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HOMOMORPHISM THEOREMS IN SUBTRACTION ALGEBRA

MEHMET ALI OZTURK AND HASRET YAZARLI

Abstract. In this paper, we give homomorphism theorem between two subtraction alge-
bras and investigate some related properties.

1. Introduction

B. M. Schein [8] considered systems of the form (®,0,\), where ® is a set of functions
closed under the composition “o" of functions ( and hence (®; o) is a function semigroup) and
the set theoretic subtraction “\" (and hence (®;\) is a subtraction algebra in the sense of [1]).
He proved that every subtraction semigroup is isomorphic to a difference semigroup of in-
vertible functions. B. Zelinka [9] discussed a problem proposed by B. M. Schein concerning
the structure of multiplication in a subtraction semigroup. He solved the problem for sub-
traction algebras of a special type, called the atomic subtraction algebras. Y. B. Jun, H. S. Kim
and E. H. Roh [4] introduced the notion of ideal in subtraction algebras and discussed charac-
terization of ideals. In [5], Y. B. Jun and H. S. Kim established the ideal generated by a set, and
discussed related results. In [2], Y. Ceven and M. A. Ozturk introduced some additional con-
cepts on subtraction algebras, so called subalgebra, bounded subtraction algebra and union
of subtraction algebras and investigated some related properties. Y. Ceven and S. Kiigiikkog
[3] introduced quotient subtraction algebras, and investigated some properties.

In this paper, we give homomorphism theorem between two subtraction algebras and
investigate some related properties.

2. Preliminaries

nn

An algebra (X;—) with a single binary operation "-" is called subtraction algebra if for all

X, ¥, z € X the following conditions hold:
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SHx—(y-x)=x
(82) x=(x~y) =y~ (y-x),
(83) (x-y)-z=(x—2)-y.

The subtraction determines an order relation on X as the following:
asbsa-b=0

0 = a—a is an element of X and this property does not depend on the choice of a € X. The
ordered set (X; <) is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice
with zero 0 in which every interval [0, a] is a Boolean algebra with respect to induced order.

Here a A b= a— (a— b) and the complement of an element b € [0, a] is a— b.
In a subtraction algebra, the following are true [4], [7];
(al) (x—y)-y=x-y,
(a2) x-0=xand 0—x =0,
(a3) (x—y)-x=0,
(ad) x—(x-y)<y,
(@5) (x=y) - (y=x) = x-,
(aB) x—(x—(x-y))=x-,
(an (x-y)-(z-y)<x-2
(a8) x < yifand only if x = y — w for some w € X,
(a9) x<yimpliesx—z<y—-zandz—-y<z-—xforall ze X,
(al0) x,y < zimplies x—y = x A (z— y),
(@all) (xAy)-(xnz) <xA(y-2),
(@l12) (x-y)-z=(x-2) - (y-2).
Definition 1 ([4]). A nonempty subset A of a sutraction algebra X is called an ideal of X if it
satisfies, forall x, y,z € X,
(1)0eA,
(2) (VxeX)(Vye A)(x—ye A= xe A).

Lemma 1 ([4]). An ideal A of a subtraction algebra X has the following property:
(VxeX)(VyeA)(xsy=>x€cA)

Definition 2 ([6]). Let X be a subtraction algebra. Forany a,be X,letG(a,b)={x€ X:x—a<
b}. X is said to be complicated if for any a, b € X, the set G (a, b) has the greatest element.

Note that 0, a, b € G (a, b). The greatest element of G (a, b) is denoted by a + b.
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Proposition 1 ([6]). If X is a c-subtraction algebra, then for all x,y € X,

(i) x<x+y,y<x+y,
() x+0=x=0+x,
(iii) x+y=y+x,

(iv) x<y=>x+z=<y+z
V) xsy=>x+y=y,

(vi) x+ y is the least upper bound of x and y.

Lemma 2 ([6]). If X is a c-subtraction algebra and x,y,z € X, then
(x+y)+z=x+(y+2).

Definition 3 ([2]). Let X be a subtraction algebra and I be anonempty subset of X. If x—y € I,
forall x, y € I, then I is called a subalgebra of X.

Theorem 1 ([2]). Any ideal of a subtraction algebra X is subalgebra of X.

“w n
~

Let X be a subtraction algebra and I be an ideal of X. The relation as following is an
equivalence relation on X,

x~yox—yelandy—xel (2.1)

Denote the equivalence class containing x by x = {yeX:y~x}.

Lemma 3 ([3]). Let X be a subtraction algebra and I be an ideal of X. The relation "~" as in

(2.1) is congruence relation on X.
Proposition 2 ([3]). Let X be a subtraction algebra and I be an ideal of X then I = (_)

Definition 4 ([3]). Let X be a subtraction algebra and I be an ideal of X. Let "~" be an equiva-
lence relation as in (2.1). The set of all equivalence classes in X is denoted by X T and called

the quotient set of X by I.

Theorem 2 ([3]). Let X be a subtraction algebra and I be an ideal of X. Then X /I is a subtrac-
tion algebra with the operation "-"given by x— y=x—y forall x,y € X.

Theorem 3 ([3]). If I and ] are any two ideals of subtraction algebra X and I c ], then the

following conditions are satisfied:
(a) I is an ideal of subalgebra J,
(b) 1/1 is an ideal of quotient algebra of X /1.
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Definition 5 ([3]). Let (X,—) and (Y,©) be any two subtraction algebras. If the mapping ¢ :

X — Y, forall x, y in X, satisfies the condition

plx-y) =00y
then ¢ is called a homomorphism.

Theorem 4 ([3]). If I is an ideal of subtraction algebra X.The mapping ¢ is from X to X /I
which is given by ¢ (x) = x for all x in X is a homomorphism.

Lemma 4. [f X is a subtraction algebra and x, y,z € X, then
(x-y)-(x-2)<z-y.
Proof. By (S3) and (52),

(x-y)-(x-2)=(x—(x-2) -y

=(z-(z—-x)—y
=(z-y)-(z—x).

Hence,

(x-y)-x-2)-(2-y)=((z-y) - (z=0) - (2~ y)

=((e~y)=(z-y))-(z-x)
=0—-(z—x)=0.

Therefore, we have

(x-y)-(x-2)<z-y. O

Lemma 5. Let X be a c-subtraction algebra. Then,forall x,y,z€ X,
(x=y)-z=x-(y+2).
Proof. By (a7) and (S3),
(x=((x-y)-2)-2=(x-2 = ((x~¥)-2)
<x—(x-y)=y

Hence

x—((x-y)-2)sy+=z
By (S3),

x—(y+z)<(x-y)-=
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On the other hand, by Lemma 4,

(x=y)-(x-(y+2)=(y+2)-y=z

and so
(x-y)-z=x-(y+2)

Thatis, (x—y)—z=x—(y +2). ]

Lemma 6. Let X be a c-subtraction algebra. Then,forall x,y,z€ X,
(x+2)—(y+z)<x—-y<x+y.

Proof. Using (a4) and definition of +, we get

x<(x-y)+y.

By Proposition-1(iv) and Lemma 2,

x+z<((x-y)+y)+z=(x-y)+(y+2).
Thus,
x+2)—(y+2)=((x-y)+(y+2) - (y+z)=x-y.

On the other hand, we have

X—ys=x=x+0=x+}.
Therefore, (x+2) — (y+z) < x+y. O
Lemma 7. Let X be a c-subtraction algebra. Then,forall x,y,z€ X,
(x+y)-z=(x-2)+(y-2).
Proof. By Lemma 6,

(x+y)-(r+2)=(x+y) - (z+y) = x-=

Using (S3), we have
(x+y)-(x-2)<y+=z

Then

(x+¥y)-2)-(x-2)=((x+y)-(x-2) -2

<(y+z)-z=(y+z)-(z+2)<y-z
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s0,
(x+y)-z<s(x-2+(y-2).

On the other hand, since x, y < x + y, it follows that

x—z<(x+y)-z y-z<(x+y)-=z

Therefore,
(x-2)+(y-2)=((x+y)-2)+(y-2)
<((x+y)-2)+((x+y)-2)
=(x+y)-=
Thatis, (x+y)-z=(x—2) +(y—z). a

3. Homomorphisms and isomorphisms

Suppose that (X, —) and (Y, ©) are two subtraction algebras and f: X — Y is a homomor-
phism. If in addition, the mapping f is onto, i. e., f(X) = Y, where f(X) = {f (x):x€ X},
then f is called an epimorphism and Y is said to be homomorphic image of X. The mapping
is called an isomorphism if it is both an epimorphism and one-to-one. If there exists an iso-
morphism f: X — Y then we call X to be isomorphic to Y, written X = Y. Obviously, X £ Y
implies Y= Xand X=Y , Y = Z implies X = Z. In case X = Y a homomorphism is called
an endomorphism and an isomorphism is referred as an automorphism. The identity map
1: X — X is clearly an endomorphism. So that X = X.

The set of all homomorphisms from X to Y is denoted by Hom (X, Y). This set is always
nonempty since it contains the zero homomorphism 0: X — Y which sends every element of
X to 0. For any f € Hom (X, Y) and any nonempty subset B € X, the set {x€ X : f (x) € B} is
denoted by f~1(B), called the inverse image of B under f. In particular, f~!({0'}) is called
kernel of f. Note that

oY) ={xex: f(x)=0"}
We will simply write Ker (f) instead of f~1 ({0'}).

Definition 6. Let X and Y be two subtraction algebras and f: X — Y be a mapping. If for any
x,y€ X, x< yimplies f (x) < f(y) then f is called isotone.

Theorem 5. Let (X,—) and (Y, o) be two subtraction algebras and f : X — Y be a homomor-
phism. Then,
(a) f(0)=0,

(b) f is isotone.
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Proof. (a) f(0) = f(0—0) = f(0) e f(0) =0’ since Y be a subtraction algebra.
(b)Ifx,ye Xand x< ythenx—y=0,by (a), f(x)e f(y)=f(x-y)=f(0)=0" Hence
f=f(y) O

Theorem 6. Let (X,—) and (Y, ) be two subtraction algebras and let B be an ideal of Y. Then
forany f € Hom(X,Y), f~1(B) is an ideal of X.

Proof. From Theorem 5, 0 € f_1 (B). Assume that x— y € f_1 (B)and y € f_1 (B). Then f (x)©
f(y)eBand f(y) € B. Since Bis anideal of Y, f (x) € B. Thus, x€ f~!(B). Hence, f~!(B) is
an ideal of X. O

Since {0'} is an ideal of Y, we have K erfis an ideal of X.
Example 1. From Theorem 4, quotient algebra X I is a homomorphic image of X.

Theorem 7. Let (X,—) and (Y, o) be two subtraction algebras and f : X — Y be an epimor-
phism. Then, X /Kerf=Z Y.

Proof. Since Kerfis an ideal of X, by Theorem 6, X ~Kerf is an subtraction algebra. Assume
g: X/ Kerf— Ysuchthatg()_c) = f(x). If x= y then, x— y, y— x € Kerf, so

flx-y)=fwef(y)=0
fly-x)=f(y)ef=0

By (a2) we have f (x) = f(y), i. e, g(J_c) = g(y). Hence g is well-defined. For any y € Y, there

exists x € X such that y = f (x) as f is onto. Hence g ()_C) = y, which means that g: X “Kerf —
Y is onto.

If x#y, then x— y ¢ Kerfor y— x ¢ Kerf. Suppose x — y ¢ Kerf,

f@ef(y)=flx-y)#0
Therefore f (x) # f(y). Thatis, g one-to-one. Since
g(x-y)=g(®F7)=F(x-y)=fwef(y)
=g(x)esg(y),
g is a homomorphism.
Therefore, X /KerfZ Y. O

Theorem 8. Let (X,—) and (Y, o) be two subtraction algebras and f : X — Y be an epimor-
phism. If ] is ideal of Y, then X /1= Y /] whereI= f~1(J).
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Proof. From Theorem 4, thereis, u: Y — Y /] epimorphism. Then po f: X — Y /] is an
epimorphism. We now prove that Ker (,uo f) = f_1 (/). For any x € X, we have

(ko f) ) =p(f @) =fx)

Suppose y € f~1(J). Then f(y) € J, and so f(y) = J. Thatis, (uof)(y) =J. Hence y €
Ker(uo f). Thus, we have f~!(J) € Ker(uo f). Inverse, we assume x € Ker(uo f), i. e.,
(,uOf) (x) = J. Therefore, we havem =J,andso f(x)e ], i. e, x€ f_1 (/). Thus, by Theo-
rem7, X /I=ZY /J. O

Lemma8. Let (X,—-) and (Y, o) be two subtraction algebras, f : X — Y be an epimorphism and
I bean ideal of X. IfKerf< I, then f~1 (f (1)) = 1.

Proof. Obviously, I < f~!(f (I)). Inverse, we assume x € f~! (f (D)), then f (x) € f (I). There
exists y € I such that f (x) = f (), so

flx-y)=fwef(y)=0,
hence x—y € Kerfc I. Since x— y € I, y € I, we have x € I.Therefore f~1 (f () < I. a

Theorem 9. Let I and ] be two ideals of a subtraction algebra X, I < Jand f : X — X /I and
g:X/I—(X/1),/(]/1I) beepimorphisms. Then X /J = (X /1) /(J /).

Proof. Let h=go f. Then h: X — (X /1) /(J,/1) is an epimorphism. Hence
X/Kerh=(X/1),/(1/1)
We must prove that Kerh = J. Since
Kerh={xe X:h(x)=]/1},
by Theorem 3, Lemma 8 and Theorem 8 we have
Kerh=h"'(h() =]
The proof is complete. O

Definition 7. Let X be a subtraction algebra. For a fixed a € X, we defineamap T, : X — X
such that T, (x) = x— afor all x € X and call T, right map on X. A left map L, is defined by a

similar way.
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Note that for all x € X,
(TaoTay) (X)=Ta(Tg(x)=Tg(x—a) =x—(x—a) =x—a= T, (x) by (al), and
[(LgoLg)oLal (x)=(LgoLg)(a—x)=Lg(a—(a-x))=a- (a—(a-x))=a-x=L,(x) by (ab).

Furthermore, for all x, y € X,
Ta(x-y) = (=)~ a=(x-a) - (y-a) = Ta ()~ Ta(y)

by (al2), this says T, is a homomorphism.

L, is a homomorphism if and only if a = 0. Assume that L, is a homomorphism. L, (0) =
La(0-0)=L,(0)—L,(0)=0. Thatis, a=a-0=0. Ifa=0, then L,(x-y)=a-(x-y) =
0—(x-y)=0=0-x-(0-y)=La(x) ~La()-

Theorem 10. Let a be a fixed element of a subtraction algebra X. Then the following are equiv-
alent;

(a) L, is onto,

(b) L, is one-to-one,

(c)x=a—-(a—x), forallxe X.

Proof. (a) = (b) Assume (a) and L, (x) = L, ( y), then a— x = a—y. For this element x, since
L, is onto, there exists z € X such thata—z=x, hencea-y=a-x=a—-(a-z) < z, by (a4)
and so (a—y)—z=0. It follows that x—y = (a—2) —y = (a— y) — 2 =0, by (S3). In a similar
way we have y —x = 0. This implies x = y, i.e., L, is one-to-one.

(b) = (¢) Let L, be one-to-one. Since (L,oL,)oL, =L, forall xe X, L,(a—(a—x)) =
L,(x)and so x=a- (a— x).

(c) = (a) Since forany x€ X, x=a— (a—x), L, (a— x) = x. Hence L, is onto. O

Let IL (X) be set of all left maps an X. We defined an operation e in IL (X) as follows. For
any Ly, Ly € IL(X) and forall x € X,

(La®Lp)(x)=Lg(x)—Lp(x)
Note that,

Lo(x)-Lp(x)=(a-x)—(b-x)
=(a-b)—x=Ly_p(x)

by (al2),andso L, e L, € IL(X).

Theorem 11. Let X be a subtraction algebra. Then X is isomorphic to IL(X).
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Proof. First, we show that (IL(X),e) is a subtraction algebra. Indeed, L,o (Ly©L,) =L, ©
Ly-a=Lag—p-a)=La,by(S1). Lgo(Lys© Lp) = Lpo(Lp©L,), by (S2). (Lge Lp)eL.=(Lge L))o
Lp.

Now, we show thatamap f: X — IL(X), f (x) = L, is an isomorphism.

Suppose that, f (x) = f(y), thatis, Ly = L, and so for all z € X, Ly (2) = L, (z) and hence
x—z=y—-z Ifwetakez=y, x—y=y—y=0. If we take z = x, y—x = x— x = 0. Therefore,
x =y, thatis, f one-to-one. Clearly, f is also onto. For all z€ X,

fx=y)@=Ley@ = (x-y)-z
=x-2-(y-2)=L: (2~ Ly (2)
=(LyoLy)(2)
it follows that f is a homomorphism. And so X = IL (X). a

Theorem 12. Let X and Y be c-subtraction algebras and f € Hom (X,Y). Then forall x,y € X,
f(x+y)=f@)+f(y) ie., f isa homomorphism with respect to +.

Proof. Forany x,ye X, x+y€G (x, y). Since f € Hom (X, Y), f isisotone. Thus,

(x+y)-x<y
fla+y)-f@=fy)
and so f(x+y) e G(f(x),f(y))- Since f (x) + f () is the greatest element of G (f (x), f (7)),
we have f (x+y) < f(x0)+ f(y).
On the other hand, x < x+ y and y < x+y. Therefore, f (x) < f(x+y), f(¥) = f(x+¥).
Since f (x) + f(y) is the least upper bound of f (x) and f (y), we have f (x)+ f (y) < f (x+y).
Thatis, f(x+y)=f X+ f (). O

Theorem 13. Let X be a c-subtraction algebra. Then for every a € X, right map T, is an endo-
morphism on +.

Proof. For any x,y € X,

Ta(x+y)=(x+y)—a=(x-a)+(y—a)
=Ta(x) + Ta()

by Lemma 7. a

Let IR (X) be set of all right maps on X. We defined an operation o in IR (X) as follows:
For any Ty, T, € IR (X) and for any x € X,

(TaoTp) (x) = Ta (T (x)).
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Note that, for any T, Tp € IR (X), Tgo Ty = Ty4p- Indeed, for any x € X,

(TaoTp) (x)=T4(Tp(x)) =Tyq(x—b)
=(x-b)—a=(x-a)—-Db

=x—(a+b)=Tap(x),

by Lemma 5.
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