Existence theorems for generalized vector equilibria with variable ordering relation
Main Article Content
Abstract
Article Details
References
L. E. J. Brouwer, Uber Abbildungen von Mannigfaltigkeiten, Math. Ann., 71 (1912), 97--115.
G. Y. Chen, Existence of solutions for a vector variational inequality: An extension of Hartman-Stampacchia theorem, J. Optim. Theory Appl., 74(1992), 445--456.
G. Y. Chen and X. Q. Yang, The vector complementarity problem and its equivalence with the weak minimal element, J. Math. Anal. Appl., 153(1990), 136--158.
Y.Q. Chen, On the semi-monotone operator theory and applications, J. Math. Anal. Appl., 231(1999), 177--192.
K. Fan, A generalization of Tychonoff's fixed-point theorem, Math. Ann., 142 (1961), 305--310.
F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, In: R.W. Cottle, F. Giannessi, J. L. Lions (eds.) Variational Inequalities and Complementarity Problems, Wiley and Sons, New York, 1980.
F. Giannessi, Vector Variational Inequalities and Vector Equilibria, Kluwer Academic Publisher, Dordrechet, Holland, 2000.
F. Giannessi and A. Maugeri, Variational inequalities and network equilibrium problems, Plenum Press, New York, 1995.
N. J. Huang and Y. P. Fang, On vector variational inequalities in reflexive Banach spaces, J. Glob. Optim., 32(2005), 495--505.
I.V. Konnov and J. C. Yao, On the generalized vector variational inequality problems, J. Math. Anal. Appl., 206(1997), 42--58.
T. C. Lai and J. C. Yao, Existence results for VVIP, Appl. Math. Lett., 9(1996), 17--19.
K. L. Lin, D. P. Yang and J. C. Yao, Generalized vector variational inequalities, J. Optim. Theory Appl., 92(1997), 117-125.
S. B. Jr. Nadler, Multi-valued contraction mappings, Pac. J. Math.,30(1969), 475-488.
A. H. Siddiqi, Q. H. Ansari and A. Khaliq, On vector variational inequalities, J. Optim. Theory Appl., 84(1995), 171--180.
X. Q. Yang, Vector variational inequality and vector pseudolinear optimization, J. Optim. Theory Appl., 95(1997), 729--734.
L. C. Ceng and S. Huang, Existence theorems for generalized vector variational inequalities with a variable ordering relation, J. Glob. Optim., 46(2010), 521--535.
S. J. Yu and J. C. Yao, On vector variational inequalities, J. Optim. Theory Appl., 89(1996), 749--769.
L. C. Ceng and J. C. Yao, Existence of solutions of generalized vector variational inequalities in reflexive Banach spaces, J. Glob. Optim., 36(2006), 483--497.
F. Zheng, Vector variational inequalities with semi-monotone operators, J. Glob. Optim., 32(2005), 633--642.
L. C. Ceng, G. Y. Chen, X. X. Huang and J. C. Yao, Existence theorems for generalized vector variational inequalities with pseudomonotonicity and their applications, Taiwanese J. Math., 12(2008), 151--172.
L. C. Ceng and S. Kum, On generalized vector implicit variational inequalities and complementarity problems, Taiwanese J. Math., 11(2007), 621--636.
L. C. Ceng, P. Cubiotti and J. C. Yao, Existence of vector mixed variational inequalities in Banach spaces, Nonlinear Anal., 70(2009), 1239--1256.
L. C. Ceng, S. Schaible and J. C. Yao, Existence of solutions for generalized vector variational-like inequalities, J. Optim. Theory Appl., 137(2008), 121--133.
L. C. Zeng and J. C. Yao, Existence theorems for variational inequalities in Banach spaces, J. Optim. Theory Appl.,132(2007), 321--337.
L. C. Ceng, G. Mastroeni and J. C. Yao, Existence of solutions and variational principles for generalized vector systems, J. Optim. Theory Appl., 137(2008), 485--495.
X. Q. Yang and C. J. Goh, On vector variational inequality application to vector traffic equilibria}, J. Optim. Theory Appl., 95(1997), 431--443.
L. C. Zeng and J. C. Yao, Generalized Minty's lemma for generalized vector equilibrium problems, Appl. Math. Lett., 20(2007), 32--37.
L. C. Zeng and J. C. Yao, An existence result for generalized vector equilibrium problems without pseudomonotonicity, Appl. Math. Lett., 19(12)(2006), 1320--1326.