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CROSSCUTS IN SPHERE

M. BELTAGY

Abstract. Crosscut property of subsets in the unit sphere Sn

⊂ En+1 has been defined. Its

relation with convexity has been studied. Illustrating examples are given.

The crosscut of a subset in Euclidean space En has been considered in [4, 5] as

follows: A crosscut of a set A ⊂ En is a closed segment [xy] such that the open segment

(xy) = [xy] \ {x, y} is contained in Int(A) and x, y ∈ ∂A. The following result relating

this concept with convexity is proved in [4, 5].

Theorem 1. If an open set K ⊂ En has no crosscuts, then its complement Kc is a

convex set.

As far as I am concerned no studies have been established about the same concept in

Sn as an ambient space. Consequently, we deal throughout this article with this subject.

Let A ⊂ Sn be a subset. A is convex if for each pair of points there exists a unique

minimal geodesic segment [pq] joining p and q such that [pq] ⊂ A. If in addition ∂A does

not contain any geodesic segments, then A is called strictly convex.

For the pair of points p, q ∈ Sn if there exists a unique minimal closed geodesic

segment joining p and q it will be denoted by [pq]. Moreover, (pq) = [pq] \ {p, q} will

denote the open geodesic segment from p to q. The geodesic segment always exists if and

only if p, q ∈ Sn are non-antipodal points.

Definition 2. Let A ⊂ Sn be a subset. A has a crosscut with respect to the boundary

points p, q ∈ ∂A if there exists a unique minimal closed geodesic segment [pq] joining p

and q such that (pq) ⊂ Int(A).

In the light of this definition the boundary points p, q should be antipodal points.

Definition 3. A subset A ⊂ Sn has the crosscut property if A has a crosscut for

each pair of boundary points.

It is easy to show that every open geodesic ball with center p and radius r < π/2 has-

as a convex body in Sn—the crosscut property. If r = π/2 we obtain an open hemishpere

(also a convex body) with no crosscuts.
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From this argument we have B(p, π/2) as an open subset of Sn with no crosscuts
while the closed hemisphere B(p, π/2)c is a non-convex subset of Sn. Hence Theorem 1
is not valid generally in Sn. The following result which represents the main one of this
work is a modified form of Theorem 1 in Sn.

Theorem 4. Let A be an open subset of Sn whose boundary ∂A is free from antipodal

points. If A has no crosscuts then Ac is convex.

Proof. Assume in contrary that the closed subset Ac is not convex. Then we have
to consider the following cases:
(a) There exists a non-antipodal pair of points such that [pq] 6⊂ Ac. Hence, there exists

a point m ∈ [pq] belonging to A. This would imply that A has a crosscut which is a
subsegment of [pq] contradicting the hypothesis.

(b) Ac contains a pair of antipodal points ω1, ω2. As ∂A is free from the antipodal points
we may assume that ω1 6∈ ∂A and ω2 6∈ ∂A or ω1 ∈ ∂A and ω2 6∈ ∂A. Consider
the geodesic segment γ joining ω1 and ω2 and passing through a point m ∈ A (See
Figure 1(a), 1(b)). Again we obtain a subsegment [pq] or [ω1q], p, q ∈ ∂A of γ which
is a crosscut of A. This is a contradiction and the proof is complete.
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Figure 1.

Remarks

(i) Openness in Theorem 4 is so important as if we consider a small geodesic sphere
∂B(p, r), r < π/2, we have a closed subset of Sn which does not have any crosscut
while Sn \ ∂B(p, r) is not a convex subset of Sn.

(ii) To show that the condition “∂A is free from antipodal points” is essential in The-
orem 4, consider A = Sn \ {p, q} where p, q are antipodal points. The subset A is
open with no crosscuts and ∂A = {p, q}, Ac = {p, q}. Clearly Ac is non-convex.

Theorem 5. Let A be an open subset of Sn whose boundary ∂A is contained in a

small geodesic ball B(p, δ), δ < π/2. If A has no crosscuts, then Ac is convex.

The proof is direct in the light of that of Theorem 4 as ∂A here is also free from
antipodal points.
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Theorem 6. Let A ⊂ Sn be a closed convex subset. Then Ac does not have any

crosscut.

Proof. The proof is direct as if we consider an arbitrary pair of boundary points p,

q ∈ ∂A there exists a unique minimal geodesic segment [pq] joining p and q such that

[pq] ⊂ A. Consequently, (pq) 6⊂ Ac and hence is not a crosscut of Ac.

Corollary 7. Let A ⊂ Sn be a closed strictly convex subset. Then A has the crosscut

property.

Theorem 8. Let A ⊂ Sn be a closed subset satisfying the crosscut property. Then A

is a strictly convex subset.

Proof. Assume firstly that A is a non-convex subset of Sn. Hence A has a pair of

points, say p, q, such that either:

(i) p, q are antipodal points, or,

(ii) p, q has a closed minimal segment [pq] such that [pq] 6⊂ A.
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Figure 2.

In case (i) if p, q ∈ ∂A, then A does not have the crosscut property. Hence one

of the points, say p, at least, should belong to Int(A). In this case let m ∈ Ac be an

arbitrary point. The geodesic segment γpmq joining p and q through m will contain a

unique minimal subsegment [wq], w, q ∈ ∂A which is not a crosscut of A (See Figure 2).

This is a contradiction. If p and q are both interior points of A the proof goes similarly.

Case (ii) will also give-in the light of the above argument-that A does not satisfy the

crosscut property.

The proof of strict convexity of A is direct.

Theorem 9. Let M be an n-dimensional compact smooth manifold and f : M →

Sn+1 an imbedding such that f(M) is a boundary of two open subsets of Sn+1 each with

no crosscuts. Then M is diffeomorphic to Sn and f(M) is geodesic hypersphere of Sn+1.

Proof. Let us consider an arbitrary point p ∈ M . Let B(f(p), ε) be a sufficiently

small convex geodesic ball [1, 3]. Let f(q) ∈ f(M)∩B(f(p), ε) be an arbitrary point. By

hypotheses [f(p)f(q)] ⊂ f(M) ∩ B(f(p), ε). Lifting f(M) ∩ B(f(p), ε) using exp−1
f(p) to
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Tf(p)S
n+1 we have that the height function h (and hence the second fundamental form

at p) of f(M) ∩ B(f(p), ε) is the zero function [1, 3]. Hence the sectional curvature Kp

of f(M) at f(p) is 1. Similar argument shows that K ≡ 1 on f(M). Finally, in [2], it is

proved that f(M) is a geodesic hypersphere and hence our result.
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