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COUPLED COINCIDENCE POINT RESULT IN PARTIALLY

ORDERED GENERALIZED METRIC SPACES

VIZENDER SIHAG AND RAMESH KUMAR VATS

Abstract. The present study introduces the notion of compatibility in partially ordered G-

metric spaces and uses this perception to establish a coupled coincidence point result.

Our effort extend the recent work of Choudhary and Maity [B. S. Choudhary, P. Maity,

Coupled fixed point results in generalized metric spaces, Mathematical and Computer

Modelling 54 (2011) 73-79]. The example demonstrates that our main result is an actual

improvement over the results which are generalized

1. Introduction

The Banach contraction principle is most celebrated fixed point theorem. Mustafa and

Sims [1, 2] introduced a improved version of the generalized metric space structure, which

they called it as G-metric space and establish Banach contraction principle in this work. For

more details on G-metric space, one can refer to the papers [1]-[11]. Fixed point theorems in

partially ordered G-metric space have been considered in [8].

Studies on coupled fixed point problems in partially ordered metric spaces have received

considerable attention in recent years. One of the reason of this interest is their potential

applicability. Specifically, Bhaskar and Lakshmikanthan [16] established coupled fixed point

for mixed monotone operator in partially ordered metric spaces. Afterward, Lakshmikanthan

and Ciric [20] extended the results of [16] by furnishing coupled coincidence and coupled

fixed point theorem for two commuting mappings having mixed g-monotone property. In a

subsequent series, B. S. Choudhary and A. Kundu [26] introduced the concept of compatibility

and proved the result of [20] under different set of condition.

Recently, Choudhary and Maity publish coupled fixed point results in partially ordered G-

metric spaces. Motivated by ([16], [20], [26] and [27]) we introduce the notion of compatibility
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in partially ordered G-metric spaces and utilize this to prove a coupled coincidence point

result for mixed g-monotone mapping. An illustrative example is discussed which shows that

the above mentioned improvements are actual.

2. Mathematical preliminaries

Let (X ,4) be partially ordered set and F : X → X be a mapping from X to itself. The

mapping F is said to be non-decreasing if for all x1, x2 ∈ X , x1 ≤ x2 implies F (x1) ≤ F (x2) and

non-increasing, if for all x1, x2 ∈ X , x1 ≤ x2 implies F (x1) ≥ F (x2).

In 2004, Mustafa and Sims [2] introduced the concept of G-metric spaces as follows:

Definition 2.1 ([2]). Let X be a nonempty set and let G : X × X × X → R+ be a function satis-

fying the following axioms:

(G1) G(x, y, z)= 0 if x = y = z,

(G2) 0<G(x, x, y), for all x, y ∈ X with x 6= y ,

(G3) G(x, x, y)≤G(x, y, z), for all x, y, z ∈ X with z 6= y ,

(G4) G(x, y, z)=G(x, z, y) =G(y, z, x) = . . . (symmetry in all three variables),

(G5) G(x, y, z)=G(x, a, a)+G(a, y, z) for all x, y, a, z ∈ X (rectangle inequality)

then the function G is called a generalized metric on X and the pair (X ,G) is called a G-metric

space.

Definition 2.2 ([2]). Let (X ,G) be a G-metric space and let {xn} a sequence of points in X , a

point x in X is said to be the limit of the sequence {xn} if lim
m,n→∞

G(x, xn , xm)= 0, and one says

that sequence {xn} is G-convergent to x.

Thus, that if xn → x or lim
n→∞

xn = x in a G-metric space (X ,G), then if for each ε> 0, there

exists a positive integer N such that G(x, xn , xm) < ε for all m,n ≥ N .

Proposition 2.1 ([2]). Let (X ,G) be a G-metric space. Then the following are equivalent:

(1) {xn} is G convergent to x,

(2) G(xn , xn , x)→ 0 as n →∞,

(3) G(xn , x, x) → 0 as n →∞,

(4) G(xm , xn , x) → 0 as m,n →∞.

Definition 2.3 ([4]). If (X ,G) and (X1,G1) be two G-metric space and let f : (X ,G) → (X1,G1)

be a function, then f is said to be G-continuous at a point x0 ∈ X if given ε > 0, there exists

δ > 0, such that for x, y ∈ X and G(x0, x, y) < δ implies G1( f (x0), f (x), f (y)) < ε. A function

f is G-continuous at X if and only if it is G-continuous at all x0 ∈ X or function f is said to
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be G-continuous at a point x0 ∈ X if and only if it is G-sequentially continuous at x0, that is,

whenever {xn} is G-convergent to x0, { f (xn)} is G-convergent to f (x0).

Definition 2.4 ([2]). Let (X ,G) be a G-metric space. A sequence {xn} is called G-Cauchy if, for

each ε> 0, there exists a positive integer N such that G(xn , xm , xl ) < ε for all n,m, l ≥ N ; i.e. if

G(xn , xm , xl ) → 0 as n,m, l →∞.

Proposition 2.2 ([2]). If (X ,G) is a G-metric space then the following are equivalent:

(1) The sequence {xn} is G-Cauchy,

(2) for each ε> 0, there exist a positive integer N such that G(xn , xm , xl ) < ε for all n,m, l ≥ N .

Proposition 2.3 ([2]). Let (X ,G) be a G-metric space. Then the function G(x, y, z) is jointly

continuous in all three of its variables.

Definition 2.5 ([2]). A G-metric space (X ,G) is called a symmetric G-metric space if

G(x, y, y)=G(y, x, x) for all x, y in X .

Proposition 2.4 ([2]). Every G-metric space (X ,G) will defines a metric space (X ,dG ) by

(1) dG (x, y) =G(x, y, y)+G(y, x, x) for all x, y in X .

If (X ,G) is a symmetric G-metric space, then

(2) dG (x, y) = 2G(x, y, y) for all x, y in X .

However, if (X ,G) is not symmetric, then it follows from the G-metric properties that

(3) 3/2G(x, y, y) ≤ dG (x, y) ≤ 3G(x, y, y) for all x, y in X .

Definition 2.6 ([16]). A G-metric space (X ,G) is said to be G-complete if every G-Cauchy

sequence in (X ,G) is G-convergent in X .

Proposition 2.5 ([16]). A G-metric space (X ,G) is G-complete if and only if (X ,dG) is a complete

metric space.

Definition 2.7 ([16]). Let (X ,4) be partially ordered set and F : X × X → X be a mapping.

The mapping F : X × X → X is said to have mixed monotone property if F is monotone non-

decreasing in its fist argument and is monotone non-increasing in its second argument, that

is, if for any x1, x2 ∈ X , x1 ≤ x2 implies F (x1, y) ≤ F (x2, y) for y ∈ X and for all y1, y2 ∈ X , y1 ≤ y2

implies F (x, y1) ≥ F (x, y2).

Definition 2.8 ((Mixed g-monotone property [20])). Let (X ,4) be partially ordered set and

F : X × X → X and g : X → X be two self mappings. F has mixed g -monotone property if F

is monotone g -non-decreasing in its fist argument and is monotone g -non-increasing in its

second argument, that is, if for any x1, x2 ∈ X , g x1 ≤ g x2 implies F (x1, y) ≤ F (x2, y) for y ∈ X

and for all y1, y2 ∈ X , g y1 ≤ g y2 implies F (x, y1) ≥ F (x, y2).
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Definition 2.9 ([16]). An element (x, y) ∈ X × X , is called a coupled fixed point of mapping

F : X ×X → X if F (x, y)= x and F (y, x)= y .

Definition 2.10 ([16]). An element (x, y) ∈ X ×X , is called a coupled coincident point of map-

ping F : X ×X → X and g : X → X if F (x, y)= g x and F (y, x)= g y .

Definition 2.11 ([27]). Let (X ,G) be a G-metric space. A mapping F : X × X → X is said to

be continuous if for any two G-convergent sequence {xn} and {yn} converging to x and y

respectively, {F (xn , yn)} is G-convergent to F (x, y).

Using the concept of continuity, mixed monotone property and coupled fixed point,

Choudhary and Maity [27] introduce the following theorem:

Theorem 2.1. Let (X ,4) be partially ordered set and let G be a G-metric on X such that (X ,G)

is a complete G-metric space. Let F : X ×X → X be a continuous mapping having mixed mono-

tone property. Assume that there exist a k ∈ [0,1) such that for x, y,u, v, w, z ∈ X , the following

holds:

G(F (x, y),F (u, v),F (w, z))≤
k

2
[G(x,u, w )+G(y, v, z)]

for all x < u < w and y 4 v 4 z where either u 6= w or v 6= z.

If there exist x0 and y0 ∈ X , such that x0 4 F (x0, y0) and y0 < F (y0, x0), then F has coupled

coincidence in X , that is, there exist x, y ∈ X such that x = F (x, y) and y = F (y, x).

We define a notion of compatibility in the following:

Definition 2.12. The mappings F and g where F : X × X → X and g : X → X , are said to be

compatible if

lim
n→∞

G(g (F (xn , yn)),F (g xn , g yn),F (g xn , g yn)) = 0

and

lim
n→∞

G(g (F (yn , xn)),F (g yn , g xn),F (g yn , g xn)) = 0.

whenever {xn} and {yn} are sequences in X , such that lim
n→∞

F (xn , yn) = lim
n→∞

g (xn) = x and

lim
n→∞

F (yn , xn) = lim
n→∞

g (yn) = y , for all x, y ∈ X are satisfied.

Definition 2.13 ([20]). We say that mappings F : X ×X → X and g : X → X are commutative if

g (F (x, y)) = F (g x, g y) for all x, y ∈ X .

We denote byΦ the set of function ϕ : [0,+∞) → [0,+∞) satisfying

(a) ϕ−1({0}) = {0},
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(b) ϕ(t ) < t for all t > 0,

(c) lim
r→t+

ϕ(r ) < t for all t > 0.

Lemma 2.1 ([20]). Let ϕ ∈Φ. For all t > 0, we have lim
n→∞

ϕn(t )= 0.

Now, we are ready to prove our result which is of three folds:

(i) We use compatibility which is more general that of continuity.

(ii) We proceed with ϕ-contraction which is more general.

(iii) We use mixed g -monotone property which generalizes mixed monotone property.

3. Main results

Theorem 3.1. Let (X ,4) be partially ordered set and let G be a G-metric on X such that (X ,G)

is a complete G-metric space. Let ϕ : [0,1) → [0,1) be such that ϕ(r ) ≤ t and lim
t→r+

ϕ(r ) < t for all

t > 0. Let F : X × X → X and g : X → X be two mappings such that F has mixed g -monotone

property and satisfy

G(F (x, y),F (u, v),F (w, z))≤ϕ
(G(g x, g u, g w )+G(g y, g v, g z)

2

)

(3.1)

for all x, y,u, v, w, z ∈ X , with g w 4 g u 4 g x and g y 4 g v 4 g z, where either u 6= w and v 6= z.

Let F (X × X ) ⊆ g (X ), g be continuous and monotone increasing and F and g be compatible

mappings. Also suppose

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn 4 x for all n ≥ 0.

(ii) if a non-increasing sequence {yn} → y, then y 4 yn for all n ≥ 0.

if there exist x0 and y0 ∈ X , such that g (x0) 4 F (x0, y0) and g (y0) < F (y0, x0), then there exist

x, y ∈ X such that g (x) = F (x, y) and g (y) = F (y, x), that is, F and g have a coupled coincidence

in X .

Proof. Let x0, y0 be such that g x0 4 F (x0, y0) and g y0 < F (y0, x0). Since F (X × X ) ⊆ g (X ),

we can choose x1, y1 ∈ X such that g x1 = F (x0, y0) and g y1 = F (y0, x0). Again we can choose

x2, y2 ∈ X such that g x2 = F (x1, y1) and g y2 = F (y1, x1). Continuing like this we can construct

two sequences {g xn} and {g yn} such that

g xn = F (xn−1, yn−1) and g yn = F (yn−1, xn−1) for all n ≥ 0. (3.2)
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We shall prove that for all n ≥ 0,

g xn 4 g xn+1, (3.3)

and

g yn < g yn+1. (3.4)

Since g x0 4 F (x0, y0) and g y0 < F (y0, x0) and g x1 = F (x0, y0) and g y1 = F (y0, x0), we have

g x0 4 g x1 and g y0 < g y1; that is, (3.3) and (3.4) hold for n = 0.

We presume that (3.3) and (3.4) holds for some n > 0. As F has mixed g -monotone prop-

erty and g xn 4 g xn+1, g yn < g yn+1, from (3.2), we have

g xn+1 = F (xn , yn)4 F (xn+1, yn) and g yn+1 = F (yn , xn)< F (yn+1, xn) (3.5)

Also for the same reason, we have

F (xn+1, yn)4 F (xn+1, yn+1) = g xn+2 and F (yn+1, xn)< F (yn+1, xn+1) = g yn+2. (3.6)

From (3.3) and (3.4), we have that g xn+1 4 g xn+2 and g yn+1 < g yn+2.

Then by mathematical induction it follows that (3.3) and (3.4) holds for n ≥ 0. Therefore

g x0 4 g x1 4 g x2 4 g x3 4 . . . g xn 4 g xn+1 4 . . . (3.7)

g y0 < g y1 < g y2 < g y3 < . . . g yn < g yn+1 < . . . (3.8)

If for some n, we have (g xn+1, g yn+1) = (g xn , g yn), then g xn = F (xn , yn) and g yn = F (yn , xn),

that is, F and g have a coincidence point. So from now we assume (g xn+1, g yn+1) 6= (g xn , g yn)

for all n ∈ N , that is we assume that either g xn+1 = F (xn , yn) 6= g xn or g yn+1 = F (yn , xn) 6= g yn .

Let, δn =G(g xn , g xn+1, g xn+1)+G(g yn , g yn+1, g yn+1).

Next, we prove that

δn ≤ 2ϕ
(δn−1

2

)

. (3.9)

Since for all n ≥ 0, g (xn−1) ≤ g (xn) and g (yn−1) ≥ g (yn), we have from (3.1) and (3.2),

G(g xn , g xn+1, g xn+1) = G(F (xn−1, yn−1),F (xn , yn),F (xn , yn))

≤ ϕ
(G(g xn−1, g xn , g xn)+G(g yn−1, g yn , g yn)

2

)

= ϕ
(δn−1

2

)

(3.10)

Similarly, we can obtain for n ≥ 0,

G(g yn , g yn+1, g yn+1) = G(F (yn−1, xn−1),F (yn , xn),F (yn , xn))
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≤ ϕ
(G(g yn−1, g yn , g yn)+G(g xn−2, g xn , g xn)

2

)

= ϕ
(δn−1

2

)

(3.11)

Combining (3.10) and (3.11), we get (3.9).

Since ϕ(t ) < t for all t > 0, it follows from (3.9) that the sequence {δn} is a monotone de-

creasing sequence of non-negative real numbers. Hence, there exist δ> 0 such that lim
n→∞

δn =

δ. If possible, let δ> 0. Taking the limit as n →∞ in (3.9) and using lim
t→r+

ϕ(r ) < t for all t > 0,

we obtain

δ= lim
n→∞

δn ≤ 2 lim
n→∞

ϕ
(δn−1

2

)

= 2 lim
δn−1→δ+

ϕ
(δn−1

2

)

< 2 ·
δ

2

which is a contradiction. Thus δ= 0. Hence we have

lim
n→∞

[G(g xn , g xn+1, g xn+1)+G(g yn , g yn+1, g yn+1)] = lim
n→∞

δn = 0. (3.12)

Next we show that {g xn} and {g yn} are G-Cauchy sequences. Let at least one of {g xn} and

{g yn} be not a G-Cauchy sequence. Then there exist ε> 0 and the sequence of natural num-

bers {m(k)} and {l (k)} such that for every natural number k ,m(k)> l (k)≥ k and

Gk =G(g xl(k), g xm(k), g xm(k))+G(g yl(k), g ym(k), g ym(k)) ≥ ε. (3.13)

Now corresponding to l (k), we can choose m(k) to be smallest positive integer for which

(3.12) holds. Then,

G(g xl(k), g xm(k)−1, g xm(k)−1)+G(g yl(k), g ym(k)−1, g ym(k)−1) < ε.

Further from (3.12), (3.13) and rectangular inequality of G-metric space, for all k ≥ 0, we have

ε≤Gk ≤ G(g xl(k), g xm(k)−1, g xm(k)−1)+G(g xm(k)−1, g xm(k), g xm(k))

+G(g yl(k), g ym(k)−1, g ym(k)−1)+G(g ym(k)−1, g ym(k), g ym(k))

= G(g xl(k), g xm(k)−1, g xm(k)−1)+G(g yl(k), g ym(k)−1, g ym(k)−1)+δm(k)−1

< ε+δm(k)−1

Taking the limit as k →∞, we have by (3.12),

lim
k→∞

Gk = ε. (3.14)

Again, for all k ≥ 0, we have

Gk = G(g xl(k), g xm(k), g xm(k))+G(g yl(k), g ym(k), g ym(k))

≤ G(g xl(k), g xl(k)+1, g xl(k)+1)+G(g xl(k)+1, g xm(k)+1, g xm(k)+1)
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+G(g xm(k)+1, g xm(k), g xm(k))+G(g yl(k), g yl(k)+1, g yl(k)+1)

+G(g yl(k)+1, g ym(k)+1, g ym(k)+1)+G(g ym(k)+1, g ym(k), g ym(k))

= G(g xl(k), g xl(k)+1, g xl(k)+1)+G(g yl(k), g yl(k)+1, g yl(k)+1)

+G(g xl(k)+1, g xm(k)+1, g xm(k)+1)+G(g yl(k)+1, g ym(k)+1, g ym(k)+1)

+G(g xm(k)+1, g xm(k), g xm(k))+G(g ym(k)+1, g ym(k), g ym(k))

Hence, for all k ≥ 0

Gk ≤ δl(k) +δm(k) +G(g xl(k)+1, g xm(k)+1, g xm(k)+1)+G(g yl(k)+1, g ym(k)+1, g ym(k)+1). (3.15)

From (3.1), (3.2) and (3.12), for all k ≥ 0, we obtain

G(g xl(k)+1, g xm(k)+1, g xm(k)+1)

= G(F (g xl(k), g yl(k)),F (g xm(k), g ym(k)),F (g xm(k), g ym(k)))

≤ ϕ
(G(g xl(k), g xm(k), g xm(k))+G(g yl(k), g ym(k), g ym(k))

2

)

= ϕ
(Gk

2

)

. (3.16)

Also by (3.1), (3.2) and (3.12), for all k ≥ 0, we have

G(g yl(k)+1, g ym(k)+1, g ym(k)+1) (3.17)

= G(F (g yl(k), g xl(k)),F (g ym(k), g xm(k)),F (g ym(k), g xm(k))) (3.18)

≤ ϕ
(G(g yl(k), g ym(k), g ym(k))+G(g xl(k), g xm(k), g xm(k))

2

)

(3.19)

= ϕ
(Gk

2

)

. (3.20)

Putting (3.16) and (3.20) in (3.15), for all k ≥ 0, we obtain,

Gk ≤ δl(k) +δm(k) +2ϕ
(Gk

2

)

Letting n →∞ in the above inequality and using (3.12)-(3.14), we obtain

ε≤ lim
k→∞

ϕ
(Gk

2

)

= 2 lim
G

k→ε+

ϕ
(Gk

2

)

< 2 ·
ε

2
= ε,

which is a contradiction. Therefore, {g xn} and {g yn} are G-Cauchy sequences in X and hence

they are convergent in complete G-metric space (X ,G). Let

lim
n→∞

F (xn , yn) = g xn = x and lim
n→∞

F (yn , xn) = g yn = y. (3.21)

Since, F and g are compatible mappings; we have by (3.21),

lim
n→∞

G(g (F (xn , yn)),F (g xn , g yn),F (g xn , g yn)) = 0 (3.22)
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and

lim
n→∞

G(g (F (yn , xn)),F (g yn , g xn),F (g yn , g xn)) = 0. (3.23)

Next we prove that g x = F (x, y) and g y = F (y, x).

Let (a) hold.

For all n ≥ 0, we have

G(g x,F (g xn , g yn),F (g xn , g yn)) ≤ G(g x, g (F (xn , yn)), g (F (xn , yn)))

+G(g (F (xn , yn)),F (g xn , g yn),F (g xn , g yn)).

Taking the limit as n →∞ using (3.2), (3.22), (3.23) and the fact that F and g are continuous,

we have G(x,F (x, y),F (x, y) = 0.

Similarly, we have G(x,F (x, y),F (x, y) = 0.

Combining the above two results we get g x = F (x, y) and g y = F (y, x).

Next we suppose that (b) holds.

By (3.8) and (3.21), we have {g xn } is non-decreasing sequence, g (xn) → x and {g yn} is

non-increasing sequence, g (yn) → y as n →∞. Then by (i) and (ii) of condition (b), we have

for n ≥ 0,

g (xn)4 x and g (yn)< y. (3.24)

Since, F and g are compatible mappings and g is continuous, by (3.22) and (3.23), we have

lim
n→∞

g (g xn) = g x = lim
n→∞

g (F (xn , yn)) = lim
n→∞

F (g xn , g yn) (3.25)

and

lim
n→∞

g (g yn) = g y = lim
n→∞

g (F (yn , xn)) = lim
n→∞

F (g yn , g xn). (3.26)

Now we have by rectangular inequality of G-metric space

G(g x,F (x, y),F (x, y)) ≤G(g x, g (g xn+1), g (g xn+1))+G(g (g xn+1),F (x, y),F (x, y)).

Taking the limit as n →∞ in the above inequality, using (3.2) and (3.20) we have,

G(g x,F (x, y),F (x, y)) ≤ lim
n→∞

G(g x, g (g xn+1), g (g xn+1))+ lim
n→∞

G(g (g xn+1),F (x, y),F (x, y))

≤ lim
n→∞

G(F (g xn , g yn),F (x, y),F (x, y)).

Since the mapping g is monotone increasing, by (3.1) and (3.16), we have

G(g x,F (x, y),F (x, y)) ≤ lim
n→∞

ϕ
(G(g (g xn ), g x, g x)+G(g (g yn ), g y, g y)

2

)

Using, (3.21) and the property of ϕ-function we obtain, G(g x,F (x, y),F (x, y)) ≤ 0.
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That is

g (x) = F (x, y)

and similarly, by virtue of (3.2), (3.21) and (3.26), we obtain

g (y) = F (y, x).

Thus we have proved that F and g have coupled coincidence point in X .

This completes the proof of the Theorem 3.1. ���

Remark 1. If we assume g (x) = x for all x ∈ X and ϕ(t ) = k t for 0 ≤ k < 1, then we obtain the

result of Choudhary and Maity which is noted here in Theorem 2.1.

Example 1. Let X = [0,1], then (X ,4) is a partially ordered set with natural ordering of real

numbers. Let

G(x, y, z) = (|x − y |+ |y − z|+ |z −x|), for x, y, z ∈ X .

Then (X ,d ) is a complete G-metric space.

Let g : X → X be defined as

g (x) = x, for all x in X

Let

F (x, y)=







(

x−y
2

)2

, if x, y ∈ [0,1], x ≥ y

0, if x < y

Clearly, F (X ×X )⊆ g (X ), also F obeys mixed g -monotone property.

If we define f : [0,+∞) → [0,+∞) as f (t )= 2
3 t , for t ∈ [0,+∞).

It is obvious that all the condition of Theorem 3.1 is satisfied. Hence (0,0) is the coupled

coincidence point of F and g .

Remark 2. It is obvious that the mapping F and G are not commuting, then this example will

not be applicable which proves the generality of our result.
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