FEKETE-SZEGO problem for a class of analytic functinos defined by convolution

Main Article Content

Sivaprasad Kumar Shanmugam
Virendra Kumar


Let $g$ and $h$ be two fixed normalized analytic functions and $\phi$ be starlike with respect to $1,$ whose range is symmetric with respect to the real axis. Let $\mathcal{M}^{\alpha,\beta}_{g,h}(\phi)$ be the class of analytic functions $f(z)=z+a_2z^2+a_3z^3+\ldots$, satisfying the subordination $$\left(\frac{(f*g)(z)}{z}\right)^\alpha \left(\frac{(f*h)(z)}{z}\right)^{\beta}\prec \phi(z),$$ where $\alpha$ and $\beta$ are real numbers and are not zero simultaneously. In the present investigation, sharp upper bounds of the Fekete-Szego functional $|a_3-\mu a_2^2|$ for functions belonging to the class $\mathcal{M}^{\alpha,\beta}_{g,h}(\phi)$ are obtained and certain applications are also discussed.

Article Details

How to Cite
Shanmugam, S. K., & Kumar, V. (2013). FEKETE-SZEGO problem for a class of analytic functinos defined by convolution. Tamkang Journal of Mathematics, 44(2), 187–195. https://doi.org/10.5556/j.tkjm.44.2013.1162


R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szego coefficient functional for transforms of analytic functions, Bull. Iranian Math. Soc., 35 (2009), 119--142.

R. M. Ali, V. Ravichandran and N. Seenivasagan, Coefficient bounds for p-valent functions, Appl. Math. Comput., 187 (2007), 35--46.

M. Fekete and G. Szego, Eine Bemerkung uber ungerade schlichte funktionen, J. London Math. Soc., 8 (1933), 85--89.

W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math. 23(1970/1971), 159--177.

F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8--12.

W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157--169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA.

W. C. Ma and D. Minda, Uniformly convex functions. II, Ann. Polon. Math. 58 (1993), 275--285.

S. S. Miller and P.T. Mocanu, Differential subordinations. Theory and applications,

Monographs and Text Books in Pure and Applied Mathematics, 225, Dekker, New York, 2000.

G. Murugusundaramoorthy, S. Kavitha and T. Rosy, On the Fekete-Szego problem for some subclasses of analytic functions defined by convolution, Proc. Pakistan Acad. Sci. 44 (2007), 249--259.

M. Obradovic, A class of univalent functions, Hokkaido Math. J. 27 (1998), 329--335.

R. Parvatham, A study on Reade-Wesolowski class of functions, Math. Inequal. Appl., 8 (2005), 607--618.

C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Gottingen, 1975.

D. Ruaducanu, On the Fekete-Szego inequality for a class of analytic functions defined by using the generalized Su al u agean operator, Gen. Math. 16 (2008), 19--27.

V. Ravichandran, M. Darus, M. H. Khan and K. G. Subramanian, Fekete-Szego inequality for certain class of analytic functions, Aust. J. Math. Anal. Appl., 1 (2004),

Art. 4, 7 pp.

V. Ravichandran, Y. Polatoglu, M. Bolcal and A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacet. J. Math. Stat., 34 (2005), 9--15.

H. Silverman, K. Suchithra, B. A. Stephen and A. Gangadharan, Coefficient bounds for certain classes of meromorphic functions, J. Inequal. Appl. (2008), Art. ID 931981, 9 pp.

N. Tuneski and M. Darus, Fekete-Szego functional for non-Bazilevivc functions, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 18 (2002), 63--65.