A NOTE ON HARDY LIKE INTEGRAL INEQUALITIES

Main Article Content

B. G. PACHPATTE

Abstract




The aim of the present note is to establish two new integral inequalities of the Hardy type by using a fairly elementary analysis.




Article Details

How to Cite
PACHPATTE, B. G. . (1994). A NOTE ON HARDY LIKE INTEGRAL INEQUALITIES. Tamkang Journal of Mathematics, 25(3), 221–224. https://doi.org/10.5556/j.tkjm.25.1994.4446
Section
Papers

References

R. A. Adams, "Some integral inequalities with applications to the imbedding of Sobolev spaces defined over irregular domains," Trans. Amer. Math., Soc. 178 (1973), 401-429.

P. R. Beesack,"Integral inequalities involving a function and its derivative," Amer. Math., Monthly, 78 (1971), 705-741.

G. H. Hardy, "Note on a theorem of Hilbert," Math. Z., 6 (1920), 314-317.

G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ., Press, Cambridge, 1934.

M. Izumi and S. Izumi, "On some inequalities for Fourier Series," J. Analyse Math., 21 (1968), 277-291.

P.D. Johnson Jr and R.N. Mohapatra,"Inequalities involving lower trangular matrices," Proc. London Math., Soc. 41 (1980), 83-137.

B. G. Pachpatte,"On a new class of Hardy type inequalities," Proc. Royal Soc., Edinburgh, 105A (1987), 265-274.

B. G. Pachpatte, "On some variants of Hardy's inequality," J. Math. Anal. Appl., 124(1987), 495-501.

B. G. Pachpatte, "On some integral inequalities similar to Hardy's inequality," J. Math. Anal. Appl., 129(1988), 596-606.

A. Zygmund, Trigonometrical series, Vol. I. 2nd edition, Cambridge Univ., Press, New York, 1959.