THE SECOND HANKEL DETERMINANT FOR A CLASS OF ANALYTIC FUNCTIONS ASSOCIATED WITH THE CARLSON-SHAFFER OPERATOR

A. K. MISHRA AND S. N. KUND

Abstract

In this paper a new class of analytic functions, associated with the CarlsonShaffer operator, is investigated. The sharp estimate for the Second Hankel determinant and class preserving transforms are studied.

1. Introduction

Let \mathscr{A} be the class of analytic functions in the open unit disc

$$
\mathbb{U}:=\{z: z \in \mathbb{C}, \quad|z|<1\} .
$$

We denote by \mathscr{A}_{0}, the subclass of \mathscr{A} consisting of normalized functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{U}) . \tag{1.1}
\end{equation*}
$$

For the functions f and g in \mathscr{A} given by the series expansion:

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad g(z)=\sum_{n=0}^{\infty} b_{n} z^{n} \quad(z \in \mathbb{U}),
$$

the Hadamard product (or Convolution) $f * g$, is defined by

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z) \quad(z \in \mathbb{U}) .
$$

The function $f * g \in \mathscr{A}$. We recall that the Carlson- Shaffer operator [3]

$$
\mathscr{L}(\alpha, \beta): \mathscr{A}_{0} \rightarrow \mathscr{A}_{0} \quad\left(\alpha \in \mathbb{C}, \beta \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; \mathbb{Z}_{0}^{-}:\{0,-1,-2, \ldots\}\right)
$$

Corresponding author: A. K. Mishra.
2010 Mathematics Subject Classification. Primary 30C45, Secondary 33C15.
Key words and phrases. Univalent, Starlike, Hadamard product, Carlson-Shaffer operator, Hankel determinant..
is defined by:

$$
\begin{equation*}
\mathscr{L}(\alpha, \beta) f(z)=\phi(\alpha, \beta ; z) * f(z) \quad(z \in \mathbb{U}, f \in \mathscr{A}), \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi(\alpha, \beta ; z)=\sum_{k=0}^{\infty} \frac{(\alpha)_{k}}{(\beta)_{k}} z^{k+1} \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

and $(\lambda)_{k}$ is the Pochhammer symbol (or shifted factorial) defined in terms of the Gamma function by

$$
(\lambda)_{k}=\frac{\Gamma(\lambda+k)}{\Gamma(\lambda)}:= \begin{cases}1 & (k=0) \\ \lambda(\lambda+1) \ldots(\lambda+k-1) & (k \in \mathbb{N}=\{1,2, \ldots\}) .\end{cases}
$$

It can be readily verified that $\mathscr{L}(\alpha, \alpha)$ is the identity operator; the operators $\mathscr{L}(\alpha, \beta)$ and $\mathscr{L}(\gamma, \delta)$ commute, that is

$$
\mathscr{L}(\alpha, \beta) \mathscr{L}(\gamma, \delta) f(z)=\mathscr{L}(\gamma, \delta) \mathscr{L}(\alpha, \beta) f(z) \quad\left(f \in \mathscr{A}_{0}\right)
$$

and the following transitive property holds true:

$$
\mathscr{L}(\alpha, \beta) \mathscr{L}(\beta, \gamma) f=\mathscr{L}(\alpha, \gamma) f \quad\left(\beta, \gamma \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, f \in \mathscr{A}_{0}\right)
$$

In the particular case $\alpha=2, \beta=1$, the operator $\mathscr{L}(\alpha, \beta)$ reduces to the Alexander's transform:

$$
\mathscr{L}(2,1) f(z)=z f^{\prime}(z) \quad\left(f \in \mathscr{A}_{0}\right) .
$$

Moreover, the popular Owa-Srivastava fractional differential operator

$$
\Omega_{z}^{\lambda}: \mathscr{A}_{0} \rightarrow \mathscr{A}_{0} \quad(0 \leq \lambda<1, z \in \mathbb{U})
$$

is related to the Carlson-Shaffer operator by the formula:

$$
\Omega_{z}^{\lambda} f(z)=\mathscr{L}(2,2-\lambda) f(z)
$$

(see [23, 24, 25], also see [18, 19]). By using the Carlson-Shaffer operator we introduce the following class of functions:

Definition 1. The function $f \in \mathscr{A}_{0}$ is said to be in the class $\mathscr{R}_{\alpha, \beta}(\theta, \rho) \quad\left(-\frac{\pi}{2}<\theta<\frac{\pi}{2}, 0 \leq \rho<\right.$ $\left.1, \alpha \in \mathbb{C}, \beta \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}\right)$if

$$
\begin{equation*}
\Re\left\{e^{i \theta} \frac{\mathscr{L}(\alpha, \beta) f(z)}{z}\right\}>\rho \cos \theta \quad(z \in \mathbb{U}) . \tag{1.4}
\end{equation*}
$$

The class $\mathscr{R}_{\alpha, \beta}(\theta, \rho)$ generalizes several well known subclasses of \mathscr{A}_{0}. For example, taking $\alpha=\beta ; \alpha=2, \beta=1$ and $\alpha=2, \beta=2-\lambda \quad(0 \leq \lambda<1)$ respectively, we get the following interesting classes:

$$
\begin{gather*}
\mathscr{R}_{\alpha, \alpha}(\theta, \rho)=\left\{f \in \mathscr{A}_{0}: \Re\left(e^{i \theta} \frac{f(z)}{z}\right)>\rho \cos \theta\right\}:=\mathscr{R}_{0}(\theta, \rho) \tag{1.5}\\
\bigcup_{\theta} \mathscr{R}_{0}(\theta, \rho)=\mathscr{R}_{0}(\rho), \\
\mathscr{R}_{2,1}(\theta, \rho)=\left\{f \in \mathscr{A}_{0}: \Re\left(e^{i \theta} f^{\prime}(z)\right)>\rho \cos \theta\right\}:=\mathscr{R}_{1}(\theta, \rho) \\
\bigcup_{\theta} \mathscr{R}_{1}(\theta, \rho)=\mathscr{R}_{1}(\rho)
\end{gather*}
$$

and

$$
\begin{gathered}
\mathscr{R}_{2,2-\lambda}(\theta, \rho)=\left\{f \in \mathscr{A}_{0}: \Re\left(e^{i \theta} \frac{\Omega_{z}^{\lambda} f(z)}{z}\right)>\rho \cos \theta\right\}:=\mathscr{R}_{\lambda}(\theta, \rho) \\
\bigcup_{\theta} \mathscr{R}_{\lambda}(\theta, \rho)=\mathscr{R}_{\lambda}(\rho) .
\end{gathered}
$$

It is well known that the functions in the class $\mathscr{R}_{1}(\rho)$ are univalent close-to-convex [4]. Moreover, if $0 \leq \mu<\lambda<1$ then

$$
\mathscr{R}_{1}(\rho) \subset \mathscr{R}_{\lambda}(\rho) \subset \mathscr{R}_{\mu}(\rho) \subset \mathscr{R}_{0}(\rho)
$$

(cf. [16, 20]). For initial seminal work on the class $\mathscr{R}_{1}(0):=\mathscr{R}_{1}$ one may see the classical paper of Macgregor [17]. The family of functions $\mathscr{R}_{\alpha, \beta}(\theta, \rho)$ is characterized by the following function class:

$$
\mathscr{P}:=\{p \in \mathscr{A}: p(0)=1, \Re(p(z))>0, z \in \mathbb{U}\} .
$$

Infact, it follows from (1.4) that the function $f \in \mathscr{A}_{0}$ is in the class $\mathscr{R}_{\alpha, \beta}(\theta, \rho)$ if and only if

$$
\begin{equation*}
e^{i \theta} \frac{\mathscr{L}(\alpha, \beta) f(z)}{z}=[(1-\rho) p(z)+\rho] \cos \theta+i \sin \theta \tag{1.6}
\end{equation*}
$$

for some function $p \in \mathscr{P}$.
For the complex sequence $a_{n}, a_{n+1}, a_{n+2}, \ldots$, the Hankel matrix, named after Herman Hankel (1839-1873), is the infinite matrix whose $(i, j)^{t h}$ entry $a_{i j}$ is defined by

$$
a_{i j}=a_{n+i+j-2} \quad(i, j, n \in \mathbb{N}) .
$$

The $q^{\text {th }}$ Hankel matrix ($q \in \mathbb{N} \backslash\{1\}$), is by definition, the following $q \times q$ square sub matrix:

$$
\left(\begin{array}{cccc}
a_{n} & a_{n+1} & a_{n+2} & \ldots \\
a_{n+q-1} \\
a_{n+1} & a_{n+2} & a_{n+3} \ldots & a_{n+q} \\
a_{n+2} & a_{n+3} & a_{n+4} \ldots & a_{n+q+1} \\
\vdots & \vdots & \vdots & \\
a_{n+q-1} & a_{n+q} & a_{n+q+1} & \ldots \\
a_{n+2 q-1}
\end{array}\right)
$$

We observe that the Hankel matrix has constant positive slopping diagonals whose entries also satisfy:

$$
a_{i j}=a_{i-1, j+1} \quad(i \in \mathbb{N} \backslash\{1\} ; j \in \mathbb{N}) .
$$

This also describes the Hankel matrix without reference to a particular sequence. The determinant of the $q^{t h}$ Hankel matrix, usually denoted by $H_{q}(n)$, is called the $q^{t h}$ Hankel determinant (cf. [22]). In the particular cases $q=2, n=1, a_{1}=1$ and $q=2, n=2$, the Hankel determinant simplifies respectively to

$$
H_{2}(1)=a_{3}-a_{2}^{2} \quad \text { and } \quad H_{2}(2)=a_{2} a_{4}-a_{3}^{2} .
$$

We refer to $\mathrm{H}_{2}(2)$ as the Second Hankel determinant.
It is fairly well known that for the univalent function of the form (1.1) the sharp inequality $\left|H_{2}(1)\right|=\left|a_{3}-a_{2}^{2}\right| \leq 1$ holds true [4]. For a family \Im of functions in \mathscr{A}_{0}, the more general problem of finding sharp estimates for the functional $\left|\mu a_{2}^{2}-a_{3}\right|(\mu \in \mathbb{R}$ or $\mu \in \mathbb{C})$ is popularly known as the Fekete-Szegö problem for \Im. The Fekete-Szegö problem for the families of univalent functions, starlike functions, convex functions, close-to-convex functions has been completely settled in [5, 11, 12, 13]. For related results also see [19].

Recently Janteng et.al.[8] and the first author and Gochhayat [20] obtained sharp estimates on the Second Hankel determinant for the families $\mathscr{R}_{1}(\rho)$ and $\mathscr{R}_{\lambda}(\theta, \rho)$ respectively. For some more recent work see [1, $6,7,9,10,21]$. In this paper we generalize the results of [8] and [20] by finding sharp bounds for $\left|H_{2}(2)\right|=\left|a_{2} a_{4}-a_{3}^{2}\right|$ for f in $\mathscr{R}_{\alpha, \beta}(\theta, \rho)$. We also obtain here some basic properties such as class preserving transforms for the class $\mathscr{R}_{\alpha, \beta}(\theta, \rho)$.

2. Preliminaries

Each of the following results will be required in our present investigation:
Lemma 2.1. (cf. [4]) Let the function $p \in \mathscr{P}$ be given by the series

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\ldots \quad(z \in \mathbb{U}) . \tag{2.1}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\left|c_{k}\right| \leq 2 \quad(k \in \mathbb{N}) . \tag{2.2}
\end{equation*}
$$

The estimate (2.2) is sharp.
Lemma 2.2. (cf.[15], p.254, also see [14]) Let the function $p \in \mathscr{P}$ be given by the power series (2.1). Then,

$$
\begin{equation*}
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
4 c_{3}=c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} x-\left(4-c_{1}^{2}\right) c_{1} x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z \tag{2.4}
\end{equation*}
$$

for some complex numbers x, z satisfying $|x| \leq 1$ and $|z| \leq 1$.

Lemma 2.3. (cf. [26]) Let f and g be univalent convex functions in \mathbb{U}. Then, $f * g$ is also a univalent convex function in \mathbb{U}.

Lemma 2.4. (cf. [26], also see [16]) Let f and g be starlike of order 1/2. Then, for each function $\mathscr{F}(z)$ satisfying $\Re(\mathscr{F}(z))>\lambda \quad(0 \leq \lambda<1, z \in \mathbb{U})$,

$$
\begin{equation*}
\Re\left(\frac{f(z) * \mathscr{F}(z) g(z)}{f(z) * g(z)}\right)>\lambda \quad(z \in \mathbb{U}) . \tag{2.5}
\end{equation*}
$$

3. Main results

We state and prove the following:
Theorem 3.1. Let the function f, given by (1.1), be in the class $\mathscr{R}_{\alpha, \beta}(\theta, \rho) \quad\left(0 \leq \rho<1,-\frac{\pi}{2}<\theta<\right.$ $\frac{\pi}{2}$). If $0<\beta<2,0<\beta \leq \alpha<\frac{2+5 \beta}{2-\beta}$, then

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4 \beta^{2}(\beta+1)^{2}(1-\rho)^{2} \cos ^{2} \theta}{\alpha^{2}(\alpha+1)^{2}} \tag{3.1}
\end{equation*}
$$

The estimate (3.1) is sharp.
Proof. Let $f \in \mathscr{R}_{\alpha, \beta}(\theta, \rho) \quad\left(0 \leq \rho<1,-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)$. Then using (1.2), (1.3), and (1.6) we write

$$
\begin{align*}
e^{i \theta} \frac{\mathscr{L}(\alpha, \beta) f(z)}{z} & =e^{i \theta}\left[1+\sum_{n=2}^{\infty} \frac{(\alpha)_{n-1}}{(\beta)_{n-1}} a_{n} z^{n-1}\right] \\
& =[(1-\rho) p(z)+\rho] \cos \theta+i \sin \theta \tag{3.2}
\end{align*}
$$

where $p \in \mathscr{P}$ and is given by (2.1).
A comparison of the coefficients, in (3.2) gives

$$
\begin{align*}
\frac{\alpha e^{i \theta}}{\beta} a_{2} & =c_{1}(1-\rho) \cos \theta \\
\frac{(\alpha)_{2} e^{i \theta}}{(\beta)_{2}} a_{3} & =c_{2}(1-\rho) \cos \theta \tag{3.3}\\
\frac{(\alpha)_{3} e^{i \theta}}{(\beta)_{3}} a_{4} & =c_{3}(1-\rho) \cos \theta
\end{align*}
$$

Therefore, (3.3) yields the following:

$$
\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{\beta^{2}(\beta+1)(1-\rho)^{2} \cos ^{2} \theta}{\alpha^{2}(\alpha+1)}\left|\frac{\beta+2}{\alpha+2} c_{1} c_{3}-\frac{\beta+1}{\alpha+1} c_{2}^{2}\right| .
$$

Since the functions $p(z)$ and $p\left(e^{i \theta} z\right) \quad(\theta \in \mathbb{R})$ are members of the class \mathscr{P} simultaneously, we assume without loss of generality that $c_{1}>0$. For convenience of notation, we take $c_{1}=c$ ($c \in$ $[0,2]$).

Using Lemma 2.2, we get

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right|= & \frac{\beta^{2}(\beta+1)(1-\rho)^{2} \cos ^{2} \theta}{\alpha^{2}(\alpha+1)} \\
& \times \left\lvert\, \frac{\beta+2}{4(\alpha+2)} c\left\{c^{3}+2\left(4-c^{2}\right) c x-c\left(4-c^{2}\right) x^{2}+2\left(4-c^{2}\right)\left(1-|x|^{2}\right) z\right\}\right. \\
& \left.-\frac{\beta+1}{4(\alpha+1)}\left\{c^{2}+x\left(4-c^{2}\right)\right\}^{2} \right\rvert\, \\
= & \frac{\beta^{2}(\beta+1)(1-\rho)^{2} \cos ^{2} \theta}{\alpha^{2}(\alpha+1)} \left\lvert\, \frac{\beta+2}{4(\alpha+2)} c^{4}+\frac{(\beta+2)\left(4-c^{2}\right) c^{2}}{2(\alpha+2)} x-\frac{(\beta+2)\left(4-c^{2}\right) c^{2}}{4(\alpha+2)} x^{2}\right. \\
& \left.+\frac{(\beta+2)\left(4-c^{2}\right) c\left(1-|x|^{2}\right) z}{2(\alpha+2)}-\frac{\beta+1}{4(\alpha+1)} c^{4}-\frac{(\beta+1)\left(4-c^{2}\right) c^{2}}{2(\alpha+1)} x-\frac{(\beta+1)\left(4-c^{2}\right)^{2}}{4(\alpha+1)} x^{2} \right\rvert\, . \\
= & \frac{\beta^{2}(\beta+1)(1-\rho)^{2} \cos ^{2} \theta}{\alpha^{2}(\alpha+1)} \left\lvert\, \frac{(\alpha-\beta) c^{4}}{4(\alpha+1)_{2}}+\frac{\left(4-c^{2}\right) c^{2}(\alpha-\beta)}{2(\alpha+1)_{2}} x\right. \\
& \left.-\frac{4-c^{2}}{4}\left(\frac{c^{2}(\beta+2)}{(\alpha+2)}+\frac{(\beta+1)\left(4-c^{2}\right)}{(\alpha+1)}\right) x^{2}+\frac{c\left(4-c^{2}\right)(\beta+2)\left(1-|x|^{2}\right)}{2(\alpha+2)} z \right\rvert\, .
\end{aligned}
$$

An application of triangle inequality and replacement of $|x|$ by μ, give

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq & \frac{\beta^{2}(\beta+1)(1-\rho)^{2} \cos ^{2} \theta}{\alpha^{2}(\alpha+1)}\left[\frac{(\alpha-\beta) c^{4}}{4(\alpha+1)_{2}}+\frac{\left(4-c^{2}\right) c^{2}(\alpha-\beta)}{2(\alpha+1)_{2}} \mu\right. \\
& \left.+\frac{4-c^{2}}{4}\left(\frac{c^{2}(\beta+2)}{(\alpha+2)}+\frac{(\beta+1)\left(4-c^{2}\right)}{(\alpha+1)}\right) \mu^{2}+\frac{c\left(4-c^{2}\right)(\beta+2)}{2(\alpha+2)}-\frac{c\left(4-c^{2}\right)(\beta+2)}{2(\alpha+2)} \mu^{2}\right] . \\
= & \frac{\beta^{2}(\beta+1)(1-\rho)^{2} \cos ^{2} \theta}{\alpha^{2}(\alpha+1)}\left[\frac{(\alpha-\beta) c^{4}}{4(\alpha+1)_{2}}+\frac{c\left(4-c^{2}\right)(\beta+2)}{2(\alpha+2)}\right. \\
& \left.+\frac{\left(4-c^{2}\right) c^{2}(\alpha-\beta)}{2(\alpha+1)_{2}} \mu+\frac{\left(4-c^{2}\right)(2-c)\{2(\alpha+2)(\beta+1)-c(\alpha-\beta)\}}{4(\alpha+1)_{2}} \mu^{2}\right] \\
= & \mathscr{F}(c, \mu) \quad \text { (say) } \tag{3.4}
\end{align*}
$$

where $0 \leq c \leq 2$ and $0 \leq \mu \leq 1$.
We next maximize the function $\mathscr{F}(c, \mu)$ on the closed rectangle $[0,2] \times[0,1]$. We first assume that $0<\beta<\alpha$. A routine calculation gives

$$
\begin{aligned}
\frac{\partial \mathscr{F}}{\partial \mu} & =\frac{\beta^{2}(\beta+1)(1-\rho)^{2}\left(4-c^{2}\right)(\alpha-\beta) \cos ^{2} \theta}{2 \alpha^{2}(\alpha+1)^{2}(\alpha+2)}\left[c^{2}+(c-2)\left\{c-\frac{2(\alpha+2)(\beta+1)}{(\alpha-\beta)}\right\} \mu\right] \\
& =\frac{\beta^{2}(\beta+1)(1-\rho)^{2}\left(4-c^{2}\right)(\alpha-\beta) \cos ^{2} \theta}{2 \alpha^{2}(\alpha+1)^{2}(\alpha+2)}\left[c^{2}+(c-2)\left\{\frac{\alpha(c-2)-\beta(c+4)-2 \alpha \beta-4}{(\alpha-\beta)}\right\} \mu\right] .
\end{aligned}
$$

Therefore, for $0<c<2$ and $0<\mu<1$, we have $\frac{\partial \mathscr{F}}{\partial \mu}>0$. Thus $\mathscr{F}(c, \mu)$ cannot have a maximum in the interior of the closed rectangle $[0,2] \times[0,1]$. Moreover, for fixed $c \in[0,2]$,

$$
\max _{0 \leq \mu \leq 1} \mathscr{F}(c, \mu)=\mathscr{F}(c, 1) .
$$

Set

$$
\mathscr{F}(c, 1)=\mathscr{H}(c) \quad \text { (say). }
$$

Again a routine calculation gives

$$
\mathscr{H}^{\prime}(c)=\frac{-8 c(\alpha-\beta) \beta^{2}(\beta+1)(1-\rho)^{2} \cos ^{2} \theta\left[c^{2}+\frac{\alpha(\beta-2)+5 \beta+2}{\alpha-\beta}\right]}{4 \alpha^{2}(\alpha+1)^{2}(\alpha+2)}
$$

Since $0<\beta<\alpha<\frac{2+5 \beta}{2-\beta}$, we get $\left[c^{2}+\frac{\alpha(\beta-2)+5 \beta+2}{\alpha-\beta}\right]>0$, so that $\mathscr{H}^{\prime}(c)<0$ for $0<c<2$. Also $\mathscr{H}(c)>\mathscr{H}(2)$. Therefore $\max _{0 \leq c \leq 2} \mathscr{H}(c)$ occurs at $c=0$ and the upper bound of (3.4) corresponds to $\mu=1$ and $c=0$. Next, taking $0<\beta=\alpha$ in (3.4) we have

$$
\begin{aligned}
\mathscr{F}(c, \mu) & =\frac{(1-\rho)^{2}\left(4-c^{2}\right)}{2}\left\{c+(2-c) \mu^{2}\right\} \cos ^{2} \theta, \\
\frac{\partial \mathscr{F}}{\partial \mu} & =(1-\rho)^{2}\left(4-c^{2}\right)(2-c) \mu \cos ^{2} \theta>0
\end{aligned}
$$

and

$$
\mathscr{H}(c)=(1-\rho)^{2}\left(4-c^{2}\right) \cos ^{2} \theta
$$

Hence, the maximum of $\mathscr{F}(c, \mu)$ occurs at $c=0$ and $\mu=1$.
Therefore,

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4 \beta^{2}(\beta+1)^{2}(1-\rho)^{2} \cos ^{2} \theta}{\alpha^{2}(\alpha+1)^{2}}
$$

This is the assertion of (3.1). Equality holds for the function

$$
f(z)=\phi(\beta, \alpha ; z) * e^{-i \theta}\left[z\left(\frac{1+(1-2 \rho) z^{2}}{1-z^{2}} \cos \theta+i \sin \theta\right)\right]
$$

The proof of the theorem is completed.

Taking $0<\beta=\alpha$ in Theorem 3.1 we have the following:

Corollary 3.2. Let the function f given by (1.1), be a member of the class $\mathscr{R}_{0}(\rho)(0 \leq \rho<1)$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 4(1-\rho)^{2}
$$

Equality holds for the function

$$
z\left(\frac{1+(1-2 \rho) z^{2}}{1-z^{2}}\right)
$$

Taking $\alpha=2$ and $\beta=1$ Theorem 3.1 we get the following:

Corollary 3.3. Let the function f, given by (1.1) be in the class $\mathscr{R}_{1}(\rho)(0 \leq \rho<1)$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4(1-\rho)^{2}}{9}
$$

Equality holds for the function

$$
f(z)=\phi(1,2 ; z) *\left\{z\left(\frac{1+(1-2 \rho) z^{2}}{1-z^{2}}\right)\right\} .
$$

The choice $\rho=0$ in Corollary 3.3 gives a result of Janteng et. al. [8] for the class \mathscr{R}_{1}.
Similarly the choice $\alpha=2, \beta=2-\lambda,(0 \leq \lambda \leq 1)$, in Theorem 3.1 gives the following recent result of Mishra and Gochhayat [20] for the class $\mathscr{R}_{\lambda}(\theta, \rho)$.

Corollary 3.4. Let the function f, given by (1.1), be in the class $\mathscr{R}_{\lambda}(\theta, \rho),(0 \leq \lambda \leq 1,0 \leq \rho<$ 1 , $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$). Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{(1-\rho)^{2}(2-\lambda)^{2}(3-\lambda)^{2} \cos ^{2} \theta}{9} .
$$

The estimate is sharp, for the function

$$
f(z)=\phi(2-\lambda, 2 ; z) * e^{-i \theta}\left[z\left(\frac{1+(1-2 \rho) z^{2}}{1-z^{2}}\right) \cos \theta+i \sin \theta\right] .
$$

Corollary 3.5. Let the function f, given by (1.1), be a member of the class $\mathscr{R}_{\alpha, \beta}(\rho)(0<\beta<2$, $0<\beta<\alpha<\frac{2+5 \beta}{2-\beta}$). Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4 \beta^{2}(\beta+1)^{2}(1-\rho)^{2}}{\alpha^{2}(\alpha+1)^{2}}
$$

Equality holds for the function

$$
f(z)=\phi(\beta, \alpha ; z) *\left[z\left(\frac{1+(1-2 \rho) z^{2}}{1-z^{2}}\right)\right] .
$$

Theorem 3.6. Let $f \in \mathscr{S}^{*}(1 / 2)$ and $g \in \mathscr{R}_{\alpha, \beta}(\theta, \rho)\left(0 \leq \rho<1,-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)$. Then

$$
f * g \in \mathscr{R}_{\alpha, \beta}(\theta, \rho) .
$$

Proof. Since Hadamard product is associative and commutative, we have

$$
\mathscr{L}(\alpha, \beta)(f * g)(z)=f(z) * \mathscr{L}(\alpha, \beta) g(z) .
$$

Therefore,

$$
\frac{e^{i \theta} \mathscr{L}(\alpha, \beta)(f * g)(z)}{z}=\frac{f(z) * \frac{e^{i \theta} \mathscr{L}(\alpha, \beta) g(z)}{z} z}{f(z) * z} .
$$

Now applying Lemma 2.4, we get

$$
\Re\left(\frac{e^{i \theta} \mathscr{L}(\alpha, \beta)(f * g)(z)}{z}\right)>\rho \cos \theta
$$

Hence $f * g \in \mathscr{R}_{\alpha, \beta}(\theta, \rho)$ and the proof of Theorem 3.6 is completed.

Theorem 3.7. Let $f \in \mathscr{R}_{\alpha, \beta}(\theta, \rho) \quad\left(0 \leq \rho<1,-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)$. Then, the function $\mathscr{J}(f)$ defined by the integral transform.

$$
\mathscr{J}(f)(z)=\frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) d t \quad(z \in \mathbb{U}, \gamma>-1)
$$

is also in $\mathscr{R}_{\alpha, \beta}(\theta, \rho)$.
Proof. The integral transform $\mathscr{J}(f)$ can be written in terms of the Carlson-Shaffer operator as

$$
\mathscr{L}(f)(z)=(\mathscr{L}(\gamma+1, \gamma+2) f)(z) .
$$

Hence

$$
(\mathscr{L}(\alpha, \beta) \mathscr{L}(f))(z)=\mathscr{L}(\gamma+1, \gamma+2) \mathscr{L}(\alpha, \beta) f(z)=\phi(\gamma+1, \gamma+2 ; z) * \mathscr{L}(\alpha, \beta) f(z) .
$$

Therefore,

$$
\frac{e^{i \theta}(\mathscr{L}(\alpha, \beta) \mathscr{L}(f))(z)}{z}=\frac{\phi(\gamma+1, \gamma+2 ; z) *\left(e^{i \theta} \mathscr{L}(\alpha, \beta) f(z) / z\right) z}{\phi(\gamma+1, \gamma+2 ; z) * z}
$$

Using a result of Bernardi [2], it can be verified that $\phi(\gamma+1, \gamma+2 ; z) \in \mathscr{S}^{*}(1 / 2)$. Thus by applying Lemma 2.4, the proof of Theorem 3.7 is completed.

References

[1] O. Al-Refai and M. Darus, Second Hankel determinant for a class of analytic functions defined by a fractional operator, European J. of Scientific Research 28(2009), 234-241.
[2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
[3] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.
[4] P. L. Duren, Univalent functions, vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 1983.
[5] M. Fekete and G. Szegö, Eine Bemerkung uber ungerade schlichte Funktionen, J. London Math. Soc., 8(1933), 85-89.
[6] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal., 4(2010), 25732585.
[7] T. Hayami and S. Owa, Coefficient estimates for analytic functions concerned with Hankel determinant, Fract. Calc. Appl. Anal., 13(2010), 367-384.
[8] A. Janteng, S. A., Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7, 2006, Art.50. http://jipm.vu.edu.an/
[9] A. Janteng, S. A. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. 1(2007), 619-625.
[10] A. Janteng, S. A. Halim and M. Darus, Estimate on the Second Hankel functional for functions whose derivative has a positive real part, J. Quality Measurement and Analysis 4(2008), 189-195.
[11] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12.
[12] W. Koepf, On the Fekete- Szegö problem for close-to-convex functions-II, Arch. Math.(Basel), 49(1987), 420433.
[13] W. Koepf, On the Fekete- Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101(1987), 89-95.
[14] R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85 (1982), 225-230.
[15] R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87 (1983), 251-257.
[16] Y. Ling and S. Ding, A class of analytic functions defined by fractional derivative, J. Math. Anal. Appl., 186(1994), 504-513.
[17] T. H. MacGregor, Functions whose derivative have positive real part, Trans. Amer. Math. Soc., 104(1962), 532537.
[18] A. K. Mishra and P. Gochhayat, Applications of the Owa-Srivastava operator to the class ofk-uniformly convex functions, Frac. Calc. Appl. Anal., 9(2006), 323-331.
[19] A. K. Mishra and P. Gochhayat, The Fekete-Szegö problem for k-uniformly convex functions and for a class defined by Owa-Srivastava operator, J. Math. Anal. Appl., 347(2008), 563-572.
[20] A. K. Mishra and P. Gochhayat, Second Hankel determinant for a class of analytic functions defined by fractional derivative, Int. J. Math. and Math. Sc., 2008, Article ID 153280, doi: 10.1155/2008/153280.
[21] G. Murugusundaramoorthy and N. Magesh, Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant, Bull. Math. Anal. Appl., 1(2009), 85-89.
[22] J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent function, Trans. Amer. Math. Soc., 223(1976), 337-346
[23] S. Owa, On the distortion theorems I, Kyungpook Math. J., 18(1978), 53-59.
[24] S. Owa and H. M. Srivastava, Applications of fractional derivative, Math. Japon., 29(1984), 383-389.
[25] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(1987), 1057-1077.
[26] St. Ruscheweyh, T. Sheil-Small, Hadamard product of schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv., 48(1973), 119-135.

Berhampur University, Department of Mathematics, Berhampur, District Ganjam, Odisha, 760007, India.
E-mail: akshayam2001@yahoo.co.in
Khallikote Junior College, Department of Mathematics, Berhampur, District Ganjam, Odisha, 760001, India.
E-mail: snkund@yahoo.in

