CROSSCUTS IN SPHERE

M. BELTAGY

Abstract. Crosscut property of subsets in the unit sphere $S^n \subset E^{n+1}$ has been defined. Its relation with convexity has been studied. Illustrating examples are given.

The crosscut of a subset in Euclidean space E^n has been considered in [4, 5] as follows: A crosscut of a set $A \subset E^n$ is a closed segment [xy] such that the open segment $(xy) = [xy] \setminus \{x, y\}$ is contained in Int(A) and $x, y \in \partial A$. The following result relating this concept with convexity is proved in [4, 5].

Theorem 1. If an open set $K \subset E^n$ has no crosscuts, then its complement K^c is a convex set.

As far as I am concerned no studies have been established about the same concept in S^n as an ambient space. Consequently, we deal throughout this article with this subject.

Let $A \subset S^n$ be a subset. A is convex if for each pair of points there exists a unique minimal geodesic segment [pq] joining p and q such that $[pq] \subset A$. If in addition ∂A does not contain any geodesic segments, then A is called *strictly convex*.

For the pair of points $p, q \in S^n$ if there exists a unique minimal closed geodesic segment joining p and q it will be denoted by [pq]. Moreover, $(pq) = [pq] \setminus \{p,q\}$ will denote the open geodesic segment from p to q. The geodesic segment always exists if and only if $p, q \in S^n$ are non-antipodal points.

Definition 2. Let $A \subset S^n$ be a subset. A has a crosscut with respect to the boundary points $p, q \in \partial A$ if there exists a unique minimal closed geodesic segment [pq] joining p and q such that $(pq) \subset Int(A)$.

In the light of this definition the boundary points p, q should be antipodal points.

Definition 3. A subset $A \subset S^n$ has the crosscut property if A has a crosscut for each pair of boundary points.

It is easy to show that every open geodesic ball with center p and radius $r < \pi/2$ hasas a convex body in S^n —the crosscut property. If $r = \pi/2$ we obtain an open hemishpere (also a convex body) with no crosscuts.

Received and revised December 17, 2003.

²⁰⁰⁰ Mathematics Subject Classification. 53A07, 52A20.

Key words and phrases. Geodesics, convex subsets, crosscut, imbedding.

²⁷⁵

M. BELTAGY

From this argument we have $B(p, \pi/2)$ as an open subset of S^n with no crosscuts while the closed hemisphere $B(p, \pi/2)^c$ is a non-convex subset of S^n . Hence Theorem 1 is not valid generally in S^n . The following result which represents the main one of this work is a modified form of Theorem 1 in S^n .

Theorem 4. Let A be an open subset of S^n whose boundary ∂A is free from antipodal points. If A has no crosscuts then A^c is convex.

Proof. Assume in contrary that the closed subset A^c is not convex. Then we have to consider the following cases:

- (a) There exists a non-antipodal pair of points such that $[pq] \not\subset A^c$. Hence, there exists a point $m \in [pq]$ belonging to A. This would imply that A has a crosscut which is a subsegment of [pq] contradicting the hypothesis.
- (b) A^c contains a pair of antipodal points ω_1, ω_2 . As ∂A is free from the antipodal points we may assume that $\omega_1 \notin \partial A$ and $\omega_2 \notin \partial A$ or $\omega_1 \in \partial A$ and $\omega_2 \notin \partial A$. Consider the geodesic segment γ joining ω_1 and ω_2 and passing through a point $m \in A$ (See Figure 1(a), 1(b)). Again we obtain a subsegment [pq] or $[\omega_1q], p, q \in \partial A$ of γ which is a crosscut of A. This is a contradiction and the proof is complete.

Figure 1.

Remarks

- (i) Openness in Theorem 4 is so important as if we consider a small geodesic sphere $\partial B(p,r), r < \pi/2$, we have a closed subset of S^n which does not have any crosscut while $S^n \setminus \partial B(p,r)$ is not a convex subset of S^n .
- (ii) To show that the condition " ∂A is free from antipodal points" is essential in Theorem 4, consider $A = S^n \setminus \{p, q\}$ where p, q are antipodal points. The subset A is open with no crosscuts and $\partial A = \{p, q\}$, $A^c = \{p, q\}$. Clearly A^c is non-convex.

Theorem 5. Let A be an open subset of S^n whose boundary ∂A is contained in a small geodesic ball $B(p, \delta)$, $\delta < \pi/2$. If A has no crosscuts, then A^c is convex.

The proof is direct in the light of that of Theorem 4 as ∂A here is also free from antipodal points.

Theorem 6. Let $A \subset S^n$ be a closed convex subset. Then A^c does not have any crosscut.

Proof. The proof is direct as if we consider an arbitrary pair of boundary points p, $q \in \partial A$ there exists a unique minimal geodesic segment [pq] joining p and q such that $[pq] \subset A$. Consequently, $(pq) \not\subset A^c$ and hence is not a crosscut of A^c .

Corollary 7. Let $A \subset S^n$ be a closed strictly convex subset. Then A has the crosscut property.

Theorem 8. Let $A \subset S^n$ be a closed subset satisfying the crosscut property. Then A is a strictly convex subset.

Proof. Assume firstly that A is a non-convex subset of S^n . Hence A has a pair of points, say p, q, such that either:

(i) p, q are antipodal points, or,

(ii) p, q has a closed minimal segment [pq] such that $[pq] \not\subset A$.

Figure 2.

In case (i) if $p, q \in \partial A$, then A does not have the crosscut property. Hence one of the points, say p, at least, should belong to Int(A). In this case let $m \in A^c$ be an arbitrary point. The geodesic segment γ_{pmq} joining p and q through m will contain a unique minimal subsegment $[wq], w, q \in \partial A$ which is not a crosscut of A (See Figure 2). This is a contradiction. If p and q are both interior points of A the proof goes similarly.

Case (ii) will also give-in the light of the above argument-that A does not satisfy the crosscut property.

The proof of strict convexity of A is direct.

Theorem 9. Let M be an n-dimensional compact smooth manifold and $f: M \to S^{n+1}$ an imbedding such that f(M) is a boundary of two open subsets of S^{n+1} each with no crosscuts. Then M is diffeomorphic to S^n and f(M) is geodesic hypersphere of S^{n+1} .

Proof. Let us consider an arbitrary point $p \in M$. Let $B(f(p), \varepsilon)$ be a sufficiently small convex geodesic ball [1, 3]. Let $f(q) \in f(M) \cap B(f(p), \varepsilon)$ be an arbitrary point. By hypotheses $[f(p)f(q)] \subset f(M) \cap B(f(p), \varepsilon)$. Lifting $f(M) \cap B(f(p), \varepsilon)$ using $\exp_{f(p)}^{-1}$ to $T_{f(p)}S^{n+1}$ we have that the height function h (and hence the second fundamental form at p) of $f(M) \cap B(f(p), \varepsilon)$ is the zero function [1, 3]. Hence the sectional curvature K_p of f(M) at f(p) is 1. Similar argument shows that $K \equiv 1$ on f(M). Finally, in [2], it is proved that f(M) is a geodesic hypersphere and hence our result.

References

- R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Academic Press, New York, 1964.
- [2] M. P. DoCarmo and F. Warner, Rigidity and covnexity of hypersurfaces in spheres, J. Diff. Geo. 4(1970), 133-144.
- [3] S. Kodayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publish, Vol.II, 1969.
- [4] A. F. Valentine, Convex Sets, McGraw-Hill Book Co., Inc., New York, 1964.
- [5] S. R. Lay, Convex Sets and Their Applications, John Wiley & Sons, Inc., New York, 1982.

Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt.