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SOME TRIPLED COINCIDENCE POINT THEOREMS FOR ALMOST

GENERALIZED CONTRACTIONS IN ORDERED METRIC SPACES

HASSEN AYDI, ERDAL KARAPINAR AND ZEAD MUSTAFA

Abstract. In this paper, we prove tripled coincidence and common fixed point theorems

for F : X ×X ×X → X and g : X → X satisfying almost generalized contractions in partially

ordered metric spaces. The presented results generalize the theorem of Berinde and Bor-

cut [Tripled fixed point theorems for contractive type mappings in partially ordered metric

spaces, Nonlinear Anal. 74 (15) (2011) 4889–4897]. Also, some examples are presented.

1. Introduction and preliminaries

Fixed point theorems are very useful in the existence theory of differential equations,

integral equations, functional equations, partial differential equations, random differential

equations and other related areas. Existence of fixed points in partially ordered metric spaces

was investigated in 2004 by Ran and Reurings [29], and then by Nieto and Lopéz [28]. Further

results in this direction were proved, see [5, 6, 17, 18, 19, 24, 25, 26, 27, 31].

The weak contraction principle was first introduced by Alber et al. [4] for Hilbert spaces

and subsequently extended to metric spaces by Rhoades [30]. After that, fixed point problems

involving weak contractions and mappings satisfying weak contraction type inequalities were

considered in several works like [1, 8, 13, 15, 16, 22, 33].

Bhashkar and Lakshmikantham in [14] introduced the concept of a coupled fixed point

of a mapping F : X × X → X and investigated some coupled fixed point theorems in partially

ordered complete metric spaces. Afterwards, Lakshmikantham and Ćirić [23] proved coupled

coincidence and coupled common fixed point theorems for nonlinear mappings F : X ×X →

X and g : X → X in partially ordered complete metric spaces. Various results on coupled fixed

point have been obtained, since then see [3, 7, 9, 17, 20, 21, 24, 25].

On the other hand, Berinde and Borcut [12] introduced the concept of a tripled fixed

point (see also the nice paper of Samet and Vetro [32]).
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Definition 1.1 ([12]). Let (X ,≤) be a partially ordered set and F : X ×X ×X → X . The mapping

F is said to has the mixed monotone property if for any x, y, z ∈ X

x1, x2 ∈ X , x1 ≤ x2 =⇒ F (x1, y, z)≤ F (x2, y, z),

y1, y2 ∈ X , y1 ≤ y2 =⇒ F (x, y1, z)≥ F (x, y2, z),

z1, z2 ∈ X , z1 ≤ z2 =⇒ F (x, y, z1) ≤ F (x, y, z2).

Definition 1.2 ([12]). Let F : X ×X ×X → X . An element (x, y, z) is called a tripled fixed point

of F if

F (x, y, z)= x, F (y, x, y)= y and F (z, y, x)= z.

Also, Berinde and Borcut [12] proved the following theorem:

Theorem 1.1 ([12]). Let (X ,≤,d ) be a partially ordered set and suppose there is a metric d on

X such that (X ,d ) is a complete metric space. Suppose F : X × X × X → X such that F has the

mixed monotone property and there exist j ,r, l ≥ 0 with j + r + l < 1 such that

d (F (x, y, z),F (u, v, w ))≤ j d (x,u)+ r d (y, v)+ l d (z, w ), (1)

for any x, y, z,u, v, w ∈ X for which x ≤ u, v ≤ y and z ≤ w. Suppose either F is continuous or X

has the following properties:

1. if a non-decreasing sequence an → a, then an ≤ a for all n,

2. if a non-increasing sequence bn → b, then b ≤ bn for all n.

If there exist x0, y0, z0 ∈ X such that x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, z0) and z0 ≤ F (z0, y0, x0),

then there exist x, y, z ∈ X such that

F (x, y, z)= x, F (y, x, y)= y and F (z, y, x)= z,

that is, F has a tripled fixed point.

Recently, Abbas, Aydi and Karapinar [2] introduced the following concepts.

Definition 1.3 ([2]). Let (X ,≤) be a partially ordered set. Let F : X ×X ×X → X and g : X → X .

The mapping F is said to has the mixed g -monotone property if for any x, y, z ∈ X

x1, x2 ∈ X , g x1 ≤ g x2 =⇒ F (x1, y, z)≤ F (x2, y, z),

y1, y2 ∈ X , g y1 ≤ g y2 =⇒ F (x, y1, z)≥ F (x, y2, z),

z1, z2 ∈ X , g z1 ≤ g z2 =⇒ F (x, y, z1)≤ F (x, y, z2).
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Definition 1.4 ([2]). Let F : X ×X ×X → X and g : X → X . An element (x, y, z) is called a tripled

coincidence point of F and g if

F (x, y, z)= g x, F (y, x, y)= g y and F (z, y, x)= g z.

(g x, g y, g z) is said a tripled point of coincidence of F and g .

Definition 1.5 ([2]). Let F : X ×X ×X → X and g : X → X . An element (x, y, z) is called a tripled

common fixed point of F and g if

F (x, y, z)= g x = x, F (y, x, y)= g y = y and F (z, y, x) = g z = z.

Definition 1.6 ([2]). Let X be a nonempty set. We say that the mappings F : X × X × X → X

and g : X → X are commutative if for all x, y, z ∈ X

g (F (x, y, z)) = F (g x, g y, g z).

Now, letΦ be the set of all functions φ : [0,∞) → [0,∞) such that

1. φ is non-decreasing,

2. φ(t )< t for all t > 0,

3. lim
r→t+

φ(r ) < t for all t > 0.

From now on, we denote X 3 = X × X × X . For given mappings F : X 3 → X and g : X → X ,

define

M (x, y, z,u, v, w )= min{d (F (x, y, z), g x),d (F (u, v, w ), g x),d (F (u, v, w ), g u)}. (2)

We say that such F and g verify almost generalized contractions if there exist φ ∈Φ and L ≥ 0

such that

d (F (x, y, z),F (u, v, w ))≤φ

(

max{d (g x, g u),d (g y, g v),d (g z, g w )}

)

+LM (x, y, z,u, v, w )

for any x, y, z,u, v, w ∈ X . Note that the concept of almost contractions were introduced by

Berinde [10, 11].

In this paper, we establish tripled coincidence and common fixed point theorems for F :

X 3 → X and g : X → X satisfying almost generalized contractions in partially ordered metric

spaces. These results generalize Theorem 1.1 of Berinde and Borcut [12].

2. Main results

Our first result is given by the following:
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Theorem 2.1. Let (X ,≤) be a partially ordered set and suppose there is a metric d on X such

that (X ,d ) is a complete metric space. Suppose F : X 3 → X and g : X → X are such that F is

continuous and has the mixed g -monotone property. Assume also that there exist φ ∈ Φ and

L ≥ 0 such that

d (F (x, y, z),F (u, v, w ))≤φ

(

max{d (g x, g u),d (g y, g v),d (g z, g w )}

)

+LM (x, y, z,u, v, w ) (3)

for any x, y, z,u, v, w ∈ X for which g x ≤ g u, g v ≤ g y and g z ≤ g w. Also, suppose that F (X 3) ⊂

g (X ), g is continuous and commutes with F .

If there exist x0, y0, z0 ∈ X such that g x0 ≤ F (x0, y0, z0), g y0 ≥ F (y0, x0, y0) and g z0 ≤ F (z0, y0, x0),

then there exist x, y, z ∈ X such that

F (x, y, z)= g x, F (y, x, y)= g y and F (z, y, x)= g z,

that is, F and g have a tripled coincidence point.

Proof. Let x0, y0, z0 ∈ X be such that g x0 ≤ F (x0, y0, z0), g y0 ≥ F (y0, x0, y0) and g z0 ≤ F (z0, y0, x0).

Since F (X 3) ⊂ g (X ), then we can choose x1, y1, z1 ∈ X such that

g x1 = F (x0, y0, z0), g y1 = F (y0, x0, y0) and g z1 = F (z0, y0, x0). (4)

Again, from F (X 3)⊂ g (X ), continuing this process, we can construct sequences {xn}, {yn} and

{zn} in X such that

g xn+1 = F (xn , yn , zn), g yn+1 = F (yn , xn , yn) and g zn+1 = F (zn , yn , xn). (5)

We shall show that

g xn ≤ g xn+1, g yn+1 ≤ g yn and g zn ≤ g zn+1, for n = 0,1,2, ... (6)

We shall use the mathematical induction. Since g x0 ≤ F (x0, y0, z0), g y0 ≥ F (y0, x0, y0) and

g z0 ≤ F (z0, y0, x0), then by (4), we get

g x0 ≤ g x1, g y1 ≤ g y0 and g z0 ≤ g z1,

that is (6) holds for n = 0.

We presume that (6) holds for some n ≥ 1. As F has the mixed g -monotone property and

g xn ≤ g xn+1, g yn+1 ≤ g yn and g zn ≤ g zn+1, we obtain

g xn+1 = F (xn , yn , zn) ≤ F (xn+1, yn , zn)

≤ F (xn+1, yn , zn+1)

≤ F (xn+1, yn+1, zn+1) = g xn+2,
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g yn+2 = F (yn+1, xn+1, yn+1) ≤ F (yn+1, xn , yn+1)

≤ F (yn , xn , yn+1)

≤ F (yn , xn , yn) = g yn+1

and

g zn+1 = F (zn , yn , xn) ≤ F (zn+1, yn , xn)

≤ F (zn+1, yn+1, xn)

≤ F (zn+1, yn+1, xn+1) = g zn+2.

Thus, (6) holds for any n ∈N. Assume for some n ∈N,

g xn = g xn+1, g yn = g yn+1 and g zn = g zn+1,

then, by (5), (xn , yn , zn) is a tripled coincidence point of F and g . From now on, assume that

at least for any n ∈N

g xn 6= g xn+1 or g yn 6= g yn+1 or g zn 6= g zn+1. (7)

By (2) and (5), it is easy that

M (xn−1, yn−1, zn−1, xn , yn , zn) = M (yn , xn , yn , yn−1, xn−1, yn−1)

= M (zn−1, yn−1, xn−1, zn , yn , xn) = 0. (8)

Due to (3) and (8), we have

d (g xn , g xn+1) = d (F (xn−1, yn−1, zn−1),F (xn , yn , zn))

≤ φ

(

max{d (g xn−1, g xn),d (g yn−1, g yn),d (g zn−1, g zn)}

)

+LM (xn−1, yn−1, zn−1, xn , yn , zn)

= φ(max{d (g xn−1, g xn),d (g yn−1, g yn),d (g zn−1, g zn)}), (9)

d (g yn+1, g yn) = d (F (yn , xn , yn),F (yn−1, xn−1, yn−1))

≤ φ({d (g yn−1, g yn),d (g xn−1, g xn),d (g yn−1, g yn)})

+LM (yn , xn , yn , yn−1, xn−1, yn−1)

= φ(max{d (g yn−1, g yn),d (g xn−1, g xn)})

≤ φ(max{d (g zn−1, g zn),d (g yn−1, g yn),d (g xn−1, g xn)})

sinceφ is non-decreasing (10)

and

d (g zn , g zn+1) = d (F (zn−1, yn−1, xn−1),F (zn , yn , xn))
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≤ φ(max{d (g zn−1, g zn),d (g yn−1, g yn),d (g xn−1, g xn)})

+LM (zn−1, yn−1, xn−1, zn , yn , xn)

= φ(max{d (g zn−1, g zn),d (g yn−1, g yn),d (g xn−1, g xn)}). (11)

Having in mind that φ(t )< t for all t > 0, so from (9)-(11) we obtain that

0 < max{d (g xn , g xn+1),d (g yn , g yn+1),d (g zn , g zn+1)}

≤ φ(max{d (g zn−1, g zn),d (g yn−1, g yn),d (g xn−1, g xn)})

< max{d (g zn−1, g zn),d (g yn−1, g yn),d (g xn−1, g xn)}. (12)

It follows that

max{d (g xn , g xn+1),d (g yn , g yn+1,d (g zn , g zn+1)}

< max{d (g zn−1, g zn),d (g yn−1, g yn),d (g xn−1, g xn)}.

Thus, {max{d (g xn , g xn+1),d (g yn , g yn+1),d (g zn , g zn+1)}} is a positive decreasing sequence.

Hence, there exists r ≥ 0 such that

lim
n→+∞

max{d (g xn , g xn+1),d (g yn , g yn+1),d (g zn , g zn+1)} = r.

Suppose that r > 0. Letting n →+∞ in (12), we obtain that

0 < r ≤ lim
n→+∞

φ(max{d (g zn−1, g zn),d (g yn−1, g yn),d (g xn−1, g xn)}) = lim
t→r+

φ(t ) < r, (13)

it is a contradiction. We deduce that

lim
n→+∞

max{d (g xn , g xn+1),d (g yn , g yn+1),d (g zn , g zn+1)} = 0. (14)

We shall show that {g xn}, {g yn} and {g zn} are Cauchy sequences in the metric space

(X ,d ). Assume the contrary, that is, {g xn }, {g yn} or {g zn } is not a Cauchy sequence, that is,

lim
n,m→+∞

d (g xm , g xn) 6= 0, or lim
n,m→+∞

d (g ym , g yn) 6= 0 or lim
n,m→+∞

d (g zm , g zn) 6= 0.

This means that there exists ε > 0 for which we can find subsequences of integers (mk ) and

(nk ) with nk > mk > k such that

max{d (g xmk
, g xnk

),d (g ymk
, g ynk

),d (g zmk
, g znk

)} ≥ ε. (15)

Further, corresponding to mk we can choose nk in such a way that it is the smallest integer

with nk >mk and satisfying (15). Then

max{d (g xmk
), g xnk−1),d (g ymk

, g ynk−1),d (g zmk
, g znk−1)} < ε. (16)
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By triangular inequality and (16), we have

d (g xmk
, g xnk

) ≤ d (g xmk
, g xnk−1)+d (g xnk−1, g xnk

)

< ǫ+d (g xnk−1, g xnk
).

Thus, by (14) we obtain

lim
k→+∞

d (g xmk
, g xnk

) ≤ lim
k→+∞

d (g xmk
, g xnk−1)≤ ε. (17)

Similarly, we have

lim
k→+∞

d (g ymk
, g ynk

) ≤ lim
k→+∞

d (g ymk
, g ynk−1) ≤ ε. (18)

lim
k→+∞

d (g zmk
, g znk

) ≤ lim
k→+∞

d (g zmk
, g znk−1) ≤ ε. (19)

Again by (16), we have

d (g xmk
, g xnk

) ≤ d (g xmk
, g xmk−1)+d (g xmk−1, g xnk−1)+d (g xnk−1, g xnk

)

≤ d (g xmk
, g xmk−1)+d (g xmk−1, g xmk

)

+d (g xmk
, g xnk−1)+d (g xnk−1, g xnk

)

< d (g xmk
, g xmk−1)+d (g xmk−1, g xmk

)+ε+d (g xnk−1, g xnk
).

Letting k →+∞ and using (14), we get

lim
k→+∞

d (g xmk
, g xnk

) ≤ lim
k→+∞

d (g xmk−1, g xnk−1) ≤ ε, (20)

lim
k→+∞

d (g ymk
, g ynk

) ≤ lim
k→+∞

d (g ymk−1, g ynk−1) ≤ ε, (21)

and

lim
k→+∞

d (g zmk
, g znk

) ≤ lim
k→+∞

d (g zmk−1, g znk−1) ≤ ε. (22)

Using (15) and (20)-(22), we have

lim
k→+∞

max{d (g xmk
, g xnk

),d (g ymk
, g ynk

),d (g zmk
, g znk

)}

= lim
k→+∞

max{d (g xmk−1, g xnk−1),d (g ymk−1, g ynk−1),d (g zmk−1, g znk−1)}

= ε. (23)

By (14), it is easy that

lim
k→+∞

M (xmk−1, ymk−1, zmk−1, xnk−1, ynk−1, znk−1)

= lim
k→+∞

M (ynk−1, xnk−1, ynk−1, ymk−1, xmk−1, ymk−1)

= lim
k→+∞

M (zmk−1, ymk−1, xmk−1, znk−1, ynk−1, xnk−1) = 0. (24)
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Now, by inequality (3) we obtain

d (g xmk
, g xnk

) = d (F (xmk−1, ymk−1, zmk−1),F (xnk−1, ynk−1, znk−1))

≤ φ

(

max{d (xmk−1, xnk−1),d (ymk−1, ynk−1),d (zmk−1, znk−1)}

)

+LM (xmk−1, ymk−1, zmk−1, xnk−1, ynk−1, znk−1), (25)

d (g ynk
, g ymk

) = d (F (ynk−1, xnk−1, ynk−1),F (ymk−1, xmk−1, ymk−1))

≤ φ

(

max{d (ymk−1, ynk−1),d (xmk−1, xnk−1)}

)

+LM (ynk−1, xnk−1, ynk−1, ymk−1, xmk−1, ymk−1), (26)

and

d (g zmk
, g znk

) = d (F (zmk−1, ymk−1, xmk−1),F (znk−1, ynk−1, xnk−1))

≤ φ

(

max{d (xmk−1, xnk−1),d (ymk−1, ynk−1),d (zmk−1, znk−1)}

)

+LM (zmk−1, ymk−1, xmk−1, znk−1, ynk−1, xnk−1). (27)

From (25)-(27), we deduce that

max{d (g xmk
, g xnk

),d (g ymk
, g ynk

),d (g zmk
, g znk

)}

≤ φ(max{d (xmk−1, xnk−1),d (ymk−1, ynk−1),d (zmk−1, znk−1)})

+LM (xmk−1, ymk−1, zmk−1, znk−1, ynk−1, xnk−1)

+LM (ynk−1, xnk−1, ynk−1, ymk−1, xmk−1, ymk−1)

+LM (zmk−1, ymk−1, xmk−1, znk−1, ynk−1, xnk−1). (28)

Letting k →+∞ in (28) and having in mind (23) and (24), we get that

0 < ε≤ lim
t→ε+

φ(t )< ε,

it is a contradiction. Thus, {g xn}, {g yn} and {g zn} are Cauchy sequences in (X ,d ). Since X is

complete, there exist x, y, z,u, v, w ∈ X such that

lim
n→+∞

g xn = x, lim
n→+∞

g yn = y, and lim
n→+∞

g zn = z. (29)

From (29) and the continuity of g .

lim
n→+∞

g (g xn) = g x, lim
n→+∞

g (g yn) = g y, and lim
n→+∞

g (g zn) = g z. (30)

By (5) and the commutativity of F and g , we have

g (g xn+1) = g (F (xn , yn , zn)) = F (g xn , g yn , g zn), (31)
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g (g yn+1) = g (F (yn , xn , yn)) = F (g yn , g xn , g yn), (32)

and

g (g zn+1) = g (F (zn , yn , xn)) = F (g zn , g yn , g xn). (33)

Now we shall show that g x = F (x, y, z), g y = F (y, x, y) and g z = F (z, y, x).

Letting n →+∞ in (31)-(33), by (29), (30) and the continuity of F , we obtain

g x = lim
n→+∞

g (g xn+1)= lim
n→+∞

F (g xn , g yn , g zn)=F ( lim
n→+∞

g xn , lim
n→+∞

g yn , lim
n→+∞

g zn)=F (x, y, z),

g y = lim
n→+∞

g (g yn+1)= lim
n→+∞

F (g yn , g xn , g yn)=F ( lim
n→+∞

g yn , lim
n→+∞

g xn , lim
n→+∞

g yn)=F (y, x, y),

and

g z = lim
n→+∞

g (g zn+1)= lim
n→+∞

F (g zn , g yn , g xn)=F ( lim
n→+∞

g zn , lim
n→+∞

g yn , lim
n→+∞

g xn)=F (z, y, x).

We have proved that F and g have a tripled coincidence point. This completes the proof of

Theorem 2.1.

In the next theorem, we omit the continuity hypothesis of F .

Theorem 2.2. Let (X ,d ,≤) be a partially ordered metric space. Suppose F : X 3 → X and g :

X → X are such that F has the mixed g -monotone property. Also, assume that there exist φ ∈Φ

and L ≥ 0 such that

d (F (x, y, z),F (u, v, w ))≤φ

(

max{d (g x, g u),d (g y, g v),d (g z, g w )}

)

+LM (x, y, z,u, v, w )

for any x, y, z,u, v, w ∈ X for which g x ≤ g u, g v ≤ g y and g z ≤ g w. Also, suppose F (X 3) ⊂

g (X ), (g (X ),d ) is a complete metric space and X has the following properties:

(i) if non-decreasing sequence an → a, then an ≤ a for all n,

(ii) if non-increasing sequence bn → b, then bn ≥ b for all n.

If there exist x0, y0, z0 ∈ X such that g x0 ≤ F (x0, y0, z0), g y0 ≥ F (y0, x0, y0) and g z0 ≤ F (z0, y0, x0),

then there exist x, y, z ∈ X such that

F (x, y, z)= g x, F (y, x, y)= g y and F (z, y, x)= g z,

that is, F and g have a tripled coincidence point.

Proof. Proceeding exactly as in Theorem 2.1, we have that {g xn}, {g yn} and {g zn} are Cauchy

sequences in the complete metric space (g (X ),d ). Then, there exist x, y, z ∈ X such that

g xn → g x, g yn → g y and g zn → g z. (34)

Since {g xn}, {g zn} are non-decreasing and {g yn} is non-increasing, then by the properties (i )

and (i i ) of X we have

g xn ≤ g x, g yn ≥ g y, g zn ≤ g z
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for all n. If g xn = g x, g yn = g y and g zn = g z for some n ≥ 0, then g x = g xn ≤ g xn+1 ≤ g x =

g xn , g y ≤ g yn+1 ≤ g yn = g y , and g z = g zn ≤ g zn+1 ≤ g z = g zn . Therefore

g xn = g xn+1 = F (xn , yn , zn , wn), g yn = g yn+1 = F (yn , zn , wn , xn),

and

g zn = g zn+1 = F (zn , wn , xn , yn),

that is, (xn , yn , zn) is a tripled coincidence point of F and g . Then, we suppose that (g xn , g yn , g zn) 6=

(g x, g y, g z) for all n ≥ 0. Consider now

d (g x,F (x, y, z))≤ d (g x, g xn+1)+d (g xn+1,F (x, y, z)

= d (g x, g xn+1)+d (F (xn , yn , zn),F (x, y, z))

≤ d (g x, g xn+1)+φ(max{d (g xn , g x),d (g yn , g y),d (g zn , g z)})+LM (xn , yn , zn , x, y, z)

< d (g x, g xn+1)+max{d (g xn , g x),d (g yn , g y),d (g zn , g z)+LM (xn , yn , zn , x, y, z) (35)

where

M (xn , yn , zn , x, y, z)= min
{

d (F (xn , yn , zn), g xn),d (F (xn , yn , zn), g x),d (F (x, y, z), g x)
}

.

Taking n →∞ and using (34), the quantity M (xn , yn , zn , x, y, z) tends to 0, also the right-hand

side of (35) tends to 0, so we get that d (g x,F (x, y, z)) = 0. Thus, g x = F (x, y, z). Analogously,

we get that

F (y, x, y)= g y and F (z, y, x)= g z.

Thus, we proved that F and g have a tripled coincidence point. This completes the proof of

Theorem 2.2.

Corollary 2.1. Let (X ,≤) be a partially ordered set and suppose there is a metric d on X such

that (X ,d ) is a complete metric space. Suppose F : X 3 → X and g : X → X are such that F is

continuous and has the mixed g -monotone property. Assume that there exist φ ∈Φ and L ≥ 0

such that

d (F (x, y, z),F (u, v, w ))≤φ

(

d (g x, g u)+d (g y, g v)+d (g z, g w )

3

)

+LM (x, y, z,u, v, w ),

for any x, y, z,u, v, w ∈ X for which g x ≤ g u, g v ≤ g y and g z ≤ g w. Also, suppose F (X 3) ⊂

g (X ), g is continuous and commutes with F .

If there exist x0, y0, z0 ∈ X such that g x0 ≤ F (x0, y0, z0), g y0 ≥ F (y0, x0, y0) and g z0 ≤ F (z0, y0, x0),

then there exist x, y, z ∈ X such that

F (x, y, z)= g x, F (y, x, y)= g y and F (z, y, x)= g z.
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Proof. It suffices to remark that

d (g x, g u)+d (g y, g v)+d (g z, g w )

3
≤ max{d (g x, g u),d (g y, g v),d (g z, g w )}.

Then, we apply Theorem 2.1, since φ is non-decreasing.

Similarly, we have from Theorem 2.2 the following corollary.

Corollary 2.2. Let (X ,d ,≤) be a partially ordered metric space. Suppose F : X 3 → X and g :

X → X are such that F has the mixed g -monotone property. Assume that there exist φ ∈Φ and

L ≥ 0 such that

d (F (x, y, z),F (u, v, w ))≤φ

(

d (g x, g u)+d (g y, g v)+d (g z, g w )

3

)

+LM (x, y, z,u, v, w ),

for any x, y, z,u, v, w ∈ X for which g x ≤ g u, g v ≤ g y and g z ≤ g w. Also, suppose that F (X 3)⊂

g (X ), (g (X ),d ) is a complete metric space and X has the following properties:

(i) if non-decreasing sequence an → a, then an ≤ a for all n,

(ii) if non-increasing sequence bn → b, then bn ≥ b for all n.

If there exist x0, y0, z0 ∈ X such that g x0 ≤ F (x0, y0, z0), g y0 ≥ F (y0, x0, y0) and g z0 ≤ F (z0, y0, x0),

then there exist x, y, z ∈ X such that

F (x, y, z)= g x, F (y, x, y)= g y and F (z, y, x)= g z.

Corollary 2.3. Let (X ,≤) be a partially ordered set and suppose there is a metric d on X such

that (X ,d ) is a complete metric space. Suppose F : X 3 → X and g : X → X are such that F

is continuous and has the mixed g -monotone property. Assume that there exist k ∈ [0,1) and

L ≥ 0 such that

d (F (x, y, z),F (u, v, w ))≤ k max{d (g x, g u),d (g y, g v),d (g z, g w )}+LM (x, y, z,u, v, w ),

for any x, y, z,u, v, w ∈ X for which g x ≤ g u, g v ≤ g y and g z ≤ g w. Also, suppose that F (X 3)⊂

g (X ), g is continuous and commutes with F .

If there exist x0, y0, z0 ∈ X such that g x0 ≤ F (x0, y0, z0), g y0 ≥ F (y0, x0, y0) and g z0 ≤ F (z0, y0, x0),

then there exist x, y, z ∈ X such that

F (x, y, z)= g x, F (y, x, y)= g y and F (z, y, x)= g z.

Proof. It suffices to take φ(t )= k t in Theorem 2.1.
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Corollary 2.4. Let (X ,d ,≤) be a partially ordered set metric space. Suppose F : X 3 → X and

g : X → X are such that F has the mixed g -monotone property. Assume that there exist k ∈ [0,1)

and L ≥ 0 such that

d (F (x, y, z),F (u, v, w ))≤ k max{d (g x, g u),d (g y, g v),d (g z, g w )}+LM (x, y, z,u, v, w ),

for any x, y, z,u, v, w ∈ X for which g x ≤ g u, g v ≤ g y and g z ≤ g w. Also, suppose F (X 3) ⊂

g (X ), (g (X ),d ) is a complete metric space and X has the following properties:

(i) if non-decreasing sequence an → a, then an ≤ a for all n,

(ii) if non-increasing sequence bn → b, then bn ≥ b for all n.

If there exist x0, y0, z0 ∈ X such that g x0 ≤ F (x0, y0, z0), g y0 ≥ F (y0, x0, y0) and g z0 ≤ F (z0, y0, x0),

then there exist x, y, z ∈ X such that

F (x, y, z)= g x, F (y, x, y)= g y and F (z, y, x)= g z.

Proof. It suffices to take φ(t ) = k t in Theorem 2.2.

Corollary 2.5. Let (X ,≤) be a partially ordered set and suppose there is a metric d on X such

that (X ,d ) is a complete metric space. Suppose F : X 3 → X and g : X → X are such that F

is continuous and has the mixed g -monotone property. Assume that there exist k ∈ [0,1) and

L ≥ 0 such that

d (F (x, y, z),F (u, v, w ))≤
k

3
(d (g x, g u)+d (g y, g v)+d (g z, g w ))+LM (x, y, z,u, v, w ),

for any x, y, z,u, v, w ∈ X for which g x ≤ g u, g v ≤ g y and g z ≤ g w. Also, suppose F (X 3) ⊂

g (X ), g is continuous and commutes with F .

If there exist x0, y0, z0 ∈ X such that g x0 ≤ F (x0, y0, z0), g y0 ≥ F (y0, x0, y0) and g z0 ≤ F (z0, y0, x0),

then there exist x, y, z ∈ X such that

F (x, y, z)= g x, F (y, x, y)= g y and F (z, y, x)= g z.

Proof. It suffices to take φ(t ) = k t in Corollary 2.1.

Corollary 2.6. Let (X ,≤) be a partially ordered set and suppose there is a metric d on X such

that (X ,d ) is a complete metric space. Suppose F : X 3 → X and g : X → X are such that F has

the mixed g -monotone property. Assume that there exist k ∈ [0,1) and L ≥ 0 such that

d (F (x, y, z),F (u, v, w ))≤
k

3
(d (g x, g u)+d (g y, g v)+d (g z, g w ))+LM (x, y, z,u, v, w ),

for any x, y, z,u, v, w ∈ X for which g x ≤ g u, g v ≤ g y and g z ≤ g w. Also, suppose that F (X 3) ⊂

g (X ), (g (X ),d ) is a complete metric space and X has the following properties:
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(i) if non-decreasing sequence an → a, then an ≤ a for all n,

(ii) if non-increasing sequence bn → b, then bn ≥ b for all n.

If there exist x0, y0, z0 ∈ X such that g x0 ≤ F (x0, y0, z0), g y0 ≥ F (y0, x0, y0) and g z0 ≤ F (z0, y0, x0),

then there exist x, y, z ∈ X such that

F (x, y, z)= g x, F (y, x, y)= g y and F (z, y, x)= g z.

Proof. It follows by taking φ(t )= k t in Corollary 2.2.

Remark 1. • Taking L = 0, g = I dX , the identity on X and φ(t ) = k t , k ∈ [0,1) in Corollary

2.5, we get Theorem 7 of Berinde and Borcut [12] (with j = l = r =
k
3 ).

• Taking L = 0, g = I dX andφ(t ) = k t , k ∈ [0,1) in Corollary 2.6, we get Theorem 8 of Berinde

and Borcut [12] (with j = l = r =
k
3 ).

• Corollary 2.3 generalizes Theorem 7 of Berinde and Borcut [12].

• Corollary 2.4 generalizes Theorem 8 of Berinde and Borcut [12]

• Corollary 2.5 and Corollary 2.6 are the analogous of Theorem 2.1 and Theorem 2.2 of Lak-

shmikantham and Ćirić [23] for coupled fixed point results by taking L = 0.

Now, we shall prove the existence and uniqueness of tripled common fixed point. For a

product X 3 of a partial ordered set (X ,≤), we define a partial ordering in the following way:

For all (x, y, z) and (u, v,r ) in X 3

(x, y, z)≤ (u, v,r )⇔ x ≤ u, y ≥ v, z ≤ r. (36)

We say that (x, y, z) and (u, v, w ) are comparable if

(x, y, z)≤ (u, v,r ) or (u, v,r )≤ (x, y, z).

Also, we say that (x, y, z) is equal to (u, v,r ) if and only if x = u, y = v, z = r .

Theorem 2.3. In addition to the hypotheses of Theorem 2.1, suppose that that for all (x, y, z),

(u, v,r )∈ X 3, there exists (a,b,c)∈ X ×X ×X such that (F (a,b,c),F (b, a,b),F (c ,b, a)) is compa-

rable to (F (x, y, z),F (y, x, y),F (z, y, x)) and (F (u, v,r ),F (v,u, v),F (r, v,u)). Then, F and g have

a unique tripled common fixed point (x, y, z) such that

x = g x = F (x, y, z), x = g x = F (x, y, z) and z = g z = F (z, y, x).
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Proof. The set of tripled coincidence points of F and g is not empty due to Theorem 2.1.

Assume now, (x, y, z) and (u, v,r ) are two tripled coincidence points of F and g , that is,

F (x, y, z) = g x, F (u, v,r )= g u,

F (y, x, y) = g y, F (v,u, v)= g v, (37)

F (z, y, x) = g z, F (r, v,u)= g r.

We shall show that (g x, g y, g z) and (g u, g v, g r ) are equal. By assumption, there exists (a,b,c)∈

X 3 such that (F (a,b,c),F (b, a,b),F (c ,b, a)) is comparable to (F (x, y, z),F (y, x, y),F (z, y, x)) and

(F (u, v,r ),F (v,u, v),F (r, v,u)).

Define sequences {g an}, {g bn} and {g cn} such that

a0 = a, b0 = b, c0 = c , and for any n ≥ 1

g an = F (an−1,bn−1,cn−1),

g bn = F (bn−1, an−1,bn−1), (38)

g cn = F (cn−1,bn−1, an−1),

for all n. Further, set x0 = x, y0 = y , z0 = z and u0 = u, v0 = v , r0 = r , and on the same way

define the sequences {g xn}, {g yn}, {g zn} and {g un}, {g vn}, {g rn}. Then, it is easy that

g xn = F (x, y, z),

g yn = F (y, x, y, ),

g zn = F (z, y, x),

g un = F (u, v,r ),

g vn = F (v,u, v),

g rn = F (r, v,u),

(39)

for all n ≥ 1. Since (F (x, y, z),F (y, x, y),F (z, y, x)) = (g x1, g y1, g z1) = (g x, g y, g z) is compa-

rable to (F (a,b,c),F (b, a,b),F (c ,b, a)) = (g a1, g b1, g c1), then it is easy to show (g x, g y, g z) ≥

(g a1, g b1, g c1). Recursively, we get that

(g x, g y, g z) ≥ (g an , g bn , g cn) for all n. (40)

By (2) and (37), it is easy that

M (an,bn ,cn , x, y, z)= M (y, x, y,bn, an ,bn) = M (cn ,bn , an , z, y, x)= 0 (41)

for all n ≥ 0. By (3), (40) and (41), we have

d (g an+1, g x) = d (F (an ,bn ,cn),F (x, y, z))

≤ φ(max{d (g x, g an),d (g y, g bn),d (g z, g cn)})+LM (an ,bn ,cn , x, y, z)

= φ(max{d (g x, g an),d (g y, g bn),d (g z, g cn)}), (42)



SOME TRIPLED COINCIDENCE POINT THEOREMS 247

d (g y, g bn+1) = d (F (F (y, x, y),bn, an ,bn))

≤ φ(max{d (g an , g x),d (g bn , g y)})+LM (y, x, y,bn, an ,bn)

= φ(max{d (g bn , g y),d (g an , g x)})

≤ φ(max{d (g bn , g y),d (g an , g x),d (g cn , g z)}), (43)

and

d (g z, g cn+1) = d (F (cn ,bn , an),F (z, y, x))

≤ φ(max{d (g z, g cn),d (g y, g bn),d (g x, g an)})+LM (z, y, x,cn ,bn , an)

= φ(max{d (g z, g cn),d (g y, g bn),d (g x, g an)}). (44)

From (42)-(44), it follows that

max{d (g z, g cn+1),d (g y, g bn+1),d (g x, g an+1)} ≤φ(max{d (g z, g cn),d (g y, g bn),d (g x, g an)}).

Therefore, for each n ≥ 1,

max{d (g z, g cn),d (g y, g bn),d (g x, g an)} ≤φn(max{d (g z, g c0),d (g y, g b0),d (g x, g a0)}). (45)

It is known that φ(t )< t and lim
r→t+

φ(r ) < t imply lim
n→∞

φn(t )= 0 for each t > 0. Thus, from (45),

lim
n→∞

max{d (g z, g cn),d (g y, g bn),d (g x, g an)} = 0.

This yields that

lim
n→∞

d (g x, g an) = lim
n→∞

d (g y, g bn) = lim
n→∞

d (g z, g cn) = 0. (46)

Analogously, we show that

lim
n→∞

d (g u, g an) = lim
n→∞

d (g v, g bn) = lim
n→∞

d (g r, g cn) = 0. (47)

Combining (46) and (47) yields that (g x, g y, g z) and (g u, g v, g r ) are equal.

Since g x = F (x, y, z), g y = F (y, x, y) and g z = F (z, y, x), by commutativity of F and g , we have

g x ′
= g (g x) = g (F (x, y, z)) = F (g x, g y, g z),

g y ′
= g (g y)= g (F (y, x, y))= F (g y, g x, g y),

and

g z ′
= g (g z) = g (F (z, y, x)) = F (g z, g y, g x),

where g x = x ′, g y = y ′ and g z = z ′. Thus, (x ′, y ′, z ′) is a tripled coincidence point of F and g .

Consequently, (g x ′, g y ′, g z ′) and (g x, g y, g z) are equal. We deduce

g x ′
= g x = x ′, g y ′

= g y = y ′ and g z ′
= g z = z ′.

Therefore, (x ′, y ′, z ′) is a tripled common fixed of F and g . Its uniqueness follows easily from

(3).

We present the following examples illustrating our results.
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Example 2.1. Let X =R be endowed with the Euclidian metric d (x, y)= |x − y |, for all x, y ∈ X

and be ordered by the following relation

x ≤X y ⇐⇒ x = y or (x, y ∈ [0,1] and x ≤ y),

where ≤ be the usual ordering. Let g : X → X and F : X 3 → X be defined by

g (x) =



















1
10 x if x < 0

x if x ∈ [0,1]

1
10 x +

9
10 if x > 1,

F (x, y, z)=
x − y + z

4
.

It is obvious that F (X 3) ⊂ g (X ), F has the mixed g -monotone property and (g (X ),d ) is a com-

plete metric space.

Take L ≥ 0 arbitrary and φ : [0,∞) → [0,∞) be given by φ(t ) = 3
4 t for all t ∈ [0,∞). We will

check that condition (3) is fulfilled for all x, y, z,u, v, w ∈ X satisfying g x ≤X g u, g v ≤X g y and

g z ≤X g w . The following cases are possible:

• Case 1. x,u, y, v, z, w ∈ [0,1]. In this case

d (F (x, y, z),F (u, v, w ))=
u −x

4
+

y −v

4
+

w − z

4

≤
3

4
max{d (g x, g u),d (g y, g v),d (g z, g w )}

≤φ(max{d (g x, g u),d (g y, g v),d (g z, g w )})+LM (x, y, z,u, v, w ).

• Case 2. x,u, y, v ∈ [0,1] et z, w ∉ [0,1]. Here, g z, g w ∉ [0,1] and since they must be compa-

rable, g z = g w and z = w . In this case

d (F (x, y, z),F (u, v, w ))=
u −x

4
+

y −v

4

≤φ(max{d (g x, g u),d (g y, g v),d (g z, g w )})+LM (x, y, z,u, v, w ).

• Case 3. The cases where (x,u, z, w ∈ [0,1] and y, v ∉ [0,1]) or (y, v, z, w ∈ [0,1] and x,u ∉

[0,1]) are treated analogously to Case 2.

• Case 4. x,u ∈ [0,1] et y, v, z, w ∉ [0,1]. Here, g y, g v, g z, g w ∉ [0,1] and since they must be

comparable, g y = g v and g z = g w , so y = v and z = w . In this case

d (F (x, y, z),F (u, v, w ))=
u −x

4

≤φ(max{d (g x, g u),d (g y, g v),d (g z, g w )})+LM (x, y, z,u, v, w ).

• Case 5. The cases where (y, v ∈ [0,1] et x,u, z, w ∉ [0,1]) or (z, w ∈ [0,1] et x,u, y, v ∉ [0,1])

are treated analogously to Case 4.
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• Case 6. x,u, y, v, z, w ∉ [0,1]. Then the only possibility for g x, g u, as well as g y , g v and g z,

g w to be comparable is that x = u, y = v and z = w . In this case condition (3) is trivially

satisfied.

We conclude that all the conditions of Theorem 2.2 are satisfied. The mappings g and F

have a tripled coincidence (common) fixed point (0,0,0).

Example 2.2. Let X = [0,∞) with the Euclidian metric and the following order relation:

x, y ∈ X , x ≤X y ⇔ x = y = 0or (x, y ∈ (0,∞) and x ≤ y),

where ≤ be the usual ordering.

Let g : X → X and F : X 3 → X be given by g x = 2
3

x and

F
(

x, y, z
)

=

{

1,

0,

i f

i f

x y z 6= 0

x y z = 0

for all x, y, z,u, v, w ∈ X .

Let φ : [0,∞) → [0,∞) be defined φ(t ) = 3t
4 for all t ∈ [0,∞).

It is easy to check that all the conditions of Theorem 2.2 are satisfied (for all L ≥ 0). Applying

Theorem 2.2 we conclude that F and g have a tripled coincidence point, which is (0,0,0).

Example 2.3. Let X = R be endowed with the usual order ≤ and the Euclidian metric. Define

mappings g : X → X and F : X 3 → X by

g x = 7x −1 and F (x, y, z)= 2x −2y +2z +1.

Obviously, F (X 3) ⊂ g (X ), F has the mixed g -monotone property and (g (X ),d ) is a complete

metric space.

Take L ≥ 0 arbitrary and φ : [0,∞) → [0,∞) be given by φ(t ) = 6
7

t for all t ∈ [0,∞). We will

check that condition (3) is fulfilled for all x, y, z,u, v, w ∈ X satisfying g x ≤ g u, g v ≤ g y and

g z ≤ g w . Indeed

d (F (x, y, z),F (u, v, w )) = 2(u −x)+2(y −v)+2(w − z)

≤ φ(max{7(u −x),7(y −v),7(w − z)})

≤ φ(max{d (g x, g u),d (g y, g v),d (g z, g w )})+LM (x, y, z,u, v, w ).

It is clear all conditions of Theorem 2.2 are satisfied (it suffices to take x0 = z0 = 0 and y0 =
2
3 ).

So F and g have a tripled coincidence point. Here, ( 2
5 , 2

5 , 2
5 ) is a tripled coincidence point of F

and g .

Note that Theorem 1.1 (main result of Berinde and Borcut) is not applicable in this case.

Indeed, for x, y, z,u, v, w ∈ X with x < u, v = y and z = w , we have

d (F (x, y, z),F (u, v, w ))= 2(u −x) > j d (x,u)= j d (x,u)+ r d (y, v)+ l d (z, w ),

for all j ,r, l ≥ 0 such that j + r + l < 1.
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