Subclasses of close-to-convex functions

Main Article Content

Harjinder Singh
B.S. Mehrok

Abstract

We introduce some subclasses of close-to-convex functions and obtain sharp results for coefficients, distortion theorems and argument theorems from which results of several authors follows as special cases.

Article Details

How to Cite
Singh, H., & Mehrok, B. (2013). Subclasses of close-to-convex functions. Tamkang Journal of Mathematics, 44(4), 377–386. https://doi.org/10.5556/j.tkjm.44.2013.1080
Section
Papers
Author Biographies

Harjinder Singh

Department ofMathematics, Govt. Rajindra College, Bathinda, Punjab - 151001, India.

B.S. Mehrok

#643E, Bhai Randhir Singh Nagar, Ludhiana, Punjab - 141001, India.

References

H. R. Abdel-Gawad and D. K. Thomas, A subclass of close-to-convex functios, Publicatios De L'Institut Mathematique, Nouvelle srie tome, 49 (63) (1991), 61--66.

S. D. Bernardi, Special classes of subordinate functions, Duke Math. J., 33 (1966), 55--67.

M. R. Goel and B. S. Mehrok, A subclass of univalent functions, Houston J. Math., 8(1982), 343--357.

M. R. Goel and B. S. Mehrok, On the coefficients of a subclass of starlike functions, Indian J. Pure Appl. Math., 12(1981), 634--647.

M. R. Goel, and B. S. Mehrok, On a class of close-to-convex functions, Indian J.Pure Appl. Math., 12 (1981), 648--658.

W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon Math., 28 (1973), 297--326.

W. Kaplan, Close-to-convex schlicht functions, Mich. Math. J., 1(1952), 169--185.

J. Krzyz, On the derivative of close-to-convex functions, Colloq Math., 10(1963), 139--142.

L. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23(1925), 481--519.

B. S. Mehrok, A subclass of close-to-convex functions, Bull. Inst. Math. Acad. Sinica, 10(1982), 389--398.

B. S. Mehrok and Gagandeep Singh, A subclass of close-to-convex functions, Int. J. Math. Anal., 4(2010), 1319--1327.

S. Ogawa, A note on close-to-convex functions, J. Nara Gakugei Univ., 8(1959), 9--10.

M. O. Reade, On close-to-convex univalent functions}, Mich. Math. J., 3(1955-56), 59--62.

W. W. Rogosinski, On subordinate functions, Proc. Camb. Philos Soc., 35(1939), 1--26.

H. Silverman and D. N. Telage, Extreme points of subclasses of close-to-convex functions, Proc. Amer. Math. Soc., 74(1979), 59--65.