4β2(β+1)2(1−ρ)2

α2(α+1)2
.

Equality holds for the function

f (z) =φ(β,α; z)∗

[

z

(

1+ (1−2ρ)z2

1− z2

)]

.

Theorem 3.6. Let f ∈S ∗(1/2) and g ∈Rα,β(θ,ρ)
(

0 ≤ρ < 1, −
π
2
< θ <

π
2

)

. Then

f ∗ g ∈Rα,β(θ,ρ).

Proof. Since Hadamard product is associative and commutative, we have

L (α,β)( f ∗ g )(z) = f (z)∗L (α,β)g (z).

Therefore,

e iθL (α,β)( f ∗ g )(z)

z
=

f (z)∗
eiθL (α,β)g (z)

z z

f (z)∗ z
.

Now applying Lemma 2.4, we get

ℜ

(

e iθL (α,β)( f ∗ g )(z)

z

)

>ρ cosθ.

Hence f ∗ g ∈Rα,β(θ,ρ) and the proof of Theorem 3.6 is completed. ���
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Theorem 3.7. Let f ∈ Rα,β(θ,ρ)
(

0 ≤ ρ < 1, −
π
2 < θ<

π
2

)

. Then, the function J ( f ) defined

by the integral transform.

J ( f )(z) =
γ+1

zγ

∫z

0
tγ−1 f (t )d t (z ∈U, γ>−1)

is also in Rα,β(θ,ρ).

Proof. The integral transform J ( f ) can be written in terms of the Carlson-Shaffer operator

as

J ( f )(z) = (L (γ+1,γ+2) f )(z).

Hence

(L (α,β)J ( f ))(z) =L (γ+1,γ+2)L (α,β) f (z) =φ(γ+1,γ+2; z)∗L (α,β) f (z).

Therefore,

e iθ(L (α,β)J ( f ))(z)

z
=

φ(γ+1,γ+2; z)∗
(

e iθL (α,β) f (z)/z
)

z

φ(γ+1,γ+2; z)∗ z
.

Using a result of Bernardi [2], it can be verified that φ(γ+1,γ+2; z) ∈S ∗(1/2). Thus by apply-

ing Lemma 2.4, the proof of Theorem 3.7 is completed. ���
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