Extended a constant part of Redheffer's type inequalities
DOI:
https://doi.org/10.5556/j.tkjm.49.2018.2505Keywords:
Redheffer's inequalities, monotonically increasing functions, monotonically decreasing functions, trigonometric functionsAbstract
J-L. Li and Y-L. Li \cite{LL2007} gave the following Redheffer's type inequality; \begin{equation*} \frac{ 1 -\left( \frac{x}{\pi} \right)^2 }{ \sqrt{1 + 3 \left( \frac{x}{\pi} \right)^4}} > \frac{\sin{x}}{x} \end{equation*} holds for $0 < x < \pi$, where the constant $3$ is the best possible. In this paper, we establish two inequalities extended the constant part of the above inequality.References
A. Baricz, Redheffer type inequality for Bessel functions,J. Inequal. Pure Appl. Math., 8(2007), no.1 Art.11, 6 pp.
C. P. Chen, J. W. Zhao and F. Qi, Three inequalities involving hyperbolically trigonometric functions, RGMIA Res. Rep. Coll., 6(2003), 437--443.
L. Li and J. Zhang, A new proof on Redheffer-Williams' inequality, 56(2011), 213-217.
J. L. Li and Y. L. Li, On the strengthened Jordan's inequality, J.Inequal. Appl., Art.ID 74328(2007), 8 pp.
J. L. Li, On a series of Erdos-Turan type, Analysis, 12(1992), 315--317.
K. Mehrez, Redheffer type inequalities for modified Bessel functions, Arab J. Math. Sci., 22(2016), 38--42.
R. Redheffer, P. Ungar, A. Lupas, et al., Problems and Solutions: Advanced Problems: 5642, 5665-5670, Amer. Math. Monthly, 76(1969), 422--423.
R. Redheffer and J. P. Williams, Solution of problem 5642, Amer. Math. Monthly, 76(1969), 1153--1154.
L. Zhu and J. Sun,Six new Redheffer-type inequalities for circular and hyperbolic functions, Comput. Math. Appl., 56(2008), 522--529.
L. Zhu, Sharpening Redheffer-type inequalities for circular functions,Appl. Math. Lett., 22(2009), 743--748.
L. Zhu, Extension of Redheffer type inequalities to modified Bessel functions, Appl. Math. Comput., 217(2011), 8504--8506.