Coefficients of strongly alpha-convex and alpha-logarithmicaly convex functions
Main Article Content
Abstract
Article Details
References
R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malaysian Math. Soc., 26 (2003), 63--71.
R. M. Ali and V. A. Singh, On the fourth and fifth coefficients of strongly starlike functions, Results in Mathematics, 29(1996), 197--202.
D. A. Brannan, J. Clunie and W. E. Kirwan, Coefficient estimates for a class of starlike functions, Can. J. Math., XXII(1970), 476--485.
M. Darus and D. K. Thomas, $alpha$-logarithmically convex functions, Indian J. Pure. Appl. Math., 29(1998), 1049--1059.
M. Darus and D. K. Thomas, Inverse coefficients of $alpha$-logarithmically convex functions, Jnanabha, 45(2015), 31--36.
K. Kulshrestha, Coefficients for alpha-convex univalent functions, Bull. Amer. Math. Soc., 80(1974), 341--342.
Z. Lewandowski, S. S. Miller and E. J. Zlotkiewicz, Gamma-starlike functions, Ann. Univ. Marie-Curie Sklodowska, 27(1974), 53--58.
C. Lowner, Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises, I, Math. Ann., 89(1923), 103--121.
W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceeding of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang and S. Zhang (Eds), Int. Press, (1990), 157--169.
S. S. Miller, P. Mocanu and M. 0. Read, All $alpha$-convex functions are univalent and starlike, Proc. Amer. Math. Soc.,37(1973), 553--554.
D. V. Prokhorov and J. Szynal, Inverse coefficients for $(alpha ,beta )$-convex functions, Annales Universitatis Mariae Curie - Sklodowska, X(1981), No.15, 125--141.
D. K. Thomas and S. Verma, Invariance of the coefficients of strongly convex functions, Bull. Australian Math, Soc., (2016),doi.10.1017/S0004972716000976..
P. Todorov, Explicit formulas for the coefficients of $alpha$ convex functions, $alpha ge0$, Can.J. Math., XXXIX (1987), 769--783.