CROSSCUTS IN SPHERE

M. BELTAGY

Abstract

Crosscut property of subsets in the unit sphere $S^{n} \subset E^{n+1}$ has been defined. Its relation with convexity has been studied. Illustrating examples are given.

The crosscut of a subset in Euclidean space E^{n} has been considered in [4, 5] as follows: A crosscut of a set $A \subset E^{n}$ is a closed segment $[x y]$ such that the open segment $(x y)=[x y] \backslash\{x, y\}$ is contained in $\operatorname{Int}(A)$ and $x, y \in \partial A$. The following result relating this concept with convexity is proved in $[4,5]$.

Theorem 1. If an open set $K \subset E^{n}$ has no crosscuts, then its complement K^{c} is a convex set.

As far as I am concerned no studies have been established about the same concept in S^{n} as an ambient space. Consequently, we deal throughout this article with this subject.

Let $A \subset S^{n}$ be a subset. A is convex if for each pair of points there exists a unique minimal geodesic segment $[p q]$ joining p and q such that $[p q] \subset A$. If in addition ∂A does not contain any geodesic segments, then A is called strictly convex.

For the pair of points $p, q \in S^{n}$ if there exists a unique minimal closed geodesic segment joining p and q it will be denoted by $[p q]$. Moreover, $(p q)=[p q] \backslash\{p, q\}$ will denote the open geodesic segment from p to q. The geodesic segment always exists if and only if $p, q \in S^{n}$ are non-antipodal points.

Definition 2. Let $A \subset S^{n}$ be a subset. A has a crosscut with respect to the boundary points $p, q \in \partial A$ if there exists a unique minimal closed geodesic segment $[p q]$ joining p and q such that $(p q) \subset \operatorname{Int}(A)$.

In the light of this definition the boundary points p, q should be antipodal points.
Definition 3. A subset $A \subset S^{n}$ has the crosscut property if A has a crosscut for each pair of boundary points.

It is easy to show that every open geodesic ball with center p and radius $r<\pi / 2$ hasas a convex body in S^{n}-the crosscut property. If $r=\pi / 2$ we obtain an open hemishpere (also a convex body) with no crosscuts.

Received and revised December 17, 2003.
2000 Mathematics Subject Classification. 53A07, 52A20.
Key words and phrases. Geodesics, convex subsets, crosscut, imbedding.

From this argument we have $B(p, \pi / 2)$ as an open subset of S^{n} with no crosscuts while the closed hemisphere $B(p, \pi / 2)^{c}$ is a non-convex subset of S^{n}. Hence Theorem 1 is not valid generally in S^{n}. The following result which represents the main one of this work is a modified form of Theorem 1 in S^{n}.

Theorem 4. Let A be an open subset of S^{n} whose boundary ∂A is free from antipodal points. If A has no crosscuts then A^{c} is convex.

Proof. Assume in contrary that the closed subset A^{c} is not convex. Then we have to consider the following cases:
(a) There exists a non-antipodal pair of points such that $[p q] \not \subset A^{c}$. Hence, there exists a point $m \in[p q]$ belonging to A. This would imply that A has a crosscut which is a subsegment of $[p q]$ contradicting the hypothesis.
(b) A^{c} contains a pair of antipodal points ω_{1}, ω_{2}. As ∂A is free from the antipodal points we may assume that $\omega_{1} \notin \partial A$ and $\omega_{2} \notin \partial A$ or $\omega_{1} \in \partial A$ and $\omega_{2} \notin \partial A$. Consider the geodesic segment γ joining ω_{1} and ω_{2} and passing through a point $m \in A$ (See Figure 1(a), 1(b)). Again we obtain a subsegment $[p q]$ or $\left[\omega_{1} q\right], p, q \in \partial A$ of γ which is a crosscut of A. This is a contradiction and the proof is complete.

Figure 1.

Remarks

(i) Openness in Theorem 4 is so important as if we consider a small geodesic sphere $\partial B(p, r), r<\pi / 2$, we have a closed subset of S^{n} which does not have any crosscut while $S^{n} \backslash \partial B(p, r)$ is not a convex subset of S^{n}.
(ii) To show that the condition " ∂A is free from antipodal points" is essential in Theorem 4, consider $A=S^{n} \backslash\{p, q\}$ where p, q are antipodal points. The subset A is open with no crosscuts and $\partial A=\{p, q\}, A^{c}=\{p, q\}$. Clearly A^{c} is non-convex.

Theorem 5. Let A be an open subset of S^{n} whose boundary ∂A is contained in a small geodesic ball $B(p, \delta), \delta<\pi / 2$. If A has no crosscuts, then A^{c} is convex.

The proof is direct in the light of that of Theorem 4 as ∂A here is also free from antipodal points.

Theorem 6. Let $A \subset S^{n}$ be a closed convex subset. Then A^{c} does not have any crosscut.

Proof. The proof is direct as if we consider an arbitrary pair of boundary points p, $q \in \partial A$ there exists a unique minimal geodesic segment $[p q]$ joining p and q such that $[p q] \subset A$. Consequently, $(p q) \not \subset A^{c}$ and hence is not a crosscut of A^{c}.

Corollary 7. Let $A \subset S^{n}$ be a closed strictly convex subset. Then A has the crosscut property.

Theorem 8. Let $A \subset S^{n}$ be a closed subset satisfying the crosscut property. Then A is a strictly convex subset.

Proof. Assume firstly that A is a non-convex subset of S^{n}. Hence A has a pair of points, say p, q, such that either:
(i) p, q are antipodal points, or,
(ii) p, q has a closed minimal segment $[p q]$ such that $[p q] \not \subset A$.

Figure 2.

In case (i) if $p, q \in \partial A$, then A does not have the crosscut property. Hence one of the points, say p, at least, should belong to $\operatorname{Int}(A)$. In this case let $m \in A^{c}$ be an arbitrary point. The geodesic segment $\gamma_{p m q}$ joining p and q through m will contain a unique minimal subsegment $[w q], w, q \in \partial A$ which is not a crosscut of A (See Figure 2). This is a contradiction. If p and q are both interior points of A the proof goes similarly.

Case (ii) will also give-in the light of the above argument-that A does not satisfy the crosscut property.

The proof of strict convexity of A is direct.
Theorem 9. Let M be an n-dimensional compact smooth manifold and $f: M \rightarrow$ S^{n+1} an imbedding such that $f(M)$ is a boundary of two open subsets of S^{n+1} each with no crosscuts. Then M is diffeomorphic to S^{n} and $f(M)$ is geodesic hypersphere of S^{n+1}.

Proof. Let us consider an arbitrary point $p \in M$. Let $B(f(p), \varepsilon)$ be a sufficiently small convex geodesic ball $[1,3]$. Let $f(q) \in f(M) \cap B(f(p), \varepsilon)$ be an arbitrary point. By hypotheses $[f(p) f(q)] \subset f(M) \cap B(f(p), \varepsilon)$. Lifting $f(M) \cap B(f(p), \varepsilon)$ using $\exp _{f(p)}^{-1}$ to
$T_{f(p)} S^{n+1}$ we have that the height function h (and hence the second fundamental form at p) of $f(M) \cap B(f(p), \varepsilon)$ is the zero function $[1,3]$. Hence the sectional curvature K_{p} of $f(M)$ at $f(p)$ is 1 . Similar argument shows that $K \equiv 1$ on $f(M)$. Finally, in [2], it is proved that $f(M)$ is a geodesic hypersphere and hence our result.

References

[1] R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Academic Press, New York, 1964.
[2] M. P. DoCarmo and F. Warner, Rigidity and covnexity of hypersurfaces in spheres, J. Diff. Geo. 4(1970), 133-144.
[3] S. Kodayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publish, Vol.II, 1969.
[4] A. F. Valentine, Convex Sets, McGraw-Hill Book Co., Inc., New York, 1964.
[5] S. R. Lay, Convex Sets and Their Applications, John Wiley \& Sons, Inc., New York, 1982.

