Subclasses of close-to-convex functions

Authors

  • Harjinder Singh
  • B.S. Mehrok

DOI:

https://doi.org/10.5556/j.tkjm.44.2013.1080

Keywords:

Subordination, Bounded Functions, Univalent Functions, Starlike Functions, Convex Functions and Close-to-convex Functions.

Abstract

We introduce some subclasses of close-to-convex functions and obtain sharp results for coefficients, distortion theorems and argument theorems from which results of several authors follows as special cases.

Author Biographies

Harjinder Singh

Department ofMathematics, Govt. Rajindra College, Bathinda, Punjab - 151001, India.

B.S. Mehrok

#643E, Bhai Randhir Singh Nagar, Ludhiana, Punjab - 141001, India.

References

H. R. Abdel-Gawad and D. K. Thomas, A subclass of close-to-convex functios, Publicatios De L'Institut Mathematique, Nouvelle srie tome, 49 (63) (1991), 61--66.

S. D. Bernardi, Special classes of subordinate functions, Duke Math. J., 33 (1966), 55--67.

M. R. Goel and B. S. Mehrok, A subclass of univalent functions, Houston J. Math., 8(1982), 343--357.

M. R. Goel and B. S. Mehrok, On the coefficients of a subclass of starlike functions, Indian J. Pure Appl. Math., 12(1981), 634--647.

M. R. Goel, and B. S. Mehrok, On a class of close-to-convex functions, Indian J.Pure Appl. Math., 12 (1981), 648--658.

W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon Math., 28 (1973), 297--326.

W. Kaplan, Close-to-convex schlicht functions, Mich. Math. J., 1(1952), 169--185.

J. Krzyz, On the derivative of close-to-convex functions, Colloq Math., 10(1963), 139--142.

L. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23(1925), 481--519.

B. S. Mehrok, A subclass of close-to-convex functions, Bull. Inst. Math. Acad. Sinica, 10(1982), 389--398.

B. S. Mehrok and Gagandeep Singh, A subclass of close-to-convex functions, Int. J. Math. Anal., 4(2010), 1319--1327.

S. Ogawa, A note on close-to-convex functions, J. Nara Gakugei Univ., 8(1959), 9--10.

M. O. Reade, On close-to-convex univalent functions}, Mich. Math. J., 3(1955-56), 59--62.

W. W. Rogosinski, On subordinate functions, Proc. Camb. Philos Soc., 35(1939), 1--26.

H. Silverman and D. N. Telage, Extreme points of subclasses of close-to-convex functions, Proc. Amer. Math. Soc., 74(1979), 59--65.

Downloads

Published

2013-12-22

How to Cite

Singh, H., & Mehrok, B. (2013). Subclasses of close-to-convex functions. Tamkang Journal of Mathematics, 44(4), 377–386. https://doi.org/10.5556/j.tkjm.44.2013.1080

Issue

Section

Papers